Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 88 papers

The requirement of membrane lymphotoxin for the presence of dendritic cells in lymphoid tissues.

  • Q Wu‎ et al.
  • The Journal of experimental medicine‎
  • 1999‎

Although several cytokines, including tumor necrosis factor (TNF), can promote the growth of dendritic cells (DCs) in vitro, the cytokines that naturally regulate DC development and function in vivo have not been well defined. Here, we report that membrane lymphotoxin (LT), instead of TNF, regulates the migration of DCs in the spleen. LTalpha(-/-) mice, lacking membrane LTalpha/beta and LTalpha(3), show markedly reduced numbers of DCs in the spleen. Unlike wild-type mice and TNF(-/-) mice that have densely clustered DCs in the T cell zone and around the marginal zone, splenic DCs in LTalpha(-/-) mice are randomly distributed. The reduced number of DCs in lymphoid tissues of LTalpha(-/-) mice is associated with an increased number of DCs in nonlymphoid tissues. The number of splenic DCs in LTalpha(-/-) mice is restored when additional LT-expressing cells are provided. Blocking membrane LTalpha/beta in wild-type mice markedly diminishes the accumulation of DCs in lymphoid tissues. These data suggest that membrane LT is an essential ligand for the presence of DCs in the spleen. Mice deficient in TNF receptor, which is the receptor for both soluble LTalpha(3) and TNF-alpha(3) trimers, have normal numbers of DCs. However, LTbetaR(-/-) mice show reduced numbers of DCs, similar to the mice lacking membrane LT alpha/beta. Taken together, these results support the notion that the signaling via LTbetaR by membrane LTalpha/beta is required for the presence of DCs in lymphoid tissues.


The transcription factor interferon regulatory factor 1 is expressed after cerebral ischemia and contributes to ischemic brain injury.

  • C Iadecola‎ et al.
  • The Journal of experimental medicine‎
  • 1999‎

The transcription factor interferon regulatory factor 1 (IRF-1) is involved in the molecular mechanisms of inflammation and apoptosis, processes that contribute to ischemic brain injury. In this study, the induction of IRF-1 in response to cerebral ischemia and its role in ischemic brain injury were investigated. IRF-1 gene expression was markedly upregulated within 12 h of occlusion of the middle cerebral artery in C57BL/6 mice. The expression reached a peak 4 d after ischemia (6.0 +/- 1.8-fold; P < 0.001) and was restricted to the ischemic regions of the brain. The volume of ischemic injury was reduced by 23 +/- 3% in IRF-1(+/-) and by 46 +/- 9% in IRF-1(-/-) mice (P < 0.05). The reduction in infarct volume was paralleled by a substantial attenuation in neurological deficits. Thus, IRF-1 is the first nuclear transacting factor demonstrated to contribute directly to cerebral ischemic damage and may be a novel therapeutic target in ischemic stroke.


Light-quark and gluon jet discrimination in [Formula: see text] collisions at [Formula: see text] with the ATLAS detector.

  • G Aad‎ et al.
  • The European physical journal. C, Particles and fields‎
  • 2014‎

A likelihood-based discriminant for the identification of quark- and gluon-initiated jets is built and validated using 4.7 fb[Formula: see text] of proton-proton collision data at [Formula: see text] [Formula: see text] collected with the ATLAS detector at the LHC. Data samples with enriched quark or gluon content are used in the construction and validation of templates of jet properties that are the input to the likelihood-based discriminant. The discriminating power of the jet tagger is established in both data and Monte Carlo samples within a systematic uncertainty of [Formula: see text] 10-20 %. In data, light-quark jets can be tagged with an efficiency of [Formula: see text] while achieving a gluon-jet mis-tag rate of [Formula: see text] in a [Formula: see text] range between [Formula: see text] and [Formula: see text] for jets in the acceptance of the tracker. The rejection of gluon-jets found in the data is significantly below what is attainable using a Pythia 6 Monte Carlo simulation, where gluon-jet mis-tag rates of 10 % can be reached for a 50 % selection efficiency of light-quark jets using the same jet properties.


Acquisition of meiotic DNA repair regulators maintain genome stability in glioblastoma.

  • M Rivera‎ et al.
  • Cell death & disease‎
  • 2015‎

Glioblastoma (GBM), the most prevalent type of primary intrinsic brain cancer in adults, remains universally fatal despite maximal therapy, including radiotherapy and chemotherapy. Cytotoxic therapy generates double-stranded DNA breaks (DSBs), most commonly repaired by homologous recombination (HR). We hypothesized that cancer cells coopt meiotic repair machinery as DSBs are generated during meiosis and repaired by molecular complexes distinct from genotoxic responses in somatic tissues. Indeed, we found that gliomas express meiotic repair genes and their expression informed poor prognosis. We interrogated the function of disrupted meiotic cDNA1 (DMC1), a homolog of RAD51, the primary recombinase used in mitotic cells to search and recombine with the homologous DNA template. DMC1, whose only known function is as an HR recombinase, was expressed by GBM cells and induced by radiation. Although targeting DMC1 in non-neoplastic cells minimally altered cell growth, DMC1 depletion in GBM cells decreased proliferation, induced activation of CHK1 and expression of p21CIP1/WAF1, and increased RPA foci, suggesting increased replication stress. Combining loss of DMC1 with ionizing radiation inhibited activation of DNA damage responses and increased radiosensitivity. Furthermore, loss of DMC1 reduced tumor growth and prolonged survival in vivo. Our results suggest that cancers coopt meiotic genes to augment survival under genotoxic stress, offering molecular targets with high therapeutic indices.


TBX6 null variants and a common hypomorphic allele in congenital scoliosis.

  • N Wu‎ et al.
  • The New England journal of medicine‎
  • 2015‎

Congenital scoliosis is a common type of vertebral malformation. Genetic susceptibility has been implicated in congenital scoliosis.


Genetic deficiency of aldose reductase counteracts the development of diabetic nephropathy in C57BL/6 mice.

  • H Liu‎ et al.
  • Diabetologia‎
  • 2011‎

The aim of the study was to investigate the effects of genetic deficiency of aldose reductase in mice on the development of key endpoints of diabetic nephropathy.


Deubiquitination of EGFR by Cezanne-1 contributes to cancer progression.

  • F Pareja‎ et al.
  • Oncogene‎
  • 2012‎

Once stimulated, the epidermal growth factor receptor (EGFR) undergoes self-phosphorylation, which, on the one hand, instigates signaling cascades, and on the other hand, recruits CBL ubiquitin ligases, which mark EGFRs for degradation. Using RNA interference screens, we identified a deubiquitinating enzyme, Cezanne-1, that opposes receptor degradation and enhances EGFR signaling. These functions require the catalytic- and ubiquitin-binding domains of Cezanne-1, and they involve physical interactions and transphosphorylation of Cezanne-1 by EGFR. In line with the ability of Cezanne-1 to augment EGF-induced growth and migration signals, the enzyme is overexpressed in breast cancer. Congruently, the corresponding gene is amplified in approximately one third of mammary tumors, and high transcript levels predict an aggressive disease course. In conclusion, deubiquitination by Cezanne-1 curtails degradation of growth factor receptors, thereby promotes oncogenic growth signals.


The fungicide ciclopirox inhibits lymphatic endothelial cell tube formation by suppressing VEGFR-3-mediated ERK signaling pathway.

  • Y Luo‎ et al.
  • Oncogene‎
  • 2011‎

Ciclopirox olamine (CPX), an off-patent antifungal agent used to treat mycoses of skin and nails, has recently been demonstrated to be a potential anticancer agent. However, the underlying mechanism is not well understood. Here, for the first time, we show that CPX inhibited lymphangiogenesis in an in vitro model (tube formation). This effect was, in part, associated with inhibition of vascular endothelial growth factor receptor-3 (VEGFR-3) expression, as overexpression of VEGFR-3 conferred partial resistance to CPX inhibitory effect on tube formation in lymphatic endothelial cells (LECs), whereas downregulation of VEGFR-3 mimicked the effect of CPX, blocking the tube formation. Further study revealed that CPX did not alter mRNA level, but inhibited protein synthesis and promoted protein degradation of VEGFR-3. In addition, we found that CPX inhibited phosphorylation of the extracellular signal-related kinase 1/2 (ERK1/2), a downstream effector of VEGFR-3. Overexpression of VEGFR-3 attenuated CPX inhibition of ERK1/2 phosphorylation, whereas downregulation of VEGFR-3 inhibited ERK1/2 phosphorylation in LECs. Ectopic expression of constitutively active mitogen-activated protein kinase kinase 1 (MKK1) resulted in activation of ERK1/2 and partially prevented CPX inhibition of LEC tube formation. The results suggest that CPX inhibits LEC tube formation at least, in part, through inhibiting VEGFR-3-mediated ERK signaling pathway.


MiR-19a/b modulate the metastasis of gastric cancer cells by targeting the tumour suppressor MXD1.

  • Q Wu‎ et al.
  • Cell death & disease‎
  • 2014‎

The microRNAs 19a and 19b, hereafter collectively referred to as miR-19a/b, were recognised to be the most important miRNAs in the oncomiRs-miR-17-92 cluster. However, the exact roles of miR-19a/b in cancers have not been elucidated. In the present study, miR-19a/b was found to be over-expressed in gastric cancer tissues and significantly associated with the patients' metastasis of gastric cancer. Using gain or loss-of-function in in vitro and in vivo experiments, a pro-metastatic function of miR-19a/b was observed in gastric cancer. Furthermore, reporter gene assay and western blot showed that MXD1 is a direct target of miR-19a/b. Functional assays showed that not only MXD1 had an opposite effect to miR-19a/b in the regulation of gastric cancer cells, but also overexpression of MXD1 reduced both miR-19a/b and c-Myc levels, indicating a potential positive feedback loop among miR-19a/b, MXD1 and c-Myc. In conclusion, miR-17-92 cluster members miR-19a/b facilitated gastric cancer cell migration, invasion and metastasis through targeting the antagonist of c-Myc -- MXD1, implicating a novel mechanism for the malignant phenotypes of gastric cancer.


Transcription of RORγt in developing Th17 cells is regulated by E-proteins.

  • F Zhang‎ et al.
  • Mucosal immunology‎
  • 2014‎

In the present study we investigated the molecular mechanisms regulating the expression of RAR-related orphan receptor gamma t (RORγt), the central factor controlling interleukin (IL)-17 transcription and Th17 differentiation. In key studies, we found that cells from mice with major deletions of E-protein transcription factors, E2A and HEB, display greatly reduced RORγt/IL-17 expression and that E-protein-deficient mice exhibit greatly diminished IL-17-dependent inflammation in experimental allergic encephalitis models. In additional studies, we unexpectedly found that cells from mice with deletion of Id3, a protein that inhibits E-protein binding to DNA, display diminished RORγt/IL-17 expression and mice deficient in this protein exhibit decreased Th17-mediated inflammation in a cell-transfer colitis model. The explanation of these initially paradoxical findings came from studies showing that Id3 deficiency leads to increased IL-4-induced GATA-3 expression, the latter a negative regulator of RORγt transcription; thus, increased Id3 expression likely has a net positive effect on RORγt expression via its inhibition of IL-4 production. Finally, we found that both E-proteins and Id3 are upregulated in tandem by the cytokines that induce Th17 differentiation, transforming growth factor-β, and IL-6, implying that these transcription factors are critical regulators of Th17 induction.


Association between copy number variations of HLA-DQA1 and ankylosing spondylitis in the Chinese Han population.

  • J Wang‎ et al.
  • Genes and immunity‎
  • 2013‎

Ankylosing spondylitis (AS) is a chronic inflammatory disease with complex genetic traits. Multiple sequence variations have been associated with AS, but explained only a proportion of heritability. The studies herein aimed to explore potential associations between genomic copy number (CN) variation (CNV) and AS in Han Chinese. Five AS patients were examined with the high-density comparative genomic hybridization microarrays in the first screen test for AS-associated CNVs. A total of 533 AS patients and 792 unrelated controls were examined in confirmation studies with the AccuCopy assays. A significant association was observed between the CNV of HLA-DQA1 and that of AS. Compared with controls, AS patients showed an aberrant CN, and a significantly increased number of patients had more than two copies of HLA-DQA1. Therefore, the CNV of HLA-DQA1 may have an important role in susceptibility to AS in the Han Chinese population.


An ANCCA/PRO2000-miR-520a-E2F2 regulatory loop as a driving force for the development of hepatocellular carcinoma.

  • J Huang‎ et al.
  • Oncogenesis‎
  • 2016‎

Hepatocellular carcinoma (HCC) is one of the most common malignancies in Asia especially in China. We previously identified that ANCCA/PRO2000 as an important proliferation-associated protein predicted poor prognosis of patients with HCC. However, the molecular mechanisms of ANCCA/PRO2000 leading to hepatocarcinogenesis and progression are still obscure. In the present study, we found that ANCCA/PRO2000 overexpression in HCC specimens correlated with aggressive tumor behavior and poor survival. Furthermore, ANCCA/PRO2000 exerts strong oncogenic function in HCC and promotes cell proliferation by regulating E2F2 expression, a critical cell cycle regulator. Notably, miR-520a is an intermediate regulator between ANCCA/PRO2000 and E2F2. Mechanistically, ANCCA/PRO2000 not only interacts with E2F2 but also negatively regulates miR-520a that inhibits E2F2 to cooperatively promote in vitro and in vivo growth of HCC cells. Moreover, we demonstrated that ANCCA/PRO2000 enhances the migratory capacity of HCC cells partially by suppressing ERO1L and G3BP2 expression. Additional research identified that miR-372, as a prognostic factor for HCC, could directly target ANCCA/PRO2000. Our results suggest the ANCCA/PRO2000-miR-520a-E2F2 regulatory loop as a driving force for HCC development and ANCCA/PRO2000 as a potential therapeutic target for HCC.


Overexpression of PIK3CA in murine head and neck epithelium drives tumor invasion and metastasis through PDK1 and enhanced TGFβ signaling.

  • L Du‎ et al.
  • Oncogene‎
  • 2016‎

Head and neck squamous cell carcinoma (HNSCC) patients have a poor prognosis, with invasion and metastasis as major causes of mortality. The phosphatidylinositol 3-kinase (PI3K) pathway regulates a wide range of cellular processes crucial for tumorigenesis, and PIK3CA amplification and mutation are among the most common genetic alterations in human HNSCC. Compared with the well-documented roles of the PI3K pathway in cell growth and survival, the roles of the PI3K pathway in tumor invasion and metastasis have not been well delineated. We generated a PIK3CA genetically engineered mouse model (PIK3CA-GEMM) in which wild-type PIK3CA is overexpressed in head and neck epithelium. Although PIK3CA overexpression alone was not sufficient to initiate HNSCC formation, it significantly increased tumor susceptibility in an oral carcinogenesis mouse model. PIK3CA overexpression in mouse oral epithelium increased tumor invasiveness and metastasis by increasing epithelial-mesenchymal transition and by enriching a cancer stem cell phenotype in tumor epithelial cells. In addition to these epithelial alterations, we also observed marked inflammation in tumor stroma. AKT is a central signaling mediator of the PI3K pathway. However, molecular analysis suggested that progression of PIK3CA-driven HNSCC is facilitated by 3-phosphoinositide-dependent protein kinase (PDK1) and enhanced transforming growth factor β (TGFβ) signaling rather than by AKT. Examination of human HNSCC clinical samples revealed that both PIK3CA and PDK1 protein levels correlated with tumor progression, highlighting the significance of this pathway. In summary, our results offer significant insight into how PIK3CA overexpression drives HNSCC invasion and metastasis, providing a rationale for targeting PI3K/PDK1 and TGFβ signaling in advanced HNSCC patients with PIK3CA amplification.


Arginyltransferase suppresses cell tumorigenic potential and inversely correlates with metastases in human cancers.

  • R Rai‎ et al.
  • Oncogene‎
  • 2016‎

Arginylation is an emerging post-translational modification mediated by arginyltransferase (ATE1) that is essential for mammalian embryogenesis and regulation of the cytoskeleton. Here, we discovered that Ate1-knockout (KO) embryonic fibroblasts exhibit tumorigenic properties, including abnormally rapid contact-independent growth, reduced ability to form cell-cell contacts and chromosomal aberrations. Ate1-KO fibroblasts can form large colonies in Matrigel and exhibit invasive behavior, unlike wild-type fibroblasts. Furthermore, Ate1-KO cells form tumors in subcutaneous xenograft assays in immunocompromised mice. Abnormal growth in these cells can be partially rescued by reintroduction of stably expressed specific Ate1 isoforms, which also reduce the ability of these cells to form tumors. Tumor array studies and bioinformatics analysis show that Ate1 is downregulated in several types of human cancer samples at the protein level, and that its transcription level inversely correlates with metastatic progression and patient survival. We conclude that Ate1-KO results in carcinogenic transformation of cultured fibroblasts, suggesting that in addition to its previously known activities Ate1 gene is essential for tumor suppression and also likely participates in suppression of metastatic growth.


Exogenous melatonin prevents type 1 diabetes mellitus-induced bone loss, probably by inhibiting senescence.

  • Z Gong‎ et al.
  • Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA‎
  • 2022‎

Exogenous melatonin inhibited the senescence of preosteoblast cells in type 1 diabetic (T1D) mice and those cultured in high glucose (HG) by multiple regulations. Exogenous melatonin had a protective effect on diabetic osteoporosis, which may depend on the inhibition of senescence.


Determination of the strong coupling constant α s from transverse energy-energy correlations in multijet events at s = 8 TeV using the ATLAS detector.

  • M Aaboud‎ et al.
  • The European physical journal. C, Particles and fields‎
  • 2017‎

Measurements of transverse energy-energy correlations and their associated asymmetries in multi-jet events using the ATLAS detector at the LHC are presented. The data used correspond to s = 8 TeV proton-proton collisions with an integrated luminosity of 20.2 fb - 1 . The results are presented in bins of the scalar sum of the transverse momenta of the two leading jets, unfolded to the particle level and compared to the predictions from Monte Carlo simulations. A comparison with next-to-leading-order perturbative QCD is also performed, showing excellent agreement within the uncertainties. From this comparison, the value of the strong coupling constant is extracted for different energy regimes, thus testing the running of α s ( μ ) predicted in QCD up to scales over 1 TeV . A global fit to the transverse energy-energy correlation distributions yields α s ( m Z ) = 0.1162 ± 0.0011 (exp.) - 0.0070 + 0.0084 (theo.) , while a global fit to the asymmetry distributions yields a value of α s ( m Z ) = 0.1196 ± 0.0013 (exp.) - 0.0045 + 0.0075 (theo.) .


The detection and phylogenetic analysis of porcine deltacoronavirus from Guangdong Province in Southern China.

  • K Mai‎ et al.
  • Transboundary and emerging diseases‎
  • 2018‎

Porcine deltacoronavirus (PDCoV) is a newly discovered coronavirus that causes diarrhoea, vomiting and dehydration in sucking and nursing piglets. It was first reported in Hong Kong in 2012 and has since been discovered in the United States, Canada, South Korea, mainland China, Thailand and Laos. PDCoV has been experimentally proved to lead to diarrhoea in swine and it was detected positive in pigs in Guangdong, southern China. In our study, 252 faecal and intestinal samples from sucking piglets and sows with diarrhoea were surveyed for common enteric viruses. We found a prevalence of PDCoV (21.8%), porcine epidemic diarrhoea virus (65.5%), transmissible gastroenteritis virus (0%), rotavirus group A (25.0%) and porcine kobuvirus (68.7%). We isolated 13 PDCoV strains and discovered that PDCoV infections were often co-infections with kobuvirus rather than the commonly linked porcine epidemic diarrhoea virus. Phylogenetic analysis of S gene and N gene revealed that 11 of 13 PDCoV strains belonged to Chinese lineage. As for the left two strains, one single strain (CHN-GD16-05) belonged to American and Korean lineages while another strain (CHN-GD16-03) was similar to a Thai strain, but only in the S gene. This suggested a possible recombination event between the Thai and the newly described Chinese strain.


Use of integrative epigenetic and mRNA expression analyses to identify significantly changed genes and functional pathways in osteoarthritic cartilage.

  • A He‎ et al.
  • Bone & joint research‎
  • 2018‎

Osteoarthritis (OA) is caused by complex interactions between genetic and environmental factors. Epigenetic mechanisms control the expression of genes and are likely to regulate the OA transcriptome. We performed integrative genomic analyses to define methylation-gene expression relationships in osteoarthritic cartilage.


Baseline concentration of misfolded α-synuclein aggregates in cerebrospinal fluid predicts risk of cognitive decline in Parkinson's disease.

  • H Ning‎ et al.
  • Neuropathology and applied neurobiology‎
  • 2019‎

The prognostic significance of misfolded α-synuclein (α-Syn) aggregates in Parkinson's disease (PD) has not been well investigated. The aim of this study was to reveal the relationship between misfolded α-Syn aggregate concentration in cerebrospinal fluid (CSF) and cognitive decline risk in PD.


Atherosclerotic cardiovascular disease screening and management protocols among adult HIV clinics in Asia.

  • D C Boettiger‎ et al.
  • Journal of virus eradication‎
  • 2020‎

Integration of HIV and non-communicable disease services improves the quality and efficiency of care in low- and middle-income countries (LMICs). We aimed to describe current practices for the screening and management of atherosclerotic cardiovascular disease (ASCVD) among adult HIV clinics in Asia.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: