Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 1,946 papers

Discovery of KIRREL as a biomarker for prognostic stratification of patients with thin melanoma.

  • Sebastian Lundgren‎ et al.
  • Biomarker research‎
  • 2019‎

There is a great unmet clinical need to identify patients with thin primary cutaneous melanomas (T1, Breslow thickness ≤ 1 mm) who have a high risk for tumour recurrence and death from melanoma. Kin of IRRE-like protein 1 (KIRREL/NEPH1) is expressed in podocytes and involved in glomerular filtration. Screening in the Human Protein Atlas portal revealed a particularly high expression of KIRREL in melanoma, both at the mRNA and protein levels. In this study, we followed up on these findings and examined the prognostic value of KIRREL in a population-based cohort. Immunohistochemical expression of KIRREL was examined in tissue microarrays with a subset of primary tumours and paired lymph node metastases from an original cohort of 268 incident cases of melanoma in the Malmö Diet and Cancer study. KIRREL mRNA expression was examined in 103 melanoma cases in The Cancer Genome Atlas (TCGA). Membranous/cytoplasmic expression of KIRREL was detected in 158/185 (85.4%) primary tumours and 18/19 (94.7%) metastases. High expression of KIRREL was significantly associated with several unfavourable clinicopathological factors. High KIRREL protein expression was an independent factor of reduced recurrence free and melanoma specific survival, particularly in thin melanomas, even outperforming absolute thickness and ulceration (HR = 30.85; 95% CI 1.54-616.36 and HR = 6.32 95% CI 1.19-33.65). High mRNA levels of KIRREL were not significantly associated with survival in TCGA. In conclusion, KIRREL is not only a novel potential diagnostic marker for melanoma, but may also be a useful prognostic biomarker for improved stratification of patients with thin melanoma. These findings may be of high clinical relevance and therefore merit further validation.


A 5-gene prognostic nomogram predicting survival probability of glioblastoma patients.

  • Lingchen Wang‎ et al.
  • Brain and behavior‎
  • 2019‎

Glioblastoma (GBM) remains the most biologically aggressive subtype of gliomas with an average survival of 10 to 12 months. Considering that the overall survival (OS) of each GBM patient is a key factor in the treatment of individuals, it is meaningful to predict the survival probability for GBM patients newly diagnosed in clinical practice.


Downregulation of sonic hedgehog signaling in the hippocampus leads to neuronal apoptosis in high-fat diet-fed mice.

  • Suping Qin‎ et al.
  • Behavioural brain research‎
  • 2019‎

Obesity induces hippocampal neuronal apoptosis and leads to cognitive function deficits. Sonic hedgehog (SHH) signaling is crucial during nervous system development and is neuroprotective in many neurologic diseases. This study assessed the role of SHH signaling in the cognitive deficits in high-fat diet (HFD)-induced obese mice.


Discovery of therapeutic agents for prostate cancer using genome-scale metabolic modeling and drug repositioning.

  • Beste Turanli‎ et al.
  • EBioMedicine‎
  • 2019‎

Genome-scale metabolic models (GEMs) offer insights into cancer metabolism and have been used to identify potential biomarkers and drug targets. Drug repositioning is a time- and cost-effective method of drug discovery that can be applied together with GEMs for effective cancer treatment.


Systemic LPS-induced Aβ-solubilization and clearance in AβPP-transgenic mice is diminished by heparanase overexpression.

  • Charlotte Jendresen‎ et al.
  • Scientific reports‎
  • 2019‎

Amyloid-β (Aβ) is the main constituent of amyloid deposits in Alzheimer's disease (AD). The neuropathology is associated with neuroinflammation. Here, we investigated effects of systemic lipopolysaccharide (LPS)-treatment on neuroinflammation and Aβ deposition in AβPP-mice and double-transgenic mice with brain expression of AβPP and heparanase, an enzyme that degrades HS and generates an attenuated LPS-response. At 13 months of age, the mice received a single intraperitoneal injection of 50 µg LPS or vehicle, and were sacrificed 1.5 months thereafter. Aβ in the brain was analyzed histologically and biochemically after sequential detergent extraction. Neuroinflammation was assessed by CD45 immunostaining and mesoscale cytokine/chemokine ELISA. In single-transgenic mice, LPS-treatment reduced total Aβ deposition and increased Tween-soluble Aβ. This was associated with a reduced CXCL1, IL-1β, TNF-α-level and microgliosis, which correlated with amyloid deposition and total Aβ. In contrast, LPS did not change Aβ accumulation or inflammation marker in the double-transgenic mice. Our findings suggest that a single pro-inflammatory LPS-stimulus, if given sufficient time to act, triggers Aβ-clearance in AβPP-transgenic mouse brain. The effects depend on HS and heparanase.


Decreased expression of microRNA-223 promotes cell proliferation in hepatocellular carcinoma cells via the insulin-like growth factor-1 signaling pathway.

  • Cheng Zhang‎ et al.
  • Experimental and therapeutic medicine‎
  • 2018‎

Hepatocellular carcinoma (HCC) is one of the most harmful types of cancer. Previous studies have demonstrated that microRNA (miR)-223 is downregulated in the serum and tumor tissue of patients with HCC. The present study aimed to investigate the regulatory role of miR-223 on insulin-like growth factor-1 receptor (IGF-1R) and downstream factors in HCC. The Hep3B cell line was transfected with miR-223 mimic and inhibitor. Following transfection, cell proliferation was analyzed using a cell counting kit 8 assay and cellular apoptosis was assessed using flow cytometry. The expression of key molecules in the IGF-1 signaling pathway, including IGF-1R, protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) were determined using reverse transcription-quantitative polymerase chain reaction and western blot analysis. The results demonstrated that the mRNA and protein levels of IGF-1R were decreased in cells transfected with miR-223. Transfection with miR-223 also decreased cell proliferation and promoted cell apoptosis. Expression of total Akt and ERK, and their active forms phosphorylated Akt and ERK, were also downregulated following transfection with miR-223. By contrast, transfection with miR-223 inhibitor did not induce any effects on Hep3B cell proliferation and apoptosis, and did not affect the expression of key molecules in the IGF-1 pathway. Therefore, the results of the present study indicate that miR-223 decreases the proliferation and promotes the apoptosis of HCC cells. Its molecular mechanism of action may at least partially occur via the direct regulation of IGF-1R and indirect reduction of the downstream molecules Akt and ERK.


Structural Properties of the Human Protease-Activated Receptor 1 Changing by a Strong Antagonist.

  • Patrizia M Spoerri‎ et al.
  • Structure (London, England : 1993)‎
  • 2018‎

The protease-activated receptor 1 (PAR1), a G protein-coupled receptor (GPCR) involved in hemostasis, thrombosis, and inflammation, is activated by thrombin or other coagulation proteases. This activation is inhibited by the irreversible antagonist vorapaxar used for anti-platelet therapy. Despite detailed structural and functional information, how vorapaxar binding alters the structural properties of PAR1 to prevent activation is hardly known. Here we apply dynamic single-molecule force spectroscopy to characterize how vorapaxar binding changes the mechanical, kinetic, and energetic properties of human PAR1 under physiologically relevant conditions. We detect structural segments stabilizing PAR1 and quantify their properties in the unliganded and the vorapaxar-bound state. In the presence of vorapaxar, most structural segments increase conformational variability, lifetime, and free energy, and reduce mechanical rigidity. These changes highlight a general trend in how GPCRs are affected by strong antagonists.


Nuclear PTEN safeguards pre-mRNA splicing to link Golgi apparatus for its tumor suppressive role.

  • Shao-Ming Shen‎ et al.
  • Nature communications‎
  • 2018‎

Dysregulation of pre-mRNA alternative splicing (AS) is closely associated with cancers. However, the relationships between the AS and classic oncogenes/tumor suppressors are largely unknown. Here we show that the deletion of tumor suppressor PTEN alters pre-mRNA splicing in a phosphatase-independent manner, and identify 262 PTEN-regulated AS events in 293T cells by RNA sequencing, which are associated with significant worse outcome of cancer patients. Based on these findings, we report that nuclear PTEN interacts with the splicing machinery, spliceosome, to regulate its assembly and pre-mRNA splicing. We also identify a new exon 2b in GOLGA2 transcript and the exon exclusion contributes to PTEN knockdown-induced tumorigenesis by promoting dramatic Golgi extension and secretion, and PTEN depletion significantly sensitizes cancer cells to secretion inhibitors brefeldin A and golgicide A. Our results suggest that Golgi secretion inhibitors alone or in combination with PI3K/Akt kinase inhibitors may be therapeutically useful for PTEN-deficient cancers.


Mouse Sirt3 promotes autophagy in AngII-induced myocardial hypertrophy through the deacetylation of FoxO1.

  • Jingyuan Li‎ et al.
  • Oncotarget‎
  • 2016‎

Sirt3, a mitochondrial NAD+-dependent histone deacetylase, is the only member proven to promote longevity in mammalian Sirtuin family. The processed short form of Sirt3 has been demonstrated to target many mediators of energy metabolism and mitochondrial stress adaptive program. Autophagy serves as a dynamic recycling mechanism and provides energy or metabolic substrates. Among the mechanisms triggered by cardiac stress, opinions vary as to whether autophagy is a protective or detrimental response. Here, by inducing the Sirt3-knockout mice to myocardial hypertrophy with chronic angiotensin II infusion for four weeks, we determined the role of Sirt3 in myocardial hypertrophy and autophagy. In this study, the Sirt3-knockout mice developed deteriorated cardiac function and impaired autophagy compared to wild-type mice. What's more, the overexpression of Sirt3 by lentivirus transfection attenuated cardiomyocytes hypertrophy by promoting autophagy. We further demonstrated that Sirt3 could bind to FoxO1 and activate its deacetylation. Sequentially, deacetylated FoxO1 translocates to the nucleus where it facilitates downstream E3 ubiquitin ligases such as Muscle RING Finger 1 (MuRF1) and muscle atrophy F-box (MAFbx, Atrogin1). Altogether, these results revealed that Sirt3 activation is essential to improve autophagy flux by reducing the acetylation modification on FoxO1, which in turn alleviates myocardial hypertrophy.


OsACOS12, an orthologue of Arabidopsis acyl-CoA synthetase5, plays an important role in pollen exine formation and anther development in rice.

  • Yueling Li‎ et al.
  • BMC plant biology‎
  • 2016‎

Sporopollenin is a major component of the pollen exine pattern. In Arabidopsis, acyl-CoA synthetase5 (ACOS5) is involved in sporopollenin precursor biosynthesis. In this study, we identified its orthologue, OsACOS12, in rice (Oryza sativa) and compared the functional conservation of ACOS in rice to Arabidopsis.


Maresin 1 Mitigates Inflammatory Response and Protects Mice from Sepsis.

  • Ruidong Li‎ et al.
  • Mediators of inflammation‎
  • 2016‎

Sepsis, frequently caused by infection of bacteria, is considered as an uncontrollable systematic inflammation response syndrome (SIRS). Maresin 1 (Mar1) is a new proresolving mediator with potent anti-inflammatory effect in several animal models. However, its effect in sepsis is still not investigated. To address this question, we developed sepsis model in BALB/c mice by cecal ligation and puncture (CLP) with or without Mar1 treatment. Our data showed that Mar1 markedly improved survival rate and decreased the levels of proinflammatory cytokines in CLP mice such as interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β). Furthermore, Mar1 reduced serum level of lipopolysaccharide (LPS) and enhanced the bacteria clearance in mice sepsis model. Moreover, Mar1 attenuated lung injury and decreased level of alanine transaminase (ALT), aspartate transaminase (AST), creatinine (Cre), and blood urea nitrogen (BUN) in serum in mice after CLP surgery. Treatment with Mar1 inhibited activation of nuclear factor kappa B (NF-κb) pathway. In conclusion, Mar1 exhibited protective effect in sepsis by reducing LPS, bacteria burden in serum, inhibiting inflammation response, and improving vital organ function. The possible mechanism is partly involved in inhibition of NF-κb activation.


Synthesis and antibacterial activity evaluation of novel biaryloxazolidinone analogues containing a hydrazone moiety as promising antibacterial agents.

  • Yachuang Wu‎ et al.
  • European journal of medicinal chemistry‎
  • 2018‎

A series of linezolid analogues containing a hydrazone moiety were designed, synthesized and evaluated for their antibacterial activity. Most compounds exhibited more potent antibacterial activity against S.aureus, MRSA, MSSA, LREF and VRE pathogens as compared with linezolid and radezolid. Compounds 9a, 9c, 9f, 9g, 10m and 10t were more potent against tested clinical isolates of MRSA, MSSA, VRE and LREF as compared to linezolid. Compound 9a exhibited comparable activity with linezolid against human MAO-A for safety evaluation and showed moderate metabolism in human liver microsome. The most promising compound 9a showed remarkable antibacterial activity against S.aureus, MRSA, MSSA, LREF and VRE pathogens with MIC value of 0.0675 mg/mL, respectively, which was 15- to 30-fold more potent than linezolid.


The downregulated long noncoding RNA DHRS4-AS1 is protumoral and associated with the prognosis of clear cell renal cell carcinoma.

  • Changlin Wang‎ et al.
  • OncoTargets and therapy‎
  • 2018‎

Long noncoding RNAs (lncRNAs) have been identified as important factors in cancer biology and are deregulated in many cancers. The present study aimed to determine the expression and roles of lncRNA DHRS4-AS1 in the progression of clear cell renal cell carcinoma (ccRCC).


The Antidiabetic and Antinephritic Activities of Tuber melanosporum via Modulation of Nrf2-Mediated Oxidative Stress in the db/db Mouse.

  • Xue Jiang‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2018‎

Tuber melanosporum (TM), a valuable edible fungus, contains 19 types of fatty acid, 17 types of amino acid, 6 vitamins, and 7 minerals. The antidiabetic and antinephritic effects of TM and the underlying mechanisms related to oxidative stress were investigated in db/db mice. Eight-week oral administration of metformin (Met) at 0.1 g/kg and TM at doses of 0.2 and 0.4 g/kg decreased body weight, plasma glucose, serum levels of glycated hemoglobin, triglyceride, and total cholesterol and increased serum levels of high-density lipoprotein cholesterol in the mice, suggesting hypoglycemic and hypolipidemic effects. TM promoted glucose metabolism by increasing the levels of pyruvate kinase and hepatic glycogen. It also regulated the levels of inflammatory factors and oxidative enzymes in serum and/or the kidneys of the mice. Additionally, TM increased the expression of nuclear respiratory factor 2 (Nrf2), catalase, heme oxygenase 1, heme oxygenase 2, and manganese superoxide dismutase 2 and decreased the expression of protein kinase C alpha, phosphor-janus kinase 2, phosphor-signal transducer and activator of transcription 3, and phosphor-nuclear factor-κB in the kidneys. The results of this study reveal the antidiabetic and antidiabetic nephritic properties of TM via modulating oxidative stress and inflammation-related cytokines through improving the Nrf2 signaling pathway.


Blue light-induced apoptosis of human promyelocytic leukemia cells via the mitochondrial-mediated signaling pathway.

  • Jianjian Zhuang‎ et al.
  • Oncology letters‎
  • 2018‎

Acute promyelocytic leukemia is frequently associated with dizziness, fever, nausea, hematochezia and anemia. Blue light, or light with wavelengths of 400-480 nm, transmits high levels of energy. The aim of the present study was to determine the pro-apoptotic effects of blue light (wavelength, 456 nm; radiation power, 0.25 mW/cm2) and the underlying mechanisms in a human promyelocytic leukemia cell line (HL60). Blue light reduced the viability and enhanced the mortality of HL60 cells in a time-dependent manner. Exposure to blue light for 24 h caused depolarization of the mitochondrial membrane potential and the overproduction of reactive oxygen species in HL60 cells. In a nude mouse model, 9-day exposure to blue light markedly suppressed the growth of HL60-xenografted tumors; however, it had no effect on hepatic and renal tissues. In addition, blue light abrogated the expression of B-cell lymphoma (Bcl)-2 and Bcl extra-long, while enhancing the levels of Bcl-2-associated X protein, cytochrome c, and cleaved caspases-3 and -9 in tumor tissues. The results suggested that the pro-apoptotic effects of blue light in human promyelocytic leukemia cells may be associated with the mitochondrial apoptosis signaling pathway.


Benzoxazinone-containing 3,5-dimethylisoxazole derivatives as BET bromodomain inhibitors for treatment of castration-resistant prostate cancer.

  • Xiaoqian Xue‎ et al.
  • European journal of medicinal chemistry‎
  • 2018‎

The bromodomain and extra-terminal proteins (BET) have emerged as promising therapeutic targets for the treatment of castration-resistant prostate cancer (CRPC). We report the design, synthesis and evaluation of a new series of benzoxazinone-containing 3,5-dimethylisoxazole derivatives as selective BET inhibitors. One of the new compounds, (R)-12 (Y02234), binds to BRD4(1) with a Kd value of 110 nM and blocks bromodomain and acetyl lysine interactions with an IC50 value of 100 nM. It also exhibits selectivity for BET over non-BET bromodomain proteins and demonstrates reasonable anti-proliferation and colony formation inhibition effect in prostate cancer cell lines such as 22Rv1 and C4-2B. The BRD4 inhibitor (R)-12 also significantly suppresses the expression of ERG, Myc and AR target gene PSA at the mRNA level in prostate cancer cells. Treatment with (R)-12 significantly suppresses the tumor growth of prostate cancer (TGI = 70%) in a 22Rv1-derived xenograft model. These data suggest that compound (R)-12 is a promising lead compound for the development of a new class of therapeutics for the treatment of CRPC.


Allergy immunotherapy restores airway epithelial barrier dysfunction through suppressing IL-25 -induced endoplasmic reticulum stress in asthma.

  • Xiefang Yuan‎ et al.
  • Scientific reports‎
  • 2018‎

Constant exposure to allergen triggers destructive type 2 cell-mediated inflammation. The effect of allergen specific immunotherapy (SIT) in maintaining airway epithelial barrier function in asthma remains unknown. In the current study, we showed that SIT maintained airway epithelial homeostasis in mice exposed to dermatophagoides farinae (Der f), which induced increased expression of IL-25, endoplasmic reticulum (ER) stress and airway epithelial apoptosis. Meanwhile, SIT treatment ameliorated airway inflammatory infiltration and hyper-responsiveness in allergic mice. SIT treatment restored the airway epithelial integrity, attenuated Der f -induced airway epithelial ER stress and epithelial apoptosis. We also found that 4-PBA, an inhibitor of ER stress, suppressed airway epithelial ER stress and apoptosis in vitro. The pathological changes were partially induced by IL-25-induced ER stress, epithelial tight junction damage, and cell apoptosis in airways following allergen exposure. Furthermore, IL-25 induced ER stress in airway epithelial cells in vitro. The IL-25-induced airway epithelial apoptosis dependent on PERK activity was inhibited by 4-PBA. Taken together, we demonstrate that SIT is effective in allergic asthma and dependent on its depressive effect on the expression of IL-25, epithelial integrity damage, and epithelial ER stress.


Sarcodon imbricatus polysaccharides improve mouse hematopoietic function after cyclophosphamide-induced damage via G-CSF mediated JAK2/STAT3 pathway.

  • Xue Wang‎ et al.
  • Cell death & disease‎
  • 2018‎

Sarcodon imbricatus, a rare medicinal and edible fungus, has various pharmacological bioactivities. We investigated the effects of S. imbricatus polysaccharides (SIPS) on hematopoietic function and identified the underlying mechanisms using in vitro experiments with CHRF, K562, and bone marrow mononuclear cells (BMMNCs) and in vivo experiments with a mouse model of cyclophosphamide-induced hematopoietic dysfunction. We found that SIPS induced proliferation and differentiation of CHRF and K562 cells and upregulated the expression of hematopoietic-related proteins, including p90 ribosomal S6 kinases (RSK1p90), c-Myc, and ETS transcription factor, in the two cell lines. After 28 days of treatment, SIPS enhanced the bodyweight and thymus indices of the mice, alleviated enlargement of the spleen and liver, and contributed to the recovery of peripheral blood to normal levels. More importantly, the percentages of B lymphocytes and hematopoietic stem cells or hematopoietic progenitor cells were significantly elevated in bone marrow. Based on an antibody chip analysis and enzyme-linked immunosorbent assay, SIPS were found to successfully regulate 12 cytokines to healthy levels in serum and spleen. The cytokines included the following: interleukins 1Ra, 2, 3, 4, 5, and 6, tumor necrosis factor α, interferon-γ, granulocyte colony-stimulating factor (G-CSF) and macrophage colony-stimulating factor (M-CSF), C-C motif chemokine1, and monocyte chemoattractant protein-1. Moreover, SIPS upregulated the phosphorylation levels of janus kinase 2 (JAK2) and the signal transducer and activator of transcription 3 (STAT3) in the spleen, and similar results were validated in CHRF cells, K562 cells, and BMMNCs. The data indicate that SIPS activated the JAK2/STAT3 pathway, possibly by interactions among multiple cytokines, particularly G-CSF. We found that SIPS was remarkably beneficial to the bone marrow hematopoietic system, and we anticipate that it could improve myelosuppression induced by long-term radiotherapy or chemotherapy.


Sympathetic inputs regulate adaptive thermogenesis in brown adipose tissue through cAMP-Salt inducible kinase axis.

  • Esther Paulo‎ et al.
  • Scientific reports‎
  • 2018‎

Various physiological stimuli, such as cold environment, diet, and hormones, trigger brown adipose tissue (BAT) to produce heat through sympathetic nervous system (SNS)- and β-adrenergic receptors (βARs). The βAR stimulation increases intracellular cAMP levels through heterotrimeric G proteins and adenylate cyclases, but the processes by which cAMP modulates brown adipocyte function are not fully understood. Here we described that specific ablation of cAMP production in brown adipocytes led to reduced lipolysis, mitochondrial biogenesis, uncoupling protein 1 (Ucp1) expression, and consequently defective adaptive thermogenesis. Elevated cAMP signaling by sympathetic activation inhibited Salt-inducible kinase 2 (Sik2) through protein kinase A (PKA)-mediated phosphorylation in brown adipose tissue. Inhibition of SIKs enhanced Ucp1 expression in differentiated brown adipocytes and Sik2 knockout mice exhibited enhanced adaptive thermogenesis at thermoneutrality in an Ucp1-dependent manner. Taken together, our data indicate that suppressing Sik2 by PKA-mediated phosphorylation is a requisite for SNS-induced Ucp1 expression and adaptive thermogenesis in BAT, and targeting Sik2 may present a novel therapeutic strategy to ramp up BAT thermogenic activity in humans.


GABAB receptor mediate hippocampal neuroinflammation in adolescent male and female mice after cold expose.

  • Bin Xu‎ et al.
  • Brain research bulletin‎
  • 2018‎

Stress induces many non-specific inflammatory responses in the mouse brain, especially during adolescence. Although the impact of stress on the brain has long been reported, the effects of cold stress on hippocampal neuroinflammation in adolescent mice are not well understood; furthermore, whether these effects are gender specific are also not well established. Adolescent male and female C57BL/6 mice were exposed to 4 °C temperatures for 12 h, after which behavior was assessed using the open field test. Using western blotting and immunohistochemistry we also assessed glial cell numbers and microglial activation, as well as inflammatory cytokine levels and related protein expression levels. We found that in mice subjected to cold stress: 1) There were significant behavioral changes; 2) neuronal nuclei densities were smaller and total cell numbers were significantly decreased; 3) nuclear factor (NF)-κB and phosphorylated AKT were upregulated; 4) pro-inflammatory cytokines such as interleukin-6 and tumor necrosis factor-α were also upregulated; and 5) microglia were activated, while glial fibrillary acid protein and ionized calcium-binding adapter molecule 1 protein expression increased. Taken together, these results indicate that cold stress induces pro-inflammatory cytokine upregulation that leads to neuroinflammation and neuronal apoptosis in the hippocampi of adolescent mice. We believe that these effects are influenced by a GABAB/Rap1B/AKT/NF-κB pathway. Finally, male mice were more sensitive to the effects of cold stress than were female mice.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: