2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 34,639 papers

Non-Thermal Biocompatible Plasma Jet Induction of Apoptosis in Brain Cancer Cells.

  • Mahmuda Akter‎ et al.
  • Cells‎
  • 2021‎

Glioblastoma multiforme (GBM) is a highly malignant and rapidly advancing astrocytic brain tumor in adults. Current therapy possibilities are chemotherapy, surgical resection, and radiation. The complexity of drug release through the blood-brain barrier, tumor reaction to chemotherapy, and the inherent resistance of tumor cells present challenges. New therapies are needed for individual use or combination with conventional methods for more effective treatment and improved survival for patients. GBM is difficult to treat because it grows quickly, spreads finger-shaped tentacles, and creates an irregular margin of normal tissue surrounding the tumor. Non-thermal biocompatible plasma (NBP) has recently been shown to selectively target cancer cells with minimal effects on regular cells, acting by generating reactive oxygen species (ROS) and reactive nitrogen species (RNS). We applied a soft jet plasma device with a syringe shape to U87 MG cells and astrocytes. Our results show that NBP-J significantly inhibits cell proliferation and changes morphology, induces cell cycle arrest, inhibits the survival pathway, and induces apoptosis. Our results indicate that NBP-J may be an efficient and safe clinical device for brain cancer therapy.


Syntaxin-4 is essential for IgE secretion by plasma cells.

  • Arman Rahman‎ et al.
  • Biochemical and biophysical research communications‎
  • 2013‎

The humoral immune system provides a crucial first defense against the invasion of microbial pathogens via the secretion of antigen specific immunoglobulins (Ig). The secretion of Ig is carried out by terminally differentiated B-lymphocytes called plasma cells. Despite the key role of plasma cells in the immune response, the mechanisms by which they constitutively traffic large volumes of Ig out of the cell is poorly understood. The involvement of Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins in the regulation of protein trafficking from cells has been well documented. Syntaxin-4, a member of the Qa SNARE syntaxin family has been implicated in fusion events at the plasma membrane in a number of cells in the immune system. In this work we show that knock-down of syntaxin-4 in the multiple myeloma U266 human plasma cell line results in a loss of IgE secretion and accumulation of IgE within the cells. Furthermore, we show that IgE co-localises with syntaxin-4 in U266 plasma cells suggesting direct involvement in secretion at the plasma membrane. This study demonstrates that syntaxin-4 plays a critical role in the secretion of IgE from plasma cells and sheds some light on the mechanisms by which these cells constitutively traffic vesicles to the surface for secretion. An understanding of this machinery may be beneficial in identifying potential therapeutic targets in multiple myeloma and autoimmune disease where over-production of Ig leads to severe pathology in patients.


Tyrosine kinase c-Abl regulates the survival of plasma cells.

  • Yan-Feng Li‎ et al.
  • Scientific reports‎
  • 2017‎

Tyrosine kinase c-Abl plays an important role in early B cell development. Its deletion leads to reduced pro- and pre-B cell generation in mice. However, its function in B cell terminal differentiation remains unexplored. Here, we used c-Ablf/f Aicdacre/+ mice, in which c-Abl is ablated only in antigen-activated B cells, to study the role of c-Abl in germinal center (GC) B and antibody-secreting plasma cell formation. Upon challenge with a model antigen, we found normal GC and memory B but reduced plasma cells and antigen-specific antibody response in the mutant mice. In-vitro studies revealed that plasma cells lacking c-Abl could be generated but did not accumulate in culture, indicative of survival defect. They also exhibited impaired STAT3 phosphorylation. The plasma cell defects could be rectified by introduction of Bim-deficiency or delivery of colivelin, a STAT3 activator, into c-Ablf/f Aicdacre/+ mice. Hence, c-Abl signalling regulates the survival of plasma cells.


Long-lasting priming of endothelial cells by plasma melatonin levels.

  • Eduardo Koji Tamura‎ et al.
  • PloS one‎
  • 2010‎

Endothelial cells are of great interest for cell therapy and tissue engineering. Understanding the heterogeneity among cell lines originating from different sources and culture protocols may allow more standardized material to be obtained. In a recent paper, we showed that adrenalectomy interferes with the expression of membrane adhesion molecules on endothelial cells maintained in culture for 16 to 18 days. In addition, the pineal hormone, melatonin, reduces the adhesion of neutrophils to post-capillary veins in rats. Here, we evaluated whether the reactivity of cultured endothelial cells maintained for more than two weeks in culture is inversely correlated to plasma melatonin concentration.


Engineering Protein-Secreting Plasma Cells by Homology-Directed Repair in Primary Human B Cells.

  • King L Hung‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2018‎

The ability to engineer primary human B cells to differentiate into long-lived plasma cells and secrete a de novo protein may allow the creation of novel plasma cell therapies for protein deficiency diseases and other clinical applications. We initially developed methods for efficient genome editing of primary B cells isolated from peripheral blood. By delivering CRISPR/CRISPR-associated protein 9 (Cas9) ribonucleoprotein (RNP) complexes under conditions of rapid B cell expansion, we achieved site-specific gene disruption at multiple loci in primary human B cells (with editing rates of up to 94%). We used this method to alter ex vivo plasma cell differentiation by disrupting developmental regulatory genes. Next, we co-delivered RNPs with either a single-stranded DNA oligonucleotide or adeno-associated viruses containing homologous repair templates. Using either delivery method, we achieved targeted sequence integration at high efficiency (up to 40%) via homology-directed repair. This method enabled us to engineer plasma cells to secrete factor IX (FIX) or B cell activating factor (BAFF) at high levels. Finally, we show that introduction of BAFF into plasma cells promotes their engraftment into immunodeficient mice. Our results highlight the utility of genome editing in studying human B cell biology and demonstrate a novel strategy for modifying human plasma cells to secrete therapeutic proteins.


Plasma cells negatively regulate the follicular helper T cell program.

  • Nadége Pelletier‎ et al.
  • Nature immunology‎
  • 2010‎

B lymphocytes differentiate into antibody-secreting cells under the antigen-specific control of follicular helper T cells (T(FH) cells). Here we demonstrate that isotype-switched plasma cells expressed major histocompatibility complex (MHC) class II, the costimulatory molecules CD80 and CD86, and the intracellular machinery required for antigen presentation. Antigen-specific plasma cells accessed, processed and presented sufficient antigen in vivo to induce multiple helper T cell functions. Notably, antigen-primed plasma cells failed to induce interleukin 21 (IL-21) or the transcriptional repressor Bcl-6 in naive helper T cells and actively decreased these key molecules in antigen-activated T(FH) cells. Mice lacking plasma cells showed altered T(FH) cell activity, which provided evidence of this negative feedback loop. Hence, antigen presentation by plasma cells defines a previously unknown layer of cognate regulation that limits the antigen-specific T(FH) cell program that controls ongoing B cell immunity.


Cold Atmospheric Plasma and Silymarin Nanoemulsion Activate Autophagy in Human Melanoma Cells.

  • Manish Adhikari‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Autophagy is reported as a survival or death-promoting pathway that is highly debatable in different kinds of cancer. Here, we examined the co-effect of cold atmospheric plasma (CAP) and silymarin nanoemulsion (SN) treatment on G-361 human melanoma cells via autophagy induction.


A tyrosine sulfation-dependent HLA-I modification identifies memory B cells and plasma cells.

  • Justin T H Chan‎ et al.
  • Science advances‎
  • 2018‎

Memory B cells and plasma cells are antigen-experienced cells tasked with the maintenance of humoral protection. Despite these prominent functions, definitive cell surface markers have not been identified for these cells. We report here the isolation and characterization of the monoclonal variable lymphocyte receptor B (VLRB) N8 antibody from the evolutionarily distant sea lamprey that specifically recognizes memory B cells and plasma cells in humans. Unexpectedly, we determined that VLRB N8 recognizes the human leukocyte antigen-I (HLA-I) antigen in a tyrosine sulfation-dependent manner. Furthermore, we observed increased binding of VLRB N8 to memory B cells in individuals with autoimmune disorders multiple sclerosis and systemic lupus erythematosus. Our study indicates that lamprey VLR antibodies uniquely recognize a memory B cell- and plasma cell-specific posttranslational modification of HLA-I, the expression of which is up-regulated during B cell activation.


Macrophages induce differentiation of plasma cells through CXCL10/IP-10.

  • Wei Xu‎ et al.
  • The Journal of experimental medicine‎
  • 2012‎

In tonsils, CD138(+) plasma cells (PCs) are surrounded by CD163(+) resident macrophages (Ms). We show here that human Ms (isolated from tonsils or generated from monocytes in vitro) drive activated B cells to differentiate into CD138(+)CD38(++) PCs through secreted CXCL10/IP-10 and VCAM-1 contact. IP-10 production by Ms is induced by B cell-derived IL-6 and depends on STAT3 phosphorylation. Furthermore, IP-10 amplifies the production of IL-6 by B cells, which sustains the STAT3 signals that lead to PC differentiation. IP-10-deficient mice challenged with NP-Ficoll show a decreased frequency of NP-specific PCs and lower titers of antibodies. Thus, our results reveal a novel dialog between Ms and B cells, in which IP-10 acts as a PC differentiation factor.


Antibody-secreting plasma cells persist for decades in human intestine.

  • Ole J B Landsverk‎ et al.
  • The Journal of experimental medicine‎
  • 2017‎

Plasma cells (PCs) produce antibodies that mediate immunity after infection or vaccination. In contrast to PCs in the bone marrow, PCs in the gut have been considered short lived. In this study, we studied PC dynamics in the human small intestine by cell-turnover analysis in organ transplants and by retrospective cell birth dating measuring carbon-14 in genomic DNA. We identified three distinct PC subsets: a CD19+ PC subset was dynamically exchanged, whereas of two CD19- PC subsets, CD45+ PCs exhibited little and CD45- PCs no replacement and had a median age of 11 and 22 yr, respectively. Accumulation of CD45- PCs during ageing and the presence of rotavirus-specific clones entirely within the CD19- PC subsets support selection and maintenance of protective PCs for life in human intestine.


Cold atmospheric plasma for selectively ablating metastatic breast cancer cells.

  • Mian Wang‎ et al.
  • PloS one‎
  • 2013‎

Traditional breast cancer treatments such as surgery and radiotherapy contain many inherent limitations with regards to incomplete and nonselective tumor ablation. Cold atmospheric plasma (CAP) is an ionized gas where the ion temperature is close to room temperature. It contains electrons, charged particles, radicals, various excited molecules, UV photons and transient electric fields. These various compositional elements have the potential to either enhance and promote cellular activity, or disrupt and destroy them. In particular, based on this unique composition, CAP could offer a minimally-invasive surgical approach allowing for specific cancer cell or tumor tissue removal without influencing healthy cells. Thus, the objective of this research is to investigate a novel CAP-based therapy for selectively bone metastatic breast cancer treatment. For this purpose, human metastatic breast cancer (BrCa) cells and bone marrow derived human mesenchymal stem cells (MSCs) were separately treated with CAP, and behavioral changes were evaluated after 1, 3, and 5 days of culture. With different treatment times, different BrCa and MSC cell responses were observed. Our results showed that BrCa cells were more sensitive to these CAP treatments than MSCs under plasma dose conditions tested. It demonstrated that CAP can selectively ablate metastatic BrCa cells in vitro without damaging healthy MSCs at the metastatic bone site. In addition, our study showed that CAP treatment can significantly inhibit the migration and invasion of BrCa cells. The results suggest the great potential of CAP for breast cancer therapy.


Plasma-Treated Electrospun PLGA Nanofiber Scaffold Supports Limbal Stem Cells.

  • Hanan Jafar‎ et al.
  • Polymers‎
  • 2023‎

The corneal epithelial layer is continuously replaced by limbal stem cells. Reconstructing this layer in vitro using synthetic scaffolds is highly needed. Poly-lactic-co-glycolic acid (PLGA) is approved for human use due to its biocompatibility and biodegradability. However, PLGA is hydrophobic, preventing cell adherence to PLGA membranes. PLGA scaffolds were prepared by electrospinning on a custom-made target drum spinning at a rate of 1000 rpm with a flow rate of 0.5 mL/h and voltage at 20 kV, then treated with oxygen plasma at 30 mA using a vacuum coater. Scaffolds were characterized by SEM, mechanically by tensile testing, and thermally by DSC and TGA. In vitro degradation was measured by weight loss and pH drop. Wettability was assessed through water uptake and contact angles measurements. Human limbal stem cells (hLSCs) were isolated and seeded on the scaffolds. Cell attachment and cytotoxicity assay were evaluated on day 1 and 5 after cell seeding. SEM showed regular fiber morphology with diameters ranging between 150 nm and 950 nm. Tensile strength demonstrated similar average stress values for both plasma- and non-plasma-treated samples. Scaffolds also showed gradual degradability over a period of 7-8 weeks. Water contact angle and water absorption were significantly enhanced for plasma-treated scaffolds, indicating a favorable increase in their hydrophilicity. Scaffolds have also supported hLSCs growth and attachment with no signs of cytotoxicity. We have characterized a nanofiber electrospun plasma-treated PLGA scaffold to investigate the mechanical and biological properties and the ability to support the attachment and maintenance of hLSCs.


Anticancer Effects of Cold Atmospheric Plasma in Canine Osteosarcoma Cells.

  • Jaehak Lee‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Osteosarcoma is known to be one of the frequently occurring cancers in dogs. Its prognosis is usually very poor, with a high incidence of lung metastasis. Although radiation therapy has become a major therapeutic choice for canine osteosarcoma, the high costs and unexpected side effects prevent some patients from considering this treatment. Cold atmospheric plasma (CAP) is an ionized gas with high energy at low temperatures, and it produces reactive oxygen species that mediate many signaling pathways. Although many researchers have used CAP as an anticancer therapeutic approach in humans, its importance has been neglected in veterinary medicine. In this study, D-17 and DSN canine osteosarcoma cell lines were treated with CAP to observe its anticancer activity. By high-content screening and flow cytometry, CAP-treated cells showed growth arrest and apoptosis induction. Moreover, the osteosarcoma cells exhibited reduced migration and invasion activity when treated with CAP. Overall, CAP exerted an anticancer effect on canine osteosarcoma cell lines. CAP may have the potential to be used as a novel modality for treating cancer in veterinary medicine.


Cold Physical Plasma Decreases the Viability of Lung Adenocarcinoma Cells.

  • E A Golubitskaya‎ et al.
  • Acta naturae‎
  • 2019‎

The high mortality rate that accompanies cancer spurs the search for new methods that can be used to treat malignant neoplasms. In addition to chemotherapy, electrophysical techniques for tumor treatment appear rather promising. The results of in vitro exposure of A549 human lung adenocarcinoma cells to cold atmospheric plasma (CAP) are hereby presented. A gas-discharge device that generates a sequence of streamers propagating along a stream of inert gas in the ambient air was used. In the zone where the plasma jet came into contact with the target object, there were high-intensity electric fields and high plasma concentrations, while the gas temperature changed by less than a degree. In this study, we compared the cytotoxic effect of CAP in helium and argon. Direct irradiation of cells by CAP with U = 4.2 kV for 30-120 s was shown to reduce cell viability by 25%. Variation of the amplitude of the AC voltage in the plasma device in argon within a range of 3.8-5.6 kV did not significantly alter the cell death rate. Further optimization of the modes of CAP generation in gas-discharge devices with various geometries for the trea.


Gut-educated IgA plasma cells defend the meningeal venous sinuses.

  • Zachary Fitzpatrick‎ et al.
  • Nature‎
  • 2020‎

The central nervous system has historically been viewed as an immune-privileged site, but recent data have shown that the meninges-the membranes that surround the brain and spinal cord-contain a diverse population of immune cells1. So far, studies have focused on macrophages and T cells, but have not included a detailed analysis of meningeal humoral immunity. Here we show that, during homeostasis, the mouse and human meninges contain IgA-secreting plasma cells. These cells are positioned adjacent to dural venous sinuses: regions of slow blood flow with fenestrations that can potentially permit blood-borne pathogens to access the brain2. Peri-sinus IgA plasma cells increased with age and following a breach of the intestinal barrier. Conversely, they were scarce in germ-free mice, but their presence was restored by gut re-colonization. B cell receptor sequencing confirmed that meningeal IgA+ cells originated in the intestine. Specific depletion of meningeal plasma cells or IgA deficiency resulted in reduced fungal entrapment in the peri-sinus region and increased spread into the brain following intravenous challenge, showing that meningeal IgA is essential for defending the central nervous system at this vulnerable venous barrier surface.


Combinatory treatment using tacrolimus and a STAT3 inhibitor regulate Treg cells and plasma cells.

  • Jin-Sil Park‎ et al.
  • International journal of immunopathology and pharmacology‎
  • 2018‎

Systemic lupus erythematosus (SLE; lupus) is a prototypical autoimmune disease characterized by circulating autoantibodies to nuclear antigens and immune complex deposition, resulting in damage to target organs. To investigate the effects of tacrolimus (TAC) on effector T cells and B cells, we examined its involvement in the development of effector T cells, germinal center (GC) B cells, and plasma cells in an in vitro system using wild-type (WT) and lupus-prone mice. The population of T helper (Th) 1, Th2, and Th17 cells interleukin (IL)-17-producing T (Th17) cells and the production of interferon-γ and interleukin-17A IL-17A were suppressed by TAC. TAC also reduced the population of regulatory T (Treg) cells; however, a combination treatment with the signal transducer and activator of transcription 3 (STAT3) inhibitor STA-21 promoted the population of Treg cells. TAC also suppressed the populations of GC B cells and plasma cells synergistically with STA-21. These findings suggest that the application of TAC with a STAT3 signal inhibitor may provide benefits in SLE treatment.


Gas Plasma-Treated Prostate Cancer Cells Augment Myeloid Cell Activity and Cytotoxicity.

  • Sander Bekeschus‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2020‎

Despite recent improvements in cancer treatment, with many of them being related to foster antitumor immunity, tumor-related deaths continue to be high. Novel avenues are needed to complement existing therapeutic strategies in oncology. Medical gas plasma technology recently gained attention due to its antitumor activity. Gas plasmas act via the local deposition of a plethora of reactive oxygen species (ROS) that promote the oxidative cancer cell death. The immunological consequences of plasma-mediated tumor cell death are only poorly understood, however. To this end, we exposed two prostate cancer cell lines (LNCaP, PC3) to gas plasma in vitro, and investigated the immunomodulatory effects of the supernatants in as well as of direct co-culturing with two human myeloid cell lines (THP-1, HL-60). After identifying the cytotoxic action of the kINPen plasma jet, the supernatants of plasma-treated prostate cancer cells modulated myeloid cell-related mitochondrial ROS production and their metabolic activity, proliferation, surface marker expression, and cytokine release. Direct co-culture amplified differentiation-like surface marker expression in myeloid cells and promoted their antitumor-toxicity in the gas plasma over the untreated control conditions. The results suggest that gas plasma-derived ROS not only promote prostate cancer cell death but also augment myeloid cell activity and cytotoxicity.


Proliferation-Related Activity in Endothelial Cells Is Enhanced by Micropower Plasma.

  • Kotaro Suzuki‎ et al.
  • BioMed research international‎
  • 2016‎

Nonthermal plasma has received a lot of attention as a medical treatment technique in recent years. It can easily create various reactive chemical species (ROS) and is harmless to living body. Although plasma at gas-liquid interface has a potential for a biomedical application, the interactions between the gas-liquid plasma and living cells remain unclear. Here, we show characteristics of a micropower plasma with 0.018 W of the power input, generated at gas-liquid interface. We also provide the evidence of plasma-induced enhancement in proliferation activity of endothelial cells. The plasma produced H2O2, HNO2, and HNO3 in phosphate buffered saline containing Mg++ and Ca++ (PBS(+)), and their concentration increased linearly during 600-second discharge. The value of pH in PBS(+) against the plasma discharge time was stable at about 7.0. Temperature in PBS(+) rose monotonically, and its rise was up to 0.8°C at the bottom of a cell-cultured dish by the plasma discharge for 600 s. Short-time treatment of the plasma enhanced proliferation activity of endothelial cells. In contrast, the treatment of H2O2 does not enhance the cell proliferation. Thus, the ROS production and the nuclear factor-kappa B (NF-κB) activation due to the plasma treatment might be related to enhancement of the cell proliferation. Our results may potentially provide the basis for developing the biomedical applications using the gas-liquid plasma.


In-depth characterization of viral isolates from plasma and cells compared with plasma circulating quasispecies in early HIV-1 infection.

  • Judith Dalmau‎ et al.
  • PloS one‎
  • 2012‎

The use of in vitro models to unravel the phenotypic characteristics of circulating viral variants is key to understanding HIV-1 pathogenesis but limited by the availability of primary viral isolates from biological samples. However, overall in vivo genetic variability of HIV-1 within a subject may not be reflected in the viable viral population obtained after isolation. Although several studies have tried to determine whether viral populations expanded in vitro are representative of in vivo findings, the answer remains unclear due to the reduced number of clonal sequences analyzed or samples compared. In order to overcome previous experimental limitations, here we applied Deep Pyrosequencing (DPS) technology in combination with phenotypic experiments to analyze and compare with unprecedented detail the composition of viral isolates and in vivo quasispecies.


Analysis of Metabolite Profiling in Human Endothelial Cells after Plasma Jet Treatment.

  • Yanjie Yang‎ et al.
  • BioMed research international‎
  • 2019‎

Cold atmospheric plasma (CAP) is a novel technology, which has been widely applied in biomedicine, especially in wound healing, dermatological treatment, hemostasis, and cancer treatment. In most cases, CAP treatment will interact with innumerable blood capillaries. Therefore, it is important and necessary to understand the effects of CAP treatment on endothelial cell metabolism. In this study, the metabolite profiling of plasma treatment on endothelial cells was measured by gas chromatography tandem time-of-flight mass spectrometry (GC-TOF-MS). We found that 695 signals (metabolites) were detected by GC-TOF-MS and then evaluated using orthogonal projections to latent structures discriminant analysis (OPLS-DA). All the differential metabolites were listed, and proline and xanthosine were the two of the most downregulated metabolites by plasma treatment. By comprehensive metabolic pathway analysis with the KEGG pathway, we showed that alanine, aspartate, glutamate, and purine metabolism pathways were the most significantly suppressed after gas plasma treatment in human endothelial cells. Our finding gives an overall picture of the metabolic pathways affected by plasma treatment in endothelial cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: