Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 100 papers

Biodistribution and elimination study of fluorine-18 labeled Nε-carboxymethyl-lysine following intragastric and intravenous administration.

  • Hongzeng Xu‎ et al.
  • PloS one‎
  • 2013‎

N(ε)-carboxymethyl-lysine (CML) is a major advanced glycation end-product (AGEs) widely found in foods. The aim of our study was to evaluate how exogenous CML-peptide is dynamically absorbed from the gastrointestinal tract and eliminated by renal tubular secretion using microPET imaging.


Isolation, culture, purification and ultrastructural investigation of cardiac telocytes.

  • Yan-Yan Li‎ et al.
  • Molecular medicine reports‎
  • 2016‎

Telocytes (TCs), a novel type of stromal cells, are crucial to cardiac renovation and regeneration. To dissect the pathophysiological effects of cardiac TCs in heart disease, it is essential to develop an effective method to isolate, culture, purify and characterize these cells. In the present study, cardiac TCs were isolated from the hearts of rats by enzymatic digestion. Histology and CD34/PDGFRα expression by flow cytometric assay were used to characterize the cultured cardiac TCs, which were purified by flow cytometric sorting and confirmed by immunofluorescence and electron microscopy. Typical TCs were observed in primary culture, with these exhibiting typical fusiform cell bodies with long moniliform telopodes. Based on flow cytometric sorting with antibodies to CD34 and PDGFRα, there was a substantial increase in the purity of cardiac TCs. Furthermore, immunofluorescence demonstrated that almost all the sorted TCs expressed vimentin, a marker of TCs. Moreover, electron micrographs showed typical TCs based on their ultrastructural features. Using this method, we developed a reproducible protocol for the isolation and purification of cardiac TCs from rat hearts, which yielded TCs with typical characteristics.


Highly potent bacterial neuraminidase inhibitors, chromenone derivatives from Flemingia philippinensis.

  • Yan Wang‎ et al.
  • International journal of biological macromolecules‎
  • 2019‎

The chromenone derivatives (1-4) from the root part of Flemingia philippinensis showed a significant inhibition against bacterial neuraminidase (NA) which plays a pivotal role in a cellular interaction including pathogenesis of bacterial infection and subsequent inflammation. The compounds 1 and 2 were the new compounds, philippin D (1) and philippin E (2). In particular, compounds (1-3) exhibited sub micromolar levels of IC50 values with 0.75, 0.54, and 0.07 μM. This is the first report that chromenone skeleton emerged as a lead structure of bacterial NA inhibition. In kinetic study, 8,8-diprenyl compounds displayed competitive inhibitory mode, whereas 4a,8-diprenyl ones showed noncompetitive behavior. It was manifested that all competitive inhibitors (1 and 2) were simple reversible slow-binding against bacterial NA. The binding affinities (KSV) of inhibitors to enzyme were agreement with their respective inhibitory potencies. Molecular docking data confirmed that the position of 3-methyl-2-butenyl substituent affects inhibitory mechanism against CpNanI. The tri-arginyl cluster of R266, R555, and R615 and D291 in NanI tightly interact with the competitive inhibitors.


Melatonin therapy protects against renal injury before and after release of bilateral ureteral obstruction in rats.

  • Zhenzhen Li‎ et al.
  • Life sciences‎
  • 2019‎

Blockage of the urinary tract is often connected with renal function impediment, including reductions in glomerular filtration rate (GFR) and the power to control sodium as well as water elimination through urination. Melatonin, known to be the primary product of the pineal gland, prevents renal damage caused by ischemic reperfusion. However, the effects of melatonin on urinary obstruction, as well as release of obstruction induced kidney injury are still largely unknown. The aim of present study was to investigate the effect of melatonin on mediating protection against renal injury triggered from either bilateral ureteral obstruction (BUO) or BUO release (BUO-R).


Nociception-induced spatial and temporal plasticity of synaptic connection and function in the hippocampal formation of rats: a multi-electrode array recording.

  • Xiao-Yan Zhao‎ et al.
  • Molecular pain‎
  • 2009‎

Pain is known to be processed by a complex neural network (neuromatrix) in the brain. It is hypothesized that under pathological state, persistent or chronic pain can affect various higher brain functions through ascending pathways, leading to co-morbidities or mental disability of pain. However, so far the influences of pathological pain on the higher brain functions are less clear and this may hinder the advances in pain therapy. In the current study, we studied spatiotemporal plasticity of synaptic connection and function in the hippocampal formation (HF) in response to persistent nociception.


GC/MS-Based Analysis of Fatty Acids and Amino Acids in H460 Cells Treated with Short-Chain and Polyunsaturated Fatty Acids: A Highly Sensitive Approach.

  • Tianxiao Zhou‎ et al.
  • Nutrients‎
  • 2023‎

The important metabolic characteristics of cancer cells include increased fat production and changes in amino acid metabolism. Based on the category of tumor, tumor cells are capable of synthesizing as much as 95% of saturated and monounsaturated fatty acids through de novo synthesis, even in the presence of sufficient dietary lipid intake. This fat transformation starts early when cell cancerization and further spread along with the tumor cells grow more malignant. In addition, local catabolism of tryptophan, a common feature, can weaken anti-tumor immunity in primary tumor lesions and TDLN. Arginine catabolism is likewise related with the inhibition of anti-tumor immunity. Due to the crucial role of amino acids in tumor growth, increasing tryptophan along with arginine catabolism will promote tumor growth. However, immune cells also require amino acids to expand and distinguish into effector cells that can kill tumor cells. Therefore, it is necessary to have a deeper understanding of the metabolism of amino acids and fatty acids within cells. In this study, we established a method for the simultaneous analysis of 64 metabolites consisting of fatty acids and amino acids, covering biosynthesis of unsaturated fatty acids, aminoacyl-tRNA biosynthesis, and fatty acid biosynthesis using the Agilent GC-MS system. We selected linoleic acid, linolenic acid, sodium acetate, and sodium butyrate to treat H460 cells to validate the current method. The differential metabolites observed in the four fatty acid groups in comparison with the control group indicate the metabolic effects of various fatty acids on H460 cells. These differential metabolites could potentially become biomarkers for the early diagnosis of lung cancer.


Cathelicidin LL-37 restoring glucocorticoid function in smoking and lipopolysaccharide-induced airway inflammation in rats.

  • Jian-Zhen Weng‎ et al.
  • Chinese medical journal‎
  • 2019‎

Glucocorticoids have been widely used to treat patients with chronic obstructive pulmonary disease (COPD). Nevertheless, corticosteroid insensitivity is a major barrier to the effective treatment of COPD and its mechanism remains unclear. This study aimed to evaluate the effect of cathelicidin LL-37 on corticosteroid insensitivity in COPD rat model, and to explore the involved mechanisms.


Molecular characterization of proprotein convertase subtilisin/kexin type 9-mediated degradation of the LDLR.

  • Yan Wang‎ et al.
  • Journal of lipid research‎
  • 2012‎

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secreted protein that promotes degradation of cell surface LDL receptors (LDLRs) in selected cell types. Here we used genetic and pharmacological inhibitors to define the pathways involved in PCSK9-mediated LDLR degradation. Inactivating mutations in autosomal recessive hypercholesterolemia (ARH), an endocytic adaptor, blocked PCSK9-mediated LDLR degradation in lymphocytes but not in fibroblasts. Thus, ARH is not specifically required for PCSK9-mediated LDLR degradation. Knockdown of clathrin heavy chain with siRNAs prevented LDLR degradation. In contrast, prevention of ubiquitination of the LDLR cytoplasmic tail, inhibition of proteasomal activity, or disruption of proteins required for lysosomal targeting via macroautophagy (autophagy related 5 and 7) or the endosomal sorting complex required for trafficking (ESCRT) pathway (hepatocyte growth factor-regulated Tyr-kinase substrate and tumor suppressor gene 101) failed to block PCSK9-mediated LDLR degradation. These findings are consistent with a model in which the LDLR-PCSK9 complex is internalized via clathrin-mediated endocytosis and then routed to lysosomes via a mechanism that does not require ubiquitination and is distinct from the autophagy and proteosomal degradation pathways. Finally, the PCSK9-LDLR complex appears not to be transported by the canonical ESCRT pathway.


Histone Modulation Blocks Treg-Induced Foxp3 Binding to the IL-2 Promoter of Virus-Specific CD8⁺ T Cells from Feline Immunodeficiency Virus-Infected Cats.

  • Mukta Nag‎ et al.
  • Viruses‎
  • 2018‎

CD8⁺ T cells are critical for controlling HIV infection. During the chronic phase of lentiviral infection, CD8⁺ T cells lose their proliferative capacity and exhibit impaired antiviral function. This loss of CD8⁺ T cell function is due, in part, to CD4⁺CD25⁺ T regulatory (Treg) cell-mediated suppression. Our research group has demonstrated that lentivirus-activated CD4⁺CD25⁺ Treg cells induce the repressive transcription factor forkhead box P3 (Foxp3) in autologous CD8⁺ T cells following co-culture. We have recently reported that Treg-induced Foxp3 binds the interleukin-2 (IL-2), interferon-γ (IFN- γ), and tumor necrosis factor-α (TNF-α) promoters in virus-specific CD8⁺ T cells. These data suggest an important role of Foxp3-mediated CD8⁺ T cell dysfunction in lentiviral infection. To elucidate the mechanism of this suppression, we previously reported that decreased methylation facilitates Foxp3 binding in mitogen-activated CD8⁺ T cells from feline immunodeficiency virus (FIV)-infected cats. We demonstrated the reduced binding of Foxp3 to the IL-2 promoter by increasing methylation of CD8⁺ T cells. In the studies presented here, we ask if another form of epigenetic modulation might alleviate Foxp3-mediated suppression in CD8⁺ T cells. We hypothesized that decreasing histone acetylation in virus-specific CD8⁺ T cells would decrease Treg-induced Foxp3 binding to the IL-2 promoter. Indeed, using anacardic acid (AA), a known histone acetyl transferase (HAT) inhibitor, we demonstrate a reduction in Foxp3 binding to the IL-2 promoter in virus-specific CD8⁺ T cells co-cultured with autologous Treg cells. These data identify a novel mechanism of Foxp3-mediated CD8⁺ T cell dysfunction during lentiviral infection.


SIRT1 coordinates with the CRL4B complex to regulate pancreatic cancer stem cells to promote tumorigenesis.

  • Shuai Leng‎ et al.
  • Cell death and differentiation‎
  • 2021‎

Pancreatic cancer is a common malignant tumor with poor prognosis. Recently, cancer stem cells (CSCs) were identified in several solid tumors, including pancreatic cancer. Although accumulating evidence indicates that sirtuin 1 (SIRT1) exerts biological functions in various cancers, how it contributes to tumorigenesis and metastasis of pancreatic cancer, as well as its role in CSCs, is still poorly defined. Here we show that SIRT1 interacts with the Cullin 4B (CUL4B)-Ring E3 ligase (CRL4B) complex, which is responsible for H2AK119 monoubiquitination (H2AK119ub1), collaborating as a functional unit. Genome-wide analysis of SIRT1/CUL4B targets identified a cohort of genes, including GRHL3 and FOXO3, critically involved in cell differentiation, growth, and migration. Furthermore, we found that SIRT1 and CUL4B collectively promote the proliferation, autophagy, and invasion of pancreatic cancer cells. Remarkably, we demonstrate that SIRT1/CUL4B promotes CSC-like properties, including increased stemness marker expression and sphere formation. In vivo experiments implied that SIRT1 promoted established tumor xenograft growth, increased tumor-initiating capacity in NOD/SCID mice, and increased CSC frequency. Strikingly, SIRT1 and CUL4B expression is markedly upregulated in a variety of human cancers, including pancreatic cancer. Our data provide a molecular basis for the functional interplay between histone deacetylation and ubiquitination. The results also implicate the SIRT1/CRL4B complex in pancreatic cancer metastasis and stem cell properties, thus supporting SIRT1 as a promising potential target for cancer therapy development.


Radioimmunotherapy Targeting B7-H3 in situ glioma models enhanced antitumor efficacy by Reconstructing the tumor microenvironment.

  • Meng Zheng‎ et al.
  • International journal of biological sciences‎
  • 2023‎

Radionuclide drug conjugates (RDCs) with antibodies serve as a novel approach for the treatment of malignant tumors including glioblastoma. However, RDCs require optimal antibodies to work efficiently. Hu4G4, a novel B7-H3-targeting humanized monoclonal IgG1 antibody, is highly specific for the human B7-H3 protein (a marker of tumor cells, including glioblastoma cells). Herein, we established 131I-labeled hu4G4 (131I-hu4G4) and showed that it specifically bound to B7-H3 with high affinity (Kd = 0.99 ± 0.07 nM) and inhibited the growth of U87 cells in vitro. 131I-hu4G4 displayed potent in situ antitumor activity in a mouse model of glioma based on GL261 Red-Fluc-B7-H3 cells. More importantly, 131I-hu4G4 remodeled the tumor microenvironment and promoted the transformation of glioma from "cold" to "hot" tumors by promoting CD4+ and CD8+ T cell infiltration and the polarization of M2 to M1. Therefore, the antitumor activity observed with 131I-hu4G4, together with its ability to enhance antitumor immune responses, makes it a novel candidate for radioimmunotherapy of glioblastoma.


Transplantation of IL-1β siRNA-modified bone marrow mesenchymal stem cells ameliorates type II collagen-induced rheumatoid arthritis in rats.

  • Shifeng Pan‎ et al.
  • Experimental and therapeutic medicine‎
  • 2022‎

Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes erosion of articular cartilage and bone and has adverse effects on both patients and livestock animals. The aim of the present study was to investigate the role of interleukin-1β (IL-1β) in the pathogenesis of RA, and to further determine whether injection of IL-1β small interfering RNA (siRNA) or transplantation of IL-1β siRNA + bone marrow mesenchymal stem cells (BMSCs) can ameliorate RA in rats. A collagen-induced arthritis (CIA) rat model was established by injecting type II collagen for 4 weeks. Next, CIA rats were randomly divided into three groups and injected or transplanted with PBS, IL-1β siRNA and IL-1β siRNA + BMSCs for another 4 weeks. The CIA rat model was successfully established, as demonstrated by the higher toe swelling value, thymus and spleen/body weight, immobility time and serum IL-1β concentration, as well as lower body weight, climbing time and mRNA expression of programmed death-1 (PD-1), transforming growth factor-β1 (TGF-β1) and forkhead box protein 3 (Foxp3) in the spleen, compared with control rats. Furthermore, histopathology results demonstrated that joint swelling and redness were observed in the knee joints of CIA rats. H&E results revealed that CIA rats presented erosive destruction of the bone and ulceration of the articular cartilage. In addition, in vitro results demonstrated that IL-1β expression was successfully silenced after IL-1β siRNA transfection in lipopolysaccharide-stimulated BMSCs. When compared with the results of PBS rats, both IL-1β siRNA injection and IL-1β siRNA + BMSC transplantation significantly increased the body weight, climbing time and mRNA expression of PD-1, TGF-β1 and Foxp3 in the spleen, while significantly reduced the immobility time and serum IL-1β concentration. In addition, when compared with that of IL-1β siRNA injection, IL-1β siRNA + BMSC transplantation exhibited markedly higher therapeutic efficacy against CIA. These results demonstrated that higher IL-1β contributed to the pathogenesis of CIA, and that IL-1β siRNA injection ameliorated CIA, while its combination with BMSCs exerted synergistic effects, which may be beneficial against RA.


Total syntheses of Tetrodotoxin and 9-epiTetrodotoxin.

  • Peihao Chen‎ et al.
  • Nature communications‎
  • 2024‎

Tetrodotoxin and congeners are specific voltage-gated sodium channel blockers that exhibit remarkable anesthetic and analgesic effects. Here, we present a scalable asymmetric syntheses of Tetrodotoxin and 9-epiTetrodotoxin from the abundant chemical feedstock furfuryl alcohol. The optically pure cyclohexane skeleton is assembled via a stereoselective Diels-Alder reaction. The dense heteroatom substituents are established sequentially by a series of functional group interconversions on highly oxygenated cyclohexane frameworks, including a chemoselective cyclic anhydride opening, and a decarboxylative hydroxylation. An innovative SmI2-mediated concurrent fragmentation, an oxo-bridge ring opening and ester reduction followed by an Upjohn dihydroxylation deliver the highly oxidized skeleton. Ruthenium-catalyzed oxidative alkyne cleavage and formation of the hemiaminal and orthoester under acidic conditions enable the rapid assembly of Tetrodotoxin, anhydro-Tetrodotoxin, 9-epiTetrodotoxin, and 9-epi lactone-Tetrodotoxin.


Deciphering Selectivity Mechanism of BRD9 and TAF1(2) toward Inhibitors Based on Multiple Short Molecular Dynamics Simulations and MM-GBSA Calculations.

  • Lifei Wang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

BRD9 and TAF1(2) have been regarded as significant targets of drug design for clinically treating acute myeloid leukemia, malignancies, and inflammatory diseases. In this study, multiple short molecular dynamics simulations combined with the molecular mechanics generalized Born surface area method were employed to investigate the binding selectivity of three ligands, 67B, 67C, and 69G, to BRD9/TAF1(2) with IC50 values of 230/59 nM, 1400/46 nM, and 160/410 nM, respectively. The computed binding free energies from the MM-GBSA method displayed good correlations with that provided by the experimental data. The results indicate that the enthalpic contributions played a critical factor in the selectivity recognition of inhibitors toward BRD9 and TAF1(2), indicating that 67B and 67C could more favorably bind to TAF1(2) than BRD9, while 69G had better selectivity toward BRD9 over TAF1(2). In addition, the residue-based free energy decomposition approach was adopted to calculate the inhibitor-residue interaction spectrum, and the results determined the gatekeeper (Y106 in BRD9 and Y1589 in TAF1(2)) and lipophilic shelf (G43, F44, and F45 in BRD9 and W1526, P1527, and F1528 in TAF1(2)), which could be identified as hotspots for designing efficient selective inhibitors toward BRD9 and TAF1(2). This work is also expected to provide significant theoretical guidance and insightful molecular mechanisms for the rational designs of efficient selective inhibitors targeting BRD9 and TAF1(2).


Dynamics of Germinosome Formation and FRET-Based Analysis of Interactions between GerD and Germinant Receptor Subunits in Bacillus cereus Spores.

  • Yan Wang‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Spores of the bacterium Bacillus cereus can cause disease in humans due to contamination of raw materials for food manufacturing. These dormant, resistant spores can survive for years in the environment, but can germinate and grow when their surroundings become suitable, and spore germination proteins play an important role in the decision to germinate. Since germinated spores have lost dormant spores' extreme resistance, knowledge about the formation and function of germination proteins could be useful in suggesting new preservation strategies to control B. cereus spores. In this study, we confirmed that the GerR germinant receptor's (GR) A, B, and C subunits and GerD co-localize in B. cereus spore inner membrane (IM) foci termed germinosomes. The interaction between these proteins was examined by using fusions to the fluorescent reporter proteins SGFP2 and mScarlet-I and Förster Resonance Energy Transfer (FRET). This work found that the FRET efficiency was 6% between GerR(A-C-B)-SGFP2 and GerD-mScarlet-I, but there was no FRET between GerD-mScarlet-I and either GerRA-SGFP2 or GerRC-SGFP2. These results and that GerD does not interact with a GR C-subunit in vitro suggest that, in the germinosome, GerD interacts primarily with the GR B subunit. The dynamics of formation of germinosomes with GerR(A-C-B)-SGFP2 and GerD-mScarlet-I was also followed during sporulation. Our results showed heterogeneity in the formation of FRET positive foci of GerR(A-C-B)-SGFP2 and GerD-mScarlet-I; and while some foci formed at the same time, the formation of foci in the FRET channel could be significantly delayed. The latter finding suggests that either the GerR GR can at least transiently form IM foci in the absence of GerD, or that, while GerD is essential for GerR foci formation, the time to attain the final germinosome structure with close contacts between GerD and GerR can be heterogeneous.


Microbial metabolite butyrate facilitates M2 macrophage polarization and function.

  • Jian Ji‎ et al.
  • Scientific reports‎
  • 2016‎

Metabolites from intestinal microbes modulate the mucosal immune system by regulating the polarization and expansion of T cells. Whether the microbial metabolites influence macrophage polarization, however, is poorly understood. Here, we show that the large bowel microbial fermentation product, butyrate, facilitates M2 macrophage polarization, in vitro and in vivo. The supernatant from butyrate-treated M2 macrophage increased the migration and enhanced the wound closure rate of MLE-12 cells. Butyrate attenuated intestinal inflammation in mice with dextran sulfate sodium (DSS)-induced colitis, with a significant increase in colonic expression of the M2 macrophage-associated protein, Arg1. M2 macrophage treated with butyrate, had increased activation of the H3K9/STAT6 signaling pathway, suggesting a mechanism for butyrate facilitated M2 macrophage polarization. Collectively, our study indicated that commensal microbe-derived butyrate is a novel activator of STAT6-mediated transcription through H3K9 acetylation driving M2 macrophage polarization, and delineated new insights into the immune interplay underlying inflammatory bowel disease.


Receptor mediation and nociceptin inhibition of bradykinin-induced plasma extravasation in the knee joint of the rat.

  • Kumi Moriyama‎ et al.
  • Inflammation research : official journal of the European Histamine Research Society ... [et al.]‎
  • 2009‎

The aim was to investigate the signaling mechanisms and regulation of bradykinin (BK)-induced inflammation in rat knee joint.


Extraction, Purification, Bioactivities and Application of Matrix Proteins From Pearl Powder and Nacre Powder: A Review.

  • Jingying Pei‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2021‎

Natural pearls are formed when sand or parasites (irritants) accidentally enter into the oyster body and form pearls under the cover of the nacre layer. Pearl powder is a powdery substance by grinding pearls into small grains, however, the nacre powder is the inner layer of outer corner layer and middle prism layer. Pearl medicine in China has a history of more than 2,000 years, pearl has the effects of calming the mind, clearing the eyes, detoxifying the muscle and so on. In this paper, the researches on the extraction of pearl powder and nacre powder, the isolation and purification of matrix protein and the various biological activities (osteogenic activity, antioxidant, anti-inflammatory, anti-apoptotic, promoting the migration of fibroblasts, and so on) are reviewed in detail. To provide readers with a faster understanding, the method of extraction and purification and the application of nacre powder and pearl powder are clearly presented in the form of figures and tables. In line with the concept of waste or by-product, there are more reports of nacre extract than pearl extract, due to the expensive and limited in origin of pearls. Mainly on the direct use of nacre powder and pearl powder or on the use of extracts (mainly water soluble proteins) through experiments in vivo or in vitro, and shows whether it is effective through the results of various indexes. There is no further study on substances other than extracts, and the structural analysis of extracts needs further exploration.


Transient Receptor Potential Melastatin 2 Negatively Regulates LPS-ATP-Induced Caspase-1-Dependent Pyroptosis of Bone Marrow-Derived Macrophage by Modulating ROS Production.

  • Haihong Wang‎ et al.
  • BioMed research international‎
  • 2017‎

Pyroptosis, a new form of cell death, which has special morphological characteristics, depends on caspase-1 activation and occupies an important role in inflammatory immune diseases and ischemia-reperfusion injury. ROS is a common activator of NLR/caspase-1. Transient receptor potential melastatin 2 (TRPM2), a selective cation channel, is involved in inflammatory regulation. This study was designed to explore the role of TRPM2 in activating caspase-1 and caspase-1-dependent pyroptosis of mouse BMDMs.


Improve Plant Photosynthesis by a New Slow-Release Carbon Dioxide Gas Fertilizer.

  • Yan Wang‎ et al.
  • ACS omega‎
  • 2019‎

In the natural state, the concentration of carbon dioxide in the atmosphere is about 300 μmol mol-1. Plants need a suitable balance of CO2 to achieve optimal growth. The optimum CO2 content corresponding to a high photosynthesis rate is between 0.1 and 1.0% by volume. However, air has only a CO2 content of 0.03% by volume, so plants cannot use all of their growth potential. The use of fertilizer to assist in the supply of CO2 increases the rate of photosynthesis. In this work, a slow-release CO2 gas fertilizer inspired by polyphenol chemistry was prepared to provide sustainable CO2 that could improve plant photosynthetic capacity and get a higher crop yield. The core-shell structure was designed to confer gas fertilizers slow-release property. Micron-sized calcium carbonate particles with uniform particle size and regularity morphology, as carbon sources for plant photosynthesis, was a core, and tannic acid was coated on it as a shell via oxidative oligomerization and cross-linked by polyetherimide. The structure and morphology of fertilizers were characterized by scanning electron microscopy, X-ray energy dispersive spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. In vitro experiments, the prepared fertilizers were proved to have slow-release properties. And then through net photosynthesis rate, chlorophyll fluorescence parameters, chlorophyll content, leaf area, leaf mass per area, and dry matter to study the effects of slow-release CO2 gas fertilizers on plant physiology of Brassica chinensis. The results revealed that the slow-release CO2 gas fertilizers not only had good slow-release properties but also can well improve plant photosynthesis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: