2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 558 papers

Distinct DDX DEAD-box RNA helicases cooperate to modulate the HIV-1 Rev function.

  • Mariko Yasuda-Inoue‎ et al.
  • Biochemical and biophysical research communications‎
  • 2013‎

RNA helicase plays an important role in host mRNA and viral mRNA transcription, transport, and translation. Many viruses utilize RNA helicases in their life cycle, while human immunodeficiency virus type 1 (HIV-1) does not encode an RNA helicase. Thus, host RNA helicase has been involved in HIV-1 replication. Indeed, DDX1 and DDX3 DEAD-box RNA helicases are known to be required for efficient HIV-1 Rev-dependent RNA export. However, it remains unclear whether distinct DDX RNA helicases cross-talk and cooperate to modulate the HIV-1 Rev function. In this study, we noticed that distinct DDX RNA helicases, including DDX1, DDX3, DDX5, DDX17, DDX21, DDX56, except DDX6, bound to the Rev protein and they colocalized with Rev in nucleolus or nucleus. In this context, these DEAD-box RNA helicases except DDX6 markedly enhanced the HIV-1 Rev-dependent RNA export. Furthermore, DDX3 interacted with DDX5 and synergistically enhanced the Rev function. As well, combination of other distinct DDX RNA helicases cooperated to stimulate the Rev function. Altogether, these results suggest that distinct DDX DEAD-box RNA helicases cooperate to modulate the HIV-1 Rev function.


The Roles of RNA Helicases in DNA Damage Repair and Tumorigenesis Reveal Precision Therapeutic Strategies.

  • Jinru Xie‎ et al.
  • Cancer research‎
  • 2022‎

DEAD-box RNA helicases belong to a large group of RNA-processing factors and play vital roles unwinding RNA helices and in ribosomal RNA biogenesis. Emerging evidence indicates that RNA helicases are associated with genome stability, yet the mechanisms behind this association remain poorly understood. In this study, we performed a comprehensive analysis of RNA helicases using multiplatform proteogenomic databases. More than 50% (28/49) of detected RNA helicases were highly expressed in multiple tumor tissues, and more than 60% (17/28) of tumor-associated members were directly involved in DNA damage repair (DDR). Analysis of repair dynamics revealed that these RNA helicases are engaged in an extensively broad range of DDR pathways. Among these factors is DDX21, which was prominently upregulated in colorectal cancer. The high expression of DDX21 gave rise to frequent chromosome exchange and increased genome fragmentation. Mechanistically, aberrantly high expression of DDX21 triggered inappropriate repair processes by delaying homologous recombination repair and increasing replication stress, leading to genome instability and tumorigenesis. Treatment with distinct chemotherapeutic drugs caused higher lethality to cancer cells with genome fragility induced by DDX21, providing a perspective for treatment of tumors with high DDX21 expression. This study revealed the role of RNA helicases in DNA damage and their associations with cancer, which could expand therapeutic strategies and improve precision treatments for cancer patients with high expression of RNA helicases.


Chloroplast- or Mitochondria-Targeted DEAD-Box RNA Helicases Play Essential Roles in Organellar RNA Metabolism and Abiotic Stress Responses.

  • Ghazala Nawaz‎ et al.
  • Frontiers in plant science‎
  • 2017‎

The yields and productivity of crops are greatly diminished by various abiotic stresses, including drought, cold, heat, and high salinity. Chloroplasts and mitochondria are cellular organelles that can sense diverse environmental stimuli and alter gene expression to cope with adverse environmental stresses. Organellar gene expression is mainly regulated at posttranscriptional levels, including RNA processing, intron splicing, RNA editing, RNA turnover, and translational control, during which a variety of nucleus-encoded RNA-binding proteins (RBPs) are targeted to chloroplasts or mitochondria where they play essential roles in organellar RNA metabolism. DEAD-box RNA helicases (RHs) are enzymes that can alter RNA structures and affect RNA metabolism in all living organisms. Although a number of DEAD-box RHs have been found to play important roles in RNA metabolism in the nucleus and cytoplasm, our understanding on the roles of DEAD-box RHs in the regulation of RNA metabolism in chloroplasts and mitochondria is only at the beginning. Considering that organellar RNA metabolism and gene expression are tightly regulated by anterograde signaling from the nucleus, it is imperative to determine the functions of nucleus-encoded organellar RBPs. In this review, we summarize the emerging roles of nucleus-encoded chloroplast- or mitochondria-targeted DEAD-box RHs in organellar RNA metabolism and plant response to diverse abiotic stresses.


Sequential inverse dysregulation of the RNA helicases DDX3X and DDX3Y facilitates MYC-driven lymphomagenesis.

  • Chun Gong‎ et al.
  • Molecular cell‎
  • 2021‎

DDX3X is a ubiquitously expressed RNA helicase involved in multiple stages of RNA biogenesis. DDX3X is frequently mutated in Burkitt lymphoma, but the functional basis for this is unknown. Here, we show that loss-of-function DDX3X mutations are also enriched in MYC-translocated diffuse large B cell lymphoma and reveal functional cooperation between mutant DDX3X and MYC. DDX3X promotes the translation of mRNA encoding components of the core translational machinery, thereby driving global protein synthesis. Loss-of-function DDX3X mutations moderate MYC-driven global protein synthesis, thereby buffering MYC-induced proteotoxic stress during early lymphomagenesis. Established lymphoma cells restore full protein synthetic capacity by aberrant expression of DDX3Y, a Y chromosome homolog, the expression of which is normally restricted to the testis. These findings show that DDX3X loss of function can buffer MYC-driven proteotoxic stress and highlight the capacity of male B cell lymphomas to then compensate for this loss by ectopic DDX3Y expression.


The RNA helicases DDX5 and DDX17 facilitate neural differentiation of human pluripotent stem cells NTERA2.

  • Praewa Suthapot‎ et al.
  • Life sciences‎
  • 2022‎

Understanding human neurogenesis is critical toward regenerative medicine for neurodegeneration. However, little is known how neural differentiation is regulated by DEAD box-containing RNA helicases, which comprise a diverse class of RNA remodeling enzymes.


Identification of novel pathway partners of p68 and p72 RNA helicases through Oncomine meta-analysis.

  • Brian J Wilson‎ et al.
  • BMC genomics‎
  • 2007‎

The Oncominedatabase is an online collection of microarrays from various sources, usually cancer-related, and contains many "multi-arrays" (collections of analyzed microarrays, in a single study). As there are often many hundreds of tumour samples/microarrays within a single multi-array results from coexpressed genes can be analyzed, and are fully searchable. This gives a potentially significant list of coexpressed genes, which is important to define pathways in which the gene of interest is involved. However, to increase the likelihood of revealing truly significant coexpressed genes we have analyzed their frequency of occurrence over multiple studies (meta-analysis), greatly increasing the significance of results compared to those of a single study.


An RNAi screen of RNA helicases identifies eIF4A3 as a regulator of embryonic stem cell identity.

  • Dan Li‎ et al.
  • Nucleic acids research‎
  • 2022‎

RNA helicases are involved in multiple steps of RNA metabolism to direct their roles in gene expression, yet their functions in pluripotency control remain largely unexplored. Starting from an RNA interference (RNAi) screen of RNA helicases, we identified that eIF4A3, a DEAD-box (Ddx) helicase component of the exon junction complex (EJC), is essential for the maintenance of embryonic stem cells (ESCs). Mechanistically, we show that eIF4A3 post-transcriptionally controls the pluripotency-related cell cycle regulators and that its depletion causes the loss of pluripotency via cell cycle dysregulation. Specifically, eIF4A3 is required for the efficient nuclear export of Ccnb1 mRNA, which encodes Cyclin B1, a key component of the pluripotency-promoting pathway during the cell cycle progression of ESCs. Our results reveal a previously unappreciated role for eIF4A3 and its associated EJC in maintaining stem cell pluripotency through post-transcriptional control of the cell cycle.


Structural differences between the closely related RNA helicases, UAP56 and URH49, fashion distinct functional apo-complexes.

  • Ken-Ichi Fujita‎ et al.
  • Nature communications‎
  • 2024‎

mRNA export is an essential pathway for the regulation of gene expression. In humans, closely related RNA helicases, UAP56 and URH49, shape selective mRNA export pathways through the formation of distinct complexes, known as apo-TREX and apo-AREX complexes, and their subsequent remodeling into similar ATP-bound complexes. Therefore, defining the unidentified components of the apo-AREX complex and elucidating the molecular mechanisms underlying the formation of distinct apo-complexes is key to understanding their functional divergence. In this study, we identify additional apo-AREX components physically and functionally associated with URH49. Furthermore, by comparing the structures of UAP56 and URH49 and performing an integrated analysis of their chimeric mutants, we exhibit unique structural features that would contribute to the formation of their respective complexes. This study provides insights into the specific structural and functional diversification of these two helicases that diverged from the common ancestral gene Sub2.


Interaction of SARS-CoV-2 Nucleocapsid Protein and Human RNA Helicases DDX1 and DDX3X Modulates Their Activities on Double-Stranded RNA.

  • Camilla Lodola‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

The nucleocapsid protein Np of SARS-CoV-2 is involved in the replication, transcription, and packaging of the viral genome, but it also plays a role in the modulation of the host cell innate immunity and inflammation response. Ectopic expression of Np alone was able to induce significant changes in the proteome of human cells. The cellular RNA helicase DDX1 was among the proteins whose levels were increased by Np expression. DDX1 and its related helicase DDX3X were found to physically interact with Np and to increase 2- to 4-fold its affinity for double-stranded RNA in a helicase-independent manner. Conversely, Np inhibited the RNA helicase activity of both proteins. These functional interactions among Np and DDX1 and DDX3X highlight novel possible roles played by these host RNA helicases in the viral life cycle.


A role for Gle1, a regulator of DEAD-box RNA helicases, at centrosomes and basal bodies.

  • Li-En Jao‎ et al.
  • Molecular biology of the cell‎
  • 2017‎

Control of organellar assembly and function is critical to eukaryotic homeostasis and survival. Gle1 is a highly conserved regulator of RNA-dependent DEAD-box ATPase proteins, with critical roles in both mRNA export and translation. In addition to its well-defined interaction with nuclear pore complexes, here we find that Gle1 is enriched at the centrosome and basal body. Gle1 assembles into the toroid-shaped pericentriolar material around the mother centriole. Reduced Gle1 levels are correlated with decreased pericentrin localization at the centrosome and microtubule organization defects. Of importance, these alterations in centrosome integrity do not result from loss of mRNA export. Examination of the Kupffer's vesicle in Gle1-depleted zebrafish revealed compromised ciliary beating and developmental defects. We propose that Gle1 assembly into the pericentriolar material positions the DEAD-box protein regulator to function in localized mRNA metabolism required for proper centrosome function.


Role of DEAD-box RNA helicases in low-temperature adapted growth of Antarctic Pseudomonas syringae Lz4W.

  • Ashaq Hussain‎ et al.
  • Microbiology spectrum‎
  • 2024‎

RNA metabolism is important as RNA acts as a link between genomic information and functional biomolecules, thereby playing a critical role in cellular response to environment. We investigated the role of DEAD-box RNA helicases in low-temperature adapted growth of P. syringae, as this group of enzymes play an essential role in modulation of RNA secondary structures. This is the first report on the assessment of all major DEAD-box RNA helicases in any Antarctic bacterium. Of the five RNA helicases, three (srmB, csdA, and dbpA) are important for the growth of the Antarctic P. syringae at low temperature. However, the requisite role of dbpA and the indispensable requirement of csdA for low-temperature adapted growth are a novel finding of this study. Growth analysis of combinatorial deletion strains was performed to understand the functional interaction among helicase genes. Similarly, genetic complementation of RNA helicase mutants was conducted for identification of gene redundancy in P. syringae.


Zebrafish P54 RNA helicases are cytoplasmic granule residents that are required for development and stress resilience.

  • Cecilia Zampedri‎ et al.
  • Biology open‎
  • 2016‎

Stress granules are cytoplasmic foci that directly respond to the protein synthesis status of the cell. Various environmental insults, such as oxidative stress or extreme heat, block protein synthesis; consequently, mRNA will stall in translation, and stress granules will immediately form and become enriched with mRNAs. P54 DEAD box RNA helicases are components of RNA granules such as P-bodies and stress granules. We studied the expression, in cytoplasmic foci, of both zebrafish P54 RNA helicases (P54a and P54b) during development and found that they are expressed in cytoplasmic granules under both normal conditions and stress conditions. In zebrafish embryos exposed to heat shock, some proportion of P54a and P54b helicases move to larger granules that exhibit the properties of genuine stress granules. Knockdown of P54a and/or P54b in zebrafish embryos produces developmental abnormalities restricted to the posterior trunk; further, these embryos do not form stress granules, and their survival upon exposure to heat-shock conditions is compromised. Our observations fit the model that cells lacking stress granules have no resilience or ability to recover once the stress has ended, indicating that stress granules play an essential role in the way organisms adapt to a changing environment.


The nuclear GUCT domain-containing DEAD-box RNA helicases govern gametophytic and sporophytic development in Physcomitrium patens.

  • Pierre-François Perroud‎ et al.
  • Plant molecular biology‎
  • 2021‎

In Physcomitrium patens, PpRH1/PpRH2 are GUCT-domain-containing DEAD-BOX RNA helicases localize to the nucleus. They are implicated in cell and tissue development in all stages of the moss life cycle.


Distinct Roles of RNA Helicases MVH and TDRD9 in PIWI Slicing-Triggered Mammalian piRNA Biogenesis and Function.

  • Joanna M Wenda‎ et al.
  • Developmental cell‎
  • 2017‎

Small RNAs called PIWI-interacting RNAs (piRNAs) act as an immune system to suppress transposable elements in the animal gonads. A poorly understood adaptive pathway links cytoplasmic slicing of target RNA by the PIWI protein MILI to loading of target-derived piRNAs into nuclear MIWI2. Here we demonstrate that MILI slicing generates a 16-nt by-product that is discarded and a pre-piRNA intermediate that is used for phased piRNA production. The ATPase activity of Mouse Vasa Homolog (MVH) is essential for processing the intermediate into piRNAs, ensuring transposon silencing and male fertility. The ATPase activity controls dissociation of an MVH complex containing PIWI proteins, piRNAs, and slicer products, allowing safe handover of the intermediate. In contrast, ATPase activity of TDRD9 is dispensable for piRNA biogenesis but is essential for transposon silencing and male fertility. Our work implicates distinct RNA helicases in specific steps along the nuclear piRNA pathway.


The cellular DExD/H-box RNA-helicases UAP56 and URH49 exhibit a CRM1-independent nucleocytoplasmic shuttling activity.

  • Marco Thomas‎ et al.
  • PloS one‎
  • 2011‎

Cellular DExD/H-box RNA-helicases perform essential functions during mRNA biogenesis. The closely related human proteins UAP56 and URH49 are members of this protein family and play an essential role for cellular mRNA export by recruiting the adaptor protein REF to spliced and unspliced mRNAs. In order to gain insight into their mode of action, we aimed to characterize these RNA-helicases in more detail. Here, we demonstrate that UAP56 and URH49 exhibit an intrinsic CRM1-independent nucleocytoplasmic shuttling activity. Extensive mapping studies identified distinct regions within UAP56 or URH49 required for (i) intranuclear localization (UAP56 aa81-381) and (ii) interaction with REF (UAP56 aa51-428). Moreover, the region conferring nucleocytoplasmic shuttling activity was mapped to the C-terminus of UAP56, comprising the amino acids 195-428. Interestingly, this region coincides with a domain within Uap56p of S. pombe that has been reported to be required for both Rae1p-interaction and nucleocytoplasmic shuttling. However, in contrast to this finding we report that human UAP56 shuttles independently from Rae1. In summary, our results reveal nucleocytoplasmic shuttling as a conserved feature of yeast and human UAP56, while their export receptor seems to have diverged during evolution.


Gene Function Rather than Reproductive Mode Drives the Evolution of RNA Helicases in Sexual and Apomictic Boechera.

  • Markus Kiefer‎ et al.
  • Genome biology and evolution‎
  • 2020‎

In higher plants, sexual and asexual reproductions through seeds (apomixis) have evolved as alternative strategies. Evolutionary advantages leading to coexistence of both reproductive modes are currently not well understood. It is expected that accumulation of deleterious mutations leads to a rapid elimination of apomictic lineages from populations. In this line, apomixis originated repeatedly, likely from deregulation of the sexual pathway, leading to alterations in the development of reproductive lineages (germlines) in apomicts as compared with sexual plants. This potentially involves mutations in genes controlling reproduction. Increasing evidence suggests that RNA helicases are crucial regulators of germline development. To gain insights into the evolution of 58 members of this diverse gene family in sexual and apomictic plants, we applied target enrichment combined with next-generation sequencing to identify allelic variants from 24 accessions of the genus Boechera, comprising sexual, facultative, and obligate apomicts. Interestingly, allelic variants from apomicts did not show consistently increased mutation frequency. Either sequences were highly conserved in any accession, or allelic variants preferentially harbored mutations in evolutionary less conserved C- and N-terminal domains, or presented high mutation load independent of the reproductive mode. Only for a few genes allelic variants harboring deleterious mutations were only identified in apomicts. To test if high sequence conservation correlates with roles in fundamental cellular or developmental processes, we analyzed Arabidopsis thaliana mutant lines in VASA-LIKE (VASL), and identified pleiotropic defects during ovule and reproductive development. This indicates that also in apomicts mechanisms of selection are in place based on gene function.


The RNA helicases Dbp2 and Mtr4 regulate the expression of Xrn1-sensitive long non-coding RNAs in yeast.

  • Maxime Wery‎ et al.
  • Frontiers in RNA research‎
  • 2023‎

The expression of yeast long non-coding (lnc)RNAs is restricted by RNA surveillance machineries, including the cytoplasmic 5'-3' exonuclease Xrn1 which targets a conserved family of lncRNAs defined as XUTs, and that are mainly antisense to protein-coding genes. However, the co-factors involved in the degradation of these transcripts and the underlying molecular mechanisms remain largely unknown. Here, we show that two RNA helicases, Dbp2 and Mtr4, act as global regulators of XUTs expression. Using RNA-Seq, we found that most of them accumulate upon Dbp2 inactivation or Mtr4 depletion. Mutants of the cytoplasmic RNA helicases Ecm32, Ski2, Slh1, Dbp1, and Dhh1 did not recapitulate this global stabilization of XUTs, suggesting that XUTs decay is specifically controlled by Dbp2 and Mtr4. Notably, Dbp2 and Mtr4 affect XUTs independently of their configuration relative to their paired-sense mRNAs. Finally, we show that the effect of Dbp2 on XUTs depends on a cytoplasmic localization. Overall, our data indicate that Dbp2 and Mtr4 are global regulators of lncRNAs expression and contribute to shape the non-coding transcriptome together with RNA decay machineries.


DExD-box RNA-helicases in Listeria monocytogenes are important for growth, ribosomal maturation, rRNA processing and virulence factor expression.

  • Caroline Bäreclev‎ et al.
  • RNA biology‎
  • 2014‎

RNA-helicases are proteins required for the unwinding of occluding secondary RNA structures, especially at low temperatures. In this work, we have deleted all 4 DExD-box RNA helicases in various combinations in the Gram-positive pathogen Listeria monocytogenes. Our results show that 3 out of 4 RNA-helicases were important for growth at low temperatures, whereas the effect was less prominent at 37°C. Over-expression of one RNA-helicase, Lmo1450, was able to overcome the reduced growth of the quadruple mutant strain at temperatures above 26°C, but not at lower temperatures. The maturation of ribosomes was affected in different degrees in the various strains at 20°C, whereas the effect was marginal at 37°C. This was accompanied by an increased level of immature 23S rRNA precursors in some of the RNA-helicase mutants at low temperatures. Although the expression of the PrfA regulated virulence factors ActA and LLO decreased in the quadruple mutant strain, this strain showed a slightly increased infection ability. Interestingly, even though the level of the virulence factor LLO was decreased in the quadruple mutant strain as compared with the wild-type strain, the hly-transcript (encoding LLO) was increased. Hence, our results could suggest a role for the RNA-helicases during translation. In this work, we show that DExD-box RNA-helicases are involved in bacterial virulence gene-expression and infection of eukaryotic cells.


Transcriptome analysis of the Arabidopsis megaspore mother cell uncovers the importance of RNA helicases for plant germline development.

  • Anja Schmidt‎ et al.
  • PLoS biology‎
  • 2011‎

Germ line specification is a crucial step in the life cycle of all organisms. For sexual plant reproduction, the megaspore mother cell (MMC) is of crucial importance: it marks the first cell of the plant "germline" lineage that gets committed to undergo meiosis. One of the meiotic products, the functional megaspore, subsequently gives rise to the haploid, multicellular female gametophyte that harbours the female gametes. The MMC is formed by selection and differentiation of a single somatic, sub-epidermal cell in the ovule. The transcriptional network underlying MMC specification and differentiation is largely unknown. We provide the first transcriptome analysis of an MMC using the model plant Arabidopsis thaliana with a combination of laser-assisted microdissection and microarray hybridizations. Statistical analyses identified an over-representation of translational regulation control pathways and a significant enrichment of DEAD/DEAH-box helicases in the MMC transcriptome, paralleling important features of the animal germline. Analysis of two independent T-DNA insertion lines suggests an important role of an enriched helicase, MNEME (MEM), in MMC differentiation and the restriction of the germline fate to only one cell per ovule primordium. In heterozygous mem mutants, additional enlarged MMC-like cells, which sometimes initiate female gametophyte development, were observed at higher frequencies than in the wild type. This closely resembles the phenotype of mutants affected in the small RNA and DNA-methylation pathways important for epigenetic regulation. Importantly, the mem phenotype shows features of apospory, as female gametophytes initiate from two non-sister cells in these mutants. Moreover, in mem gametophytic nuclei, both higher order chromatin structure and the distribution of LIKE HETEROCHROMATIN PROTEIN1 were affected, indicating epigenetic perturbations. In summary, the MMC transcriptome sets the stage for future functional characterization as illustrated by the identification of MEM, a novel gene involved in the restriction of germline fate.


The Ddx5 and Ddx17 RNA helicases are cornerstones in the complex regulatory array of steroid hormone-signaling pathways.

  • Samaan Samaan‎ et al.
  • Nucleic acids research‎
  • 2014‎

Estrogen and androgen receptors (ER and AR) play key roles in breast and prostate cancers, respectively, where they regulate the transcription of large arrays of genes. The activities of ER and AR are controlled by large networks of protein kinases and transcriptional coregulators, including Ddx5 and its highly related paralog Ddx17. The Ddx5 and Ddx17 RNA helicases are also splicing regulators. Here, we report that Ddx5 and Ddx17 are master regulators of the estrogen- and androgen-signaling pathways by controlling transcription and splicing both upstream and downstream of the receptors. First, Ddx5 and Ddx17 are required downstream of ER and AR for the transcriptional and splicing regulation of a large number of steroid hormone target genes. Second, Ddx5 and Ddx17 act upstream of ER and AR by controlling the expression, at the splicing level, of several key regulators of ER and AR activities. Of particular interest, we demonstrate that Ddx5 and Ddx17 control alternative splicing of the GSK3β kinase, which impacts on both ER and AR protein stability. We also provide a freely available online resource which gives information regarding splicing variants of genes involved in the estrogen- and androgen-signaling pathways.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: