2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 741 papers

Caloric Restriction Is More Efficient than Physical Exercise to Protect from Cisplatin Nephrotoxicity via PPAR-Alpha Activation.

  • Gabriel R Estrela‎ et al.
  • Frontiers in physiology‎
  • 2017‎

The antineoplastic drug cisplatin promotes renal injury, which limits its use. Protocols that reduce renal cisplatin toxicity will allow higher doses to be used in cisplatin treatment. Here, we compare physical exercise and caloric restriction (CR) as protocols to reduce cisplatin renal injury in mice. Male C57BL/6 were divided into four groups: Control, cisplatin, exercise + cisplatin, and 30% CR + cisplatin. Animals were injected with a single dose of cisplatin (20 mg/kg i.p.) and sacrificed 96 h after injection. Quantitative real time PCR, histological analyses, immunohistochemistry, and biochemical measurements were performed to investigate renal injury, necrosis, apoptosis, and inflammatory mechanisms. Both protocols protected against cisplatin renal injury, but CR was more effective in reducing uraemia and renal necrosis. The CR + Cisplatin group exhibited reduced serum IL-1β and TNF-α levels. No differences were noted in the renal mRNA expression of cytokines. Both interventions reduced apoptosis, but only the CR + Cisplatin group decreased TNFR2 protein expression. PPAR-α was activated in mice after CR. An antagonist of PPAR-α blocked the protective effect of CR. Both interventions attenuated the nephrotoxicity caused by cisplatin injection, but CR + Cisplatin showed a better response by modulating TNFR2. Moreover, part of the CR benefit depends on PPAR-α activation.


Astaxanthin reduces hepatic lipid accumulations in high-fat-fed C57BL/6J mice via activation of peroxisome proliferator-activated receptor (PPAR) alpha and inhibition of PPAR gamma and Akt.

  • Yaoyao Jia‎ et al.
  • The Journal of nutritional biochemistry‎
  • 2016‎

We have previously reported that astaxanthin (AX), a dietary carotenoid, directly interacts with peroxisome proliferator-activated receptors PPARα and PPARγ, activating PPARα while inhibiting PPARγ, and thus reduces lipid accumulation in hepatocytes in vitro. To investigate the effects of AX in vivo, high-fat diet (HFD)-fed C57BL/6J mice were orally administered AX (6 or 30mg/kg body weight) or vehicle for 8weeks. AX significantly reduced the levels of triglyceride both in plasma and in liver compared with the control HFD mice. AX significantly improved liver histology and thus reduced both steatosis and inflammation scores of livers with hematoxylin and eosin staining. The number of inflammatory macrophages and Kupffer cells were reduced in livers by AX administration assessed with F4/80 staining. Hepatic PPARα-responsive genes involved in fatty acid uptake and β-oxidation were upregulated, whereas inflammatory genes were downregulated by AX administration. In vitro radiolabeled assays revealed that hepatic fatty acid oxidation was induced by AX administration, whereas fatty acid synthesis was not changed in hepatocytes. In mechanism studies, AX inhibited Akt activity and thus decreased SREBP1 phosphorylation and induced Insig-2a expression, both of which delayed nuclear translocation of SREBP1 and subsequent hepatic lipogenesis. Additionally, inhibition of the Akt-mTORC1 signaling axis by AX stimulated hepatic autophagy that could promote degradation of lipid droplets. These suggest that AX lowers hepatic lipid accumulation in HFD-fed mice via multiple mechanisms. In addition to the previously reported differential regulation of PPARα and PPARγ, inhibition of Akt activity and activation of hepatic autophagy reduced hepatic steatosis in mouse livers.


Salacia oblonga root improves postprandial hyperlipidemia and hepatic steatosis in Zucker diabetic fatty rats: activation of PPAR-alpha.

  • Tom Hsun-Wei Huang‎ et al.
  • Toxicology and applied pharmacology‎
  • 2006‎

Salacia oblonga (SO) root is an Ayurvedic medicine with anti-diabetic and anti-obese properties. Peroxisome proliferator-activated receptor (PPAR)-alpha, a nuclear receptor, plays an important role in maintaining the homeostasis of lipid metabolism. Here, we demonstrate that chronic oral administration of the water extract from the root of SO to Zucker diabetic fatty (ZDF) rats, a genetic model of type 2 diabetes and obesity, lowered plasma triglyceride and total cholesterol (TC) levels, increased plasma high-density lipoprotein levels and reduced the liver contents of triglyceride, non-esterified fatty acids (NEFA) and the ratio of fatty droplets to total tissue. By contrast, the extract had no effect on plasma triglyceride and TC levels in fasted ZDF rats. After olive oil administration to ZDF the extract also inhibited the increase in plasma triglyceride levels. These results suggest that SO extract improves postprandial hyperlipidemia and hepatic steatosis in ZDF rats. Additionally, SO treatment enhanced hepatic expression of PPAR-alpha mRNA and protein, and carnitine palmitoyltransferase-1 and acyl-CoA oxidase mRNAs in ZDF rats. In vitro, SO extract and its main component mangiferin activated PPAR-alpha luciferase activity in human embryonic kidney 293 cells and lipoprotein lipase mRNA expression and enzyme activity in THP-1 differentiated macrophages; these effects were completely suppressed by a selective PPAR-alpha antagonist MK-886. The findings from both in vivo and in vitro suggest that SO extract functions as a PPAR-alpha activator, providing a potential mechanism for improvement of postprandial hyperlipidemia and hepatic steatosis in diabetes and obesity.


In vitro and in vivo effects of the PPAR-alpha agonists fenofibrate and retinoic acid in endometrial cancer.

  • Samir A Saidi‎ et al.
  • Molecular cancer‎
  • 2006‎

Fenofibrate, an agonist of PPAR-alpha, in doses above 25 microM, inhibits proliferation and induces apoptosis in Ishikawa endometrial cancer cells. We show that these effects are potentiated by retinoic acid, an agonist of the retinoid-X-receptor. DNA content analysis shows that G1/S phase progression through the cell cycle is inhibited. Independent Component Analysis of gene microarray experiments demonstrated downregulation of Cyclin D1 (CCND1) and associated changes in cell cycle gene expression. Expression of PPAR-alpha mRNA was reduced by >75% using RNA-interference but this resulted in only minor changes in biological effects. A nude mouse model of endometrial carcinoma was used to investigate the effect of fenofibrate in vivo but failed to show consistent inhibition of tumour growth.


Inhibition of fatty acid amide hydrolase produces PPAR-alpha-mediated analgesia in a rat model of inflammatory pain.

  • D R Sagar‎ et al.
  • British journal of pharmacology‎
  • 2008‎

We have previously demonstrated antinociceptive effects of fatty acid amide hydrolase (FAAH) inhibition that were accompanied by increases in the levels of endocannabinoids (ECs) in the hind paw. Here, the effects of the FAAH inhibitor URB597 (3'-carbamoyl-biphenyl-3-yl-cyclohexylcarbamate) on responses of spinal neurons were studied.


PPAR-alpha Contributes to the Anti-Inflammatory Activity of Verbascoside in a Model of Inflammatory Bowel Disease in Mice.

  • Emanuela Esposito‎ et al.
  • PPAR research‎
  • 2010‎

The previous results suggest that peroxisome proliferator-activated receptor-alpha (PPAR)-alpha, an intracellular transcription factor activated by fatty acids, plays a role in control of inflammation. There is persuasive epidemiological and experimental evidence that dietary polyphenols have anti-inflammatory activity. In this regard, it has been demonstrated that verbascoside (VB) functions as intracellular radical scavenger and reduces the microscopic and macroscopic signs of experimental colitis. With the aim to characterize the role of PPAR-alpha in VB-mediated anti-inflammatory activity, we tested the efficacy of VB in an experimental model of inflammatory bowel disease induced by dinitrobenzene sulfonic acid, comparing mice lacking PPAR-alpha (PPAR-alphaKO) with wild type (WT) mice. Results indicate that VB-mediated anti-inflammatory activity is weakened in PPAR-alphaKO mice, compared to WT controls, especially in the inhibition of neutrophil infiltration, intestinal permeability and colon injury. These results indicate that PPAR-alpha can contribute to the anti-inflammatory activity of VB in inflammatory bowel disease.


Correlation of Peroxisome Proliferator-Activated Receptor-gamma (PPAR-gamma) and Retinoid X Receptor-alpha (RXR-alpha) expression with clinical risk factors in patients with advanced carotid atherosclerosis.

  • Constantinos Giaginis‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2011‎

Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and its nuclear partners, the Retinoid X Receptors (RXRs), have been recognized as crucial players in the pathogenesis of atherosclerosis. The present study aimed to assess the clinical significance of PPAR-gamma and RXR-alpha expression in different cellular populations localized within advanced carotid atherosclerosis lesions.


Different skeletal effects of the peroxisome proliferator activated receptor (PPAR)alpha agonist fenofibrate and the PPARgamma agonist pioglitazone.

  • Unni Syversen‎ et al.
  • BMC endocrine disorders‎
  • 2009‎

All the peroxisome proliferator activated receptors (PPARs) are found to be expressed in bone cells. The PPARgamma agonist rosiglitazone has been shown to decrease bone mass in mice and thiazolidinediones (TZDs) have recently been found to increase bone loss and fracture risk in humans treated for type 2 diabetes mellitus. The aim of the study was to examine the effect of the PPARalpha agonist fenofibrate (FENO) and the PPARgamma agonist pioglitazone (PIO) on bone in intact female rats.


Troglitazone, a PPAR-gamma activator prevents endothelial cell adhesion molecule expression and lymphocyte adhesion mediated by TNF-alpha.

  • Makoto Sasaki‎ et al.
  • BMC physiology‎
  • 2005‎

Cytokine mediated induction of the mucosal addressin cell adhesion molecule-1(MAdCAM-1) expression is associated with the onset and progression of inflammatory bowel disease (IBD).


Lugol Increases Lipolysis through Upregulation of PPAR-Gamma and Downregulation of C/EBP-Alpha in Mature 3T3-L1 Adipocytes.

  • Cuellar-Rufino Sergio‎ et al.
  • Journal of nutrition and metabolism‎
  • 2020‎

Overweight and obesity are defined as excessive and abnormal fat accumulation that is harmful to health. This study analyzes the effect of different concentrations of the lugol solution (molecular iodine dissolved in potassium iodide) on lipolysis in cultured 3T3-L1-differentiated adipocytes. The mature adipocytes were treated with doses from 1 to 100 µm of lugol for 0.5, 6, and 24 h. The results showed that mature adipocytes exposed to lugol decrease their viability and increase caspase-3 activity with a lethal dose (LD50) of 473 µm. In mature adipocytes, lugol decreased the total intracellular lipid content, being significant at doses of 10 and 100 µm after 6 and 24 h of treatment (P < 0.01), and the accumulation of intracellular triglycerides decreased after 24 h of exposure to lugol (P < 0.05). Lugol treatment significantly increases the release of glycerol to the culture medium (P < 0.05). The levels of adipocyte-specific transcription factors C/EBP-α were downregulated and PPAR-γ upregulated after 30 min with lugol. These results indicate a lipolytic effect of lugol dependent on PPAR-γ and C/EBP-α expression in mature 3T3-L1 adipocytes.


Palmitoylethanolamide is a disease-modifying agent in peripheral neuropathy: pain relief and neuroprotection share a PPAR-alpha-mediated mechanism.

  • L Di Cesare Mannelli‎ et al.
  • Mediators of inflammation‎
  • 2013‎

Neuropathic syndromes which are evoked by lesions to the peripheral or central nervous system are extremely difficult to treat, and available drugs rarely joint an antihyperalgesic with a neurorestorative effect. N-Palmitoylethanolamine (PEA) exerts antinociceptive effects in several animal models and inhibits peripheral inflammation in rodents. Aimed to evaluate the antineuropathic properties of PEA, a damage of the sciatic nerve was induced in mice by chronic constriction injury (CCI) and a subcutaneous daily treatment with 30 mg kg(-1) PEA was performed. On the day 14, PEA prevented pain threshold alterations. Histological studies highlighted that CCI induced oedema and an important infiltrate of CD86 positive cells in the sciatic nerve. Moreover, osmicated preparations revealed a decrease in axon diameter and myelin thickness. Repeated treatments with PEA reduced the presence of oedema and macrophage infiltrate, and a significant higher myelin sheath, axonal diameter, and a number of fibers were observable. In PPAR- α null mice PEA treatment failed to induce pain relief as well as to rescue the peripheral nerve from inflammation and structural derangement. These results strongly suggest that PEA, via a PPAR- α -mediated mechanism, can directly intervene in the nervous tissue alterations responsible for pain, starting to prevent macrophage infiltration.


Peroxisome proliferator-activated receptor (PPAR)alpha expression in T cells mediates gender differences in development of T cell-mediated autoimmunity.

  • Shannon E Dunn‎ et al.
  • The Journal of experimental medicine‎
  • 2007‎

Peroxisome proliferator-activated receptor (PPAR)alpha is a nuclear receptor that mediates gender differences in lipid metabolism. PPARalpha also functions to control inflammatory responses by repressing the activity of nuclear factor kappaB (NF-kappaB) and c-jun in immune cells. Because PPARalpha is situated at the crossroads of gender and immune regulation, we hypothesized that this gene may mediate sex differences in the development of T cell-mediated autoimmune disease. We show that PPARalpha is more abundant in male as compared with female CD4(+) cells and that its expression is sensitive to androgen levels. Genetic ablation of this gene selectively removed the brake on NF-kappaB and c-jun activity in male T lymphocytes, resulting in higher production of interferon gamma and tumor necrosis factor (but not interleukin 17), and lower production of T helper (Th)2 cytokines. Upon induction of experimental autoimmune encephalomyelitis, male but not female PPARalpha(-/-) mice developed more severe clinical signs that were restricted to the acute phase of disease. These results suggest that males are less prone to develop Th1-mediated autoimmunity because they have higher T cell expression of PPARalpha.


PPAR-Alpha Agonist Used at the Acute Phase of Experimental Ischemic Stroke Reduces Occurrence of Thrombolysis-Induced Hemorrhage in Rats.

  • Sophie Gautier‎ et al.
  • PPAR research‎
  • 2015‎

The impact of fenofibrate, a peroxisome proliferator-activated receptor-alpha (PPAR-α) agonist, on the risk of thrombolysis-induced hemorrhage during the acute phase of stroke in a rat model of stroke was studied. One-hour middle cerebral artery occlusion followed by thrombolysis with tissue plasminogen activator was made in rats receiving either fenofibrate or vehicle for 72 h after stroke. Evaluation of infarct, hemorrhage, middle cerebral artery vasoreactivity, and immunochemistry (CD11b for microglial activation, myeloperoxidase, and ICAM-1 for neutrophil infiltration) was performed. The PPAR-alpha agonist significantly reduced the risk of hemorrhage after thrombolysis in parallel with a decrease in the infarct volume and in the stroke-induced vascular endothelial dysfunction. These effects are concomitant with a reduction in microglial activation and neutrophil infiltration in infarct area. Our results strengthen the idea that using drugs such as fenofibrate, with pleiotropic properties due to PPAR-alpha agonism, may be of value to reduce thrombolysis-induced hemorrhage during acute stroke.


A reexamination of the PPAR-alpha activation mode of action as a basis for assessing human cancer risks of environmental contaminants.

  • Kathryn Z Guyton‎ et al.
  • Environmental health perspectives‎
  • 2009‎

Diverse environmental contaminants, including the plasticizer di(2-ethylhexyl)phthalate (DEHP), are hepatocarcinogenic peroxisome proliferators in rodents. Peroxisome proliferator-activated receptor-alpha (PPAR-alpha) activation and its sequelae have been proposed to constitute a mode of action (MOA) for hepatocarcinogenesis by such agents as a sole causative factor. Further, based on a hypothesized lower sensitivity of humans to this MOA, prior reviews have concluded that rodent hepatocarcinogenesis by PPAR-alpha agonists is irrelevant to human carcinogenic risk.


Neuroprotective effect of PPAR alpha and gamma agonists in a mouse model of amyloidogenesis through modulation of the Wnt/beta catenin pathway via targeting alpha- and beta-secretases.

  • Naglaa Assaf‎ et al.
  • Progress in neuro-psychopharmacology & biological psychiatry‎
  • 2020‎

The present study was conducted to evaluate the efficacy of fenofibrate and pioglitazone in a mouse model of amyloidogenesis induced by amyloidβ (βA) peptide. Mice were injected intracerebroventricularly with βA1-40 (400 pmol/mouse) once, followed by treatment with fenofibrate (300 mg/kg), pioglitazone (30 mg/kg),or both. After 21 days of daily treatment, memory impairment and cognitive function were evaluated by Morris water maze (MWM), Y-maze and object recognition tests. On the 22nd day, mice were sacrificed, and their hippocampi were dissected to determine the levels of α- and β-secretase, peroxisome proliferator-activated receptor (PPARα and β), Wnt and β-catenin. Significant memory impairment and cognitive dysfunction were observed in the mouse model group. This finding was associated with a significant increase in α- and β-secretase levels and a significant decrease in Wnt, β-catenin, and PPARα and β levels. Neuronal damage was also evident after histopathological examination. Treatment with fenofibrate, pioglitazone and their combination resulted in a significant improvement in the behavioural and neurochemical changes induced by βA injection. The present findings indicate that the combined administration of fenofibrate and pioglitazone was more effective than monotherapy in ameliorating the behavioural, neurochemical and histopathological changes in amyloidogenesis model mice and provide a promising therapeutic approach in the management of Alzheimer's disease complicated by diabetes and hypercholesterolemia.


PPAR{delta} agonism activates fatty acid oxidation via PGC-1{alpha} but does not increase mitochondrial gene expression and function.

  • Sandra Kleiner‎ et al.
  • The Journal of biological chemistry‎
  • 2009‎

PPARdelta (peroxisome proliferator-activated receptor delta) is a regulator of lipid metabolism and has been shown to induce fatty acid oxidation (FAO). PPARdelta transgenic and knock-out mice indicate an involvement of PPARdelta in regulating mitochondrial biogenesis and oxidative capacity; however, the precise mechanisms by which PPARdelta regulates these pathways in skeletal muscle remain unclear. In this study, we determined the effect of selective PPARdelta agonism with the synthetic ligand, GW501516, on FAO and mitochondrial gene expression in vitro and in vivo. Our results show that activation of PPARdelta by GW501516 led to a robust increase in mRNA levels of key lipid metabolism genes. Mitochondrial gene expression and function were not induced under the same conditions. Additionally, the activation of Pdk4 transcription by PPARdelta was coactivated by PGC-1alpha. PGC-1alpha, but not PGC-1beta, was essential for full activation of Cpt-1b and Pdk4 gene expression via PPARdelta agonism. Furthermore, the induction of FAO by PPARdelta agonism was completely abolished in the absence of both PGC-1alpha and PGC-1beta. Conversely, PGC-1alpha-driven FAO was independent of PPARdelta. Neither GW501516 treatment nor knockdown of PPARdelta affects PGC-1alpha-induced mitochondrial gene expression in primary myotubes. These results demonstrate that pharmacological activation of PPARdelta induces FAO via PGC-1alpha. However, PPARdelta agonism does not induce mitochondrial gene expression and function. PGC-1alpha-induced FAO and mitochondrial biogenesis appear to be independent of PPARdelta.


The role of PPAR alpha in perfluorooctanoic acid induced developmental cardiotoxicity and l-carnitine mediated protection-Results of in ovo gene silencing.

  • Meng Zhao‎ et al.
  • Environmental toxicology and pharmacology‎
  • 2017‎

Perfluorooctanoic acid (PFOA) is a persistent organic pollutant. This study established an in ovo peroxisome proliferator-activated receptor alpha (PPAR alpha) silencing model in chicken embryo heart, and investigated the role of PPAR alpha in PFOA induced developmental cardiotoxicity. The in ovo silencing was achieved by introducing lentivirus expressing PPAR alpha siRNA into ED2 chicken embryo via microinjection (0.05ul/g egg weight). Transfection efficacy was confirmed by fluorescent microscopy and western blotting. To assess the developmental cardiotoxicity, cardiac function (heart rate) and morphology (right ventricular wall thickness) were measured in D1 hatchling chickens. 2mg/kg (egg weight) PFOA exposure at ED0 induced significant elevation of heart rate and thinning of right ventricular wall thickness in D1 hatchling chickens. PPAR alpha silencing did not prevent PFOA-induced elevation of heart rate; however, it did significantly increase the right ventricular wall thickness as compared to PFOA exposed animals. Meanwhile, PPAR alpha silencing did not abolish the protective effects exerted by exposure to 100mg/kg (egg weight) l-carnitine. In conclusion, PFOA-induced heart rate elevation is likely PPAR alpha independent, while the right ventricular wall thinning seems to be PPAR alpha dependent. The protective effects of l-carnitine do not require PPAR alpha.


The PPAR alpha gene is associated with triglyceride, low-density cholesterol and inflammation marker response to fenofibrate intervention: the GOLDN study.

  • A C Frazier-Wood‎ et al.
  • The pharmacogenomics journal‎
  • 2013‎

As a peroxisome proliferator-activated receptor alpha (PPARα) agonist, fenofibrate favorably modulates dyslipidemia and inflammation markers, which are associated with cardiovascular risk. To determine whether variation in the PPARα receptor gene was associated with lipid and inflammatory marker response, we conducted a 3-week trial of fenofibrate in 861 men and women. Mixed linear models that controlled for age and sex, as well as family pedigree and study center, were constructed using single-nucleotide polymorphisms (SNPs) in the PPARα gene as predictors and changes in fasting triglycerides (TGs), cholesterol and inflammatory markers as outcomes. Significant associations with low-density cholesterol and interleukin-2 (P<0.001) responses to fenofibrate were found. Although there were suggestive associations with tumor necrosis factor-alpha and TG responses (P<0.05), these did not survive the correction for multiple testing. We conclude that variants in the PPARα gene may contribute to future pharmacogenomic paradigms seeking to predict fenofibrate responders from both an anti-dyslipidemic and anti-inflammatory perspective.


Pemafibrate, a PPAR alpha agonist, attenuates neointima formation after vascular injury in mice fed normal chow and a high-fat diet.

  • Tsuyoshi Horikawa‎ et al.
  • Heliyon‎
  • 2020‎

Recently, the prevention of cardiovascular events has become one of the most important aims of diabetes care. Peroxisome proliferator-activated receptor (PPAR) agonists have been reported to have vascular protective effects. Here, we examined whether pemafibrate, a selective PPAR alpha agonist, attenuated neointima formation after vascular injury and vascular smooth muscle cell (VSMC) proliferation. We performed endothelial denudation injury in mice treated with a high-fat diet (HFD) or normal chow. Orally administered pemafibrate significantly attenuated neointima formation after vascular injury in HFD and normal chow mice. Interestingly, pemafibrate increased the serum fibroblast growth factor 21 concentration and decreased serum insulin concentrations in HFD mice. In addition, body weight was slightly but significantly decreased by pemafibrate in HFD mice. Pemafibrate, but not bezafibrate, attenuated VSMC proliferation in vitro. The knockdown of PPAR alpha abolished the anti-VSMC proliferation effect of pemafibrate. BrdU assay results revealed that pemafibrate dose-dependently inhibited DNA synthesis in VSMCs. Flow cytometry analysis demonstrated that G1-to-S phase cell cycle transition was significantly inhibited by pemafibrate. Pemafibrate attenuated serum-induced cyclin D1 expression in VSMCs. However, apoptosis was not induced by pemafibrate as assessed by the TUNEL assay. Similar to the in vitro data, VSMC proliferation was also decreased by pemafibrate in mice. These data suggest that pemafibrate attenuates neointima formation after vascular injury and VSMC proliferation by inhibiting cell cycle progression.


Angiogenic and Inflammatory Alterations of Endometriotic Lesions in a Transgenic Animal Experimental Model With Loss of Expression of PPAR-Alpha Receptors.

  • Vasilios Pergialiotis‎ et al.
  • Cureus‎
  • 2022‎

Peroxisome proliferator-activated receptors (PPARs) have been proposed as a medical treatment against endometriosis in preclinical and clinical studies. Their effect seems to be triggered through the suppression of angiogenesis. In the present study, we used a transgenic animal model with a loss of expression of PPAR-alpha receptors to examine their effect on the course of surgically induced endometriotic lesions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: