Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 50 papers out of 50 papers

Adipocyte JAK2 Regulates Hepatic Insulin Sensitivity Independently of Body Composition, Liver Lipid Content, and Hepatic Insulin Signaling.

  • Kevin C Corbit‎ et al.
  • Diabetes‎
  • 2018‎

Disruption of hepatocyte growth hormone (GH) signaling through disruption of Jak2 (JAK2L) leads to fatty liver. Previously, we demonstrated that development of fatty liver depends on adipocyte GH signaling. We sought to determine the individual roles of hepatocyte and adipocyte Jak2 on whole-body and tissue insulin sensitivity and liver metabolism. On chow, JAK2L mice had hepatic steatosis and severe whole-body and hepatic insulin resistance. However, concomitant deletion of Jak2 in hepatocytes and adipocytes (JAK2LA) completely normalized insulin sensitivity while reducing liver lipid content. On high-fat diet, JAK2L mice had hepatic steatosis and insulin resistance despite protection from diet-induced obesity. JAK2LA mice had higher liver lipid content and no protection from obesity but retained exquisite hepatic insulin sensitivity. AKT activity was selectively attenuated in JAK2L adipose tissue, whereas hepatic insulin signaling remained intact despite profound hepatic insulin resistance. Therefore, JAK2 in adipose tissue is epistatic to liver with regard to insulin sensitivity and responsiveness, despite fatty liver and obesity. However, hepatocyte autonomous JAK2 signaling regulates liver lipid deposition under conditions of excess dietary fat. This work demonstrates how various tissues integrate JAK2 signals to regulate insulin/glucose and lipid metabolism.


Obesity-associated, but not obesity-independent, tumors respond to insulin by increasing mitochondrial glucose oxidation.

  • Aviva Rabin-Court‎ et al.
  • PloS one‎
  • 2019‎

Obesity is associated with increased incidence and worse prognosis of more than one dozen tumor types; however, the molecular mechanisms for this association remain under debate. We hypothesized that insulin, which is elevated in obesity-driven insulin resistance, would increase tumor glucose oxidation in obesity-associated tumors. To test this hypothesis, we applied and validated a stable isotope method to measure the ratio of pyruvate dehydrogenase flux to citrate synthase flux (VPDH/VCS, i.e. the percent of total mitochondrial oxidation fueled by glucose) in tumor cells. Using this method, we found that three tumor cell lines associated with obesity (colon cancer [MC38], breast cancer [4T1], and prostate cancer [TRAMP-C3] cells) increase VPDH/VCS in response to physiologic concentrations of insulin. In contrast, three tumor cell lines that are not associated with obesity (melanoma [YUMM1.7], B cell lymphoma [BCL1 clone 5B1b], and small cell lung cancer [NCI-H69] cells) exhibited no oxidative response to insulin. The observed increase in glucose oxidation in response to insulin correlated with a dose-dependent increase in cell division in obesity-associated tumor cell lines when grown in insulin, whereas no alteration in cell division was seen in tumor types not associated with obesity. These data reveal that a shift in substrate preference in the setting of physiologic insulin may comprise a metabolic signature of obesity-associated tumors that differs from that of those not associated with obesity.


Deletion of the diabetes candidate gene Slc16a13 in mice attenuates diet-induced ectopic lipid accumulation and insulin resistance.

  • Tina Schumann‎ et al.
  • Communications biology‎
  • 2021‎

Genome-wide association studies have identified SLC16A13 as a novel susceptibility gene for type 2 diabetes. The SLC16A13 gene encodes SLC16A13/MCT13, a member of the solute carrier 16 family of monocarboxylate transporters. Despite its potential importance to diabetes development, the physiological function of SLC16A13 is unknown. Here, we validate Slc16a13 as a lactate transporter expressed at the plasma membrane and report on the effect of Slc16a13 deletion in a mouse model. We show that Slc16a13 increases mitochondrial respiration in the liver, leading to reduced hepatic lipid accumulation and increased hepatic insulin sensitivity in high-fat diet fed Slc16a13 knockout mice. We propose a mechanism for improved hepatic insulin sensitivity in the context of Slc16a13 deficiency in which reduced intrahepatocellular lactate availability drives increased AMPK activation and increased mitochondrial respiration, while reducing hepatic lipid content. Slc16a13 deficiency thereby attenuates hepatic diacylglycerol-PKCε mediated insulin resistance in obese mice. Together, these data suggest that SLC16A13 is a potential target for the treatment of type 2 diabetes and non-alcoholic fatty liver disease.


Uncoupling Hepatic Oxidative Phosphorylation Reduces Tumor Growth in Two Murine Models of Colon Cancer.

  • Yongliang Wang‎ et al.
  • Cell reports‎
  • 2018‎

Obesity is associated with colon cancer pathogenesis, but the underlying mechanism is actively debated. Here, we confirm that diet-induced obesity promotes tumor growth in two murine colon cancer models and show that this effect is reversed by an orally administered controlled-release mitochondrial protonophore (CRMP) that acts as a liver-specific uncoupler of oxidative phosphorylation. This agent lowered circulating insulin, and the reduction of tumor growth was abrogated by an insulin infusion raising plasma insulin to the level of high-fat-fed mice. We also demonstrate that hyperinsulinemia increases glucose uptake and oxidation in vivo in tumors and that CRMP reverses these effects. This study provides evidence that perturbations of whole-organism energy balance or hepatic energy metabolism can influence neoplastic growth. Furthermore, the data show that glucose uptake and utilization by cancers in vivo are not necessarily constitutively high but rather may vary according to the hormonal milieu.


Mitophagy-mediated adipose inflammation contributes to type 2 diabetes with hepatic insulin resistance.

  • Feng He‎ et al.
  • The Journal of experimental medicine‎
  • 2021‎

White adipose tissues (WAT) play crucial roles in maintaining whole-body energy homeostasis, and their dysfunction can contribute to hepatic insulin resistance and type 2 diabetes mellitus (T2DM). However, the mechanisms underlying these alterations remain unknown. By analyzing the transcriptome landscape in human adipocytes based on available RNA-seq datasets from lean, obese, and T2DM patients, we reveal elevated mitochondrial reactive oxygen species (ROS) pathway and NF-κB signaling with altered fatty acid metabolism in T2DM adipocytes. Mice with adipose-specific deletion of mitochondrial redox Trx2 develop hyperglycemia, hepatic insulin resistance, and hepatic steatosis. Trx2-deficient WAT exhibited excessive mitophagy, increased inflammation, and lipolysis. Mechanistically, mitophagy was induced through increasing ROS generation and NF-κB-dependent accumulation of autophagy receptor p62/SQSTM1, which recruits damaged mitochondria with polyubiquitin chains. Importantly, administration of ROS scavenger or NF-κB inhibitor ameliorates glucose and lipid metabolic disorders and T2DM progression in mice. Taken together, this study reveals a previously unrecognized mechanism linking mitophagy-mediated adipose inflammation to T2DM with hepatic insulin resistance.


A feed-forward regulatory loop in adipose tissue promotes signaling by the hepatokine FGF21.

  • Myoung Sook Han‎ et al.
  • Genes & development‎
  • 2021‎

The cJun NH2-terminal kinase (JNK) signaling pathway is activated by metabolic stress and promotes the development of metabolic syndrome, including hyperglycemia, hyperlipidemia, and insulin resistance. This integrated physiological response involves cross-talk between different organs. Here we demonstrate that JNK signaling in adipocytes causes an increased circulating concentration of the hepatokine fibroblast growth factor 21 (FGF21) that regulates systemic metabolism. The mechanism of organ crosstalk is mediated by a feed-forward regulatory loop caused by JNK-regulated FGF21 autocrine signaling in adipocytes that promotes increased expression of the adipokine adiponectin and subsequent hepatic expression of the hormone FGF21. The mechanism of organ cross-talk places circulating adiponectin downstream of autocrine FGF21 expressed by adipocytes and upstream of endocrine FGF21 expressed by hepatocytes. This regulatory loop represents a novel signaling paradigm that connects autocrine and endocrine signaling modes of the same hormone in different tissues.


Multimodal analysis suggests differential immuno-metabolic crosstalk in lung squamous cell carcinoma and adenocarcinoma.

  • Brooks P Leitner‎ et al.
  • NPJ precision oncology‎
  • 2022‎

Immunometabolism within the tumor microenvironment is an appealing target for precision therapy approaches in lung cancer. Interestingly, obesity confers an improved response to immune checkpoint inhibition in non-small cell lung cancer (NSCLC), suggesting intriguing relationships between systemic metabolism and the immunometabolic environment in lung tumors. We hypothesized that visceral fat and 18F-Fluorodeoxyglucose uptake influenced the tumor immunometabolic environment and that these bidirectional relationships differ in NSCLC subtypes, lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). By integrating 18F-FDG PET/CT imaging, bulk and single-cell RNA-sequencing, and histology, we observed that LUSC had a greater dependence on glucose than LUAD. In LUAD tumors with high glucose uptake, glutaminase was downregulated, suggesting a tradeoff between glucose and glutamine metabolism, while in LUSC tumors with high glucose uptake, genes related to fatty acid and amino acid metabolism were also increased. We found that tumor-infiltrating T cells had the highest expression of glutaminase, ribosomal protein 37, and cystathionine gamma-lyase in NSCLC, highlighting the metabolic flexibility of this cell type. Further, we demonstrate that visceral adiposity, but not body mass index (BMI), was positively associated with tumor glucose uptake in LUAD and that patients with high BMI had favorable prognostic transcriptional profiles, while tumors of patients with high visceral fat had poor prognostic gene expression. We posit that metabolic adjunct therapy may be more successful in LUSC rather than LUAD due to LUAD's metabolic flexibility and that visceral adiposity, not BMI alone, should be considered when developing precision medicine approaches for the treatment of NSCLC.


CELA2A mutations predispose to early-onset atherosclerosis and metabolic syndrome and affect plasma insulin and platelet activation.

  • Fatemehsadat Esteghamat‎ et al.
  • Nature genetics‎
  • 2019‎

Factors that underlie the clustering of metabolic syndrome traits are not fully known. We performed whole-exome sequence analysis in kindreds with extreme phenotypes of early-onset atherosclerosis and metabolic syndrome, and identified novel loss-of-function mutations in the gene encoding the pancreatic elastase chymotrypsin-like elastase family member 2A (CELA2A). We further show that CELA2A is a circulating enzyme that reduces platelet hyperactivation, triggers both insulin secretion and degradation, and increases insulin sensitivity. CELA2A plasma levels rise postprandially and parallel insulin levels in humans. Loss of these functions by the mutant proteins provides insight into disease mechanisms and suggests that CELA2A could be an attractive therapeutic target.


The association between the amino acid transporter LAT1, tumor immunometabolic and proliferative features and menopausal status in breast cancer.

  • Gautham Ramshankar‎ et al.
  • PloS one‎
  • 2023‎

L-type Amino Acid Transporter 1 (LAT1) facilitates the uptake of specific essential amino acids, and due to this quality, it has been correlated to worse patient outcomes in various cancer types. However, the relationship between LAT1 and various clinical factors, including menopausal status, in mediating LAT1's prognostic effects remains incompletely understood. This is particularly true in the unique subset of tumors that are both obesity-associated and responsive to immunotherapy, including breast cancer. To close this gap, we employed 6 sets of transcriptomic data using the Kaplan-Meier model in the Xena Functional Genomics Explorer, demonstrating that higher LAT1 expression diminishes breast cancer patients' survival probability. Additionally, we analyzed 3'-Deoxy-3'-18F-Fluorothymidine positron emission tomography-computed tomography (18F-FLT PET-CT) images found on The Cancer Imaging Archive (TCIA). After separating all patients based on menopausal status, we correlated the measured 18F-FLT uptake with various clinical parameters quantifying body composition, tumor proliferation, and immune cell infiltration. By analyzing a wealth of deidentified, open-access data, the current study investigates the impact of LAT1 expression on breast cancer prognosis, along with the menopausal status-dependent associations between tumor proliferation, immunometabolism, and systemic metabolism.


FGF-21 Conducts a Liver-Brain-Kidney Axis to Promote Renal Cell Carcinoma.

  • Zongyu Li‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Metabolic homeostasis is one of the most exquisitely tuned systems in mammalian physiology. Metabolic homeostasis requires multiple redundant systems to cooperate to maintain blood glucose concentrations in a narrow range, despite a multitude of physiological and pathophysiological pressures. Cancer is one of the canonical pathophysiological settings in which metabolism plays a key role. In this study, we utilized REnal Gluconeogenesis Analytical Leads (REGAL), a liquid chromatography-mass spectrometry/mass spectrometry-based stable isotope tracer method that we developed to show that in conditions of metabolic stress, the fasting hepatokine fibroblast growth factor-21 (FGF-21) 1, 2 coordinates a liver-brain-kidney axis to promote renal gluconeogenesis. FGF-21 promotes renal gluconeogenesis by enhancing β2 adrenergic receptor (Adrb2)-driven, adipose triglyceride lipase (ATGL)-mediated intrarenal lipolysis. Further, we show that this liver-brain-kidney axis promotes gluconeogenesis in the renal parenchyma in mice and humans with renal cell carcinoma (RCC). This increased gluconeogenesis is, in turn, associated with accelerated RCC progression. We identify Adrb2 blockade as a new class of therapy for RCC in mice, with confirmatory data in human patients. In summary, these data reveal a new metabolic function of FGF-21 in driving renal gluconeogenesis, and demonstrate that inhibition of renal gluconeogenesis by FGF-21 antagonism deserves attention as a new therapeutic approach to RCC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: