Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 2,639 papers

Norepinephrine release in the cerebellum contributes to aversive learning.

  • Adrien T Stanley‎ et al.
  • Nature communications‎
  • 2023‎

The modulation of dopamine release from midbrain projections to the striatum has long been demonstrated in reward-based learning, but the synaptic basis of aversive learning is far less characterized. The cerebellum receives axonal projections from the locus coeruleus, and norepinephrine release is implicated in states of arousal and stress, but whether aversive learning relies on plastic changes in norepinephrine release in the cerebellum is unknown. Here we report that in mice, norepinephrine is released in the cerebellum following an unpredicted noxious event (a foot-shock) and that this norepinephrine release is potentiated powerfully with fear acquisition as animals learn that a previously neutral stimulus (tone) predicts the aversive event. Importantly, both chemogenetic and optogenetic inhibition of the locus coeruleus-cerebellum pathway block fear memory without impairing motor function. Thus, norepinephrine release in the cerebellum is modulated by experience and underlies aversive learning.


Astrocytes Amplify Neuronal Dendritic Volume Transmission Stimulated by Norepinephrine.

  • Chun Chen‎ et al.
  • Cell reports‎
  • 2019‎

In addition to their support role in neurotransmitter and ion buffering, astrocytes directly regulate neurotransmission at synapses via local bidirectional signaling with neurons. Here, we reveal a form of neuronal-astrocytic signaling that transmits retrograde dendritic signals to distal upstream neurons in order to activate recurrent synaptic circuits. Norepinephrine activates α1 adrenoreceptors in hypothalamic corticotropin-releasing hormone (CRH) neurons to stimulate dendritic release, which triggers an astrocytic calcium response and release of ATP; ATP stimulates action potentials in upstream glutamate and GABA neurons to activate recurrent excitatory and inhibitory synaptic circuits to the CRH neurons. Thus, norepinephrine activates a retrograde signaling mechanism in CRH neurons that engages astrocytes in order to extend dendritic volume transmission to reach distal presynaptic glutamate and GABA neurons, thereby amplifying volume transmission mediated by dendritic release.


Norepinephrine potentiates proinflammatory responses of human vaginal epithelial cells.

  • Amanda J Brosnahan‎ et al.
  • Journal of neuroimmunology‎
  • 2013‎

The vaginal epithelium provides a barrier to pathogens and recruits immune defenses through the secretion of cytokines and chemokines. Several studies have shown that mucosal sites are innervated by norepinephrine-containing nerve fibers. Here we report that norepinephrine potentiates the proinflammatory response of human vaginal epithelial cells to products produced by Staphylococcus aureus, a pathogen that causes menstrual toxic shock syndrome. The cells exhibit immunoreactivity for catecholamine synthesis enzymes and the norepinephrine transporter. Moreover, the cells secrete norepinephrine and dopamine at low concentrations. These results indicate that norepinephrine may serve as an autocrine modulator of proinflammatory responses in the vaginal epithelium.


Norepinephrine modulation of heat dissipation in female rats lacking estrogen.

  • Cristina S Fonseca‎ et al.
  • Journal of neuroendocrinology‎
  • 2022‎

Postmenopausal hot flushes are caused by lack of estradiol (E2) but their neuroendocrine basis is still poorly understood. Here, we investigated the interrelationship between norepinephrine and hypothalamic neurons, with emphasis on kisspeptin neurons in the arcuate nucleus (ARC), as a regulatory pathway in the vasomotor effects of E2. Ovariectomized (OVX) rats displayed increased tail skin temperature (TST), and this increase was prevented in OVX rats treated with E2 (OVX + E2). Expression of Fos in the hypothalamus and the number of ARC kisspeptin neurons coexpressing Fos were increased in OVX rats. Likewise, brainstem norepinephrine neurons of OVX rats displayed higher Fos immunoreactivity associated with the increase in TST. In the ARC, the density of dopamine-ß-hydroxylase (DBH)-immunoreactive (ir) fibers was not altered by E2 but, importantly, DBH-ir terminals were found in close apposition to kisspeptin cells, revealing norepinephrine inputs to ARC kisspeptin neurons. Intracerebroventricular injection of the α2-adrenergic agonist clonidine (CLO) was used to reduce central norepinephrine release, confirmed by the decreased 3-methoxy-4-hydroxyphenylglycol/norepinephrine ratio in the preoptic area and ARC. Accordingly, CLO treatment in OVX rats reduced ARC Kiss1 mRNA levels and TST to the values of OVX + E2 rats. Conversely, CLO stimulated Kiss1 expression in the anteroventral periventricular nucleus (AVPV) and increased luteinizing hormone secretion. These findings provide evidence that augmented heat dissipation in OVX rats involves the increase in central norepinephrine that modulates hypothalamic areas related to thermoregulation, including ARC kisspeptin neurons. This neuronal network is suppressed by E2 and its imbalance may be implicated in the vasomotor symptoms of postmenopausal hot flushes.


Impaired maternal behavior in mice lacking norepinephrine and epinephrine.

  • S A Thomas‎ et al.
  • Cell‎
  • 1997‎

The roles of norepinephrine (NE) and epinephrine in behavior were investigated by targeted disruption of the dopamine beta-hydroxylase (Dbh) gene, thereby eliminating these compounds in vivo. Most heterozygous pups born to Dbh-/- females died within several days of birth and were often found scattered within the bedding. Potential causes including deficits in olfaction and lactation were not apparent. A deficit in maternal behavior was confirmed by the lack of pup retrieval exhibited by Dbh-/- virgin females. Restoration of NE shortly before but not after birth induced females that previously abandoned their litters to act maternally. Our results suggest that NE is responsible for long-lasting changes that promote maternal behavior during both development and parturition in mice.


Ancient coexistence of norepinephrine, tyramine, and octopamine signaling in bilaterians.

  • Philipp Bauknecht‎ et al.
  • BMC biology‎
  • 2017‎

Norepinephrine/noradrenaline is a neurotransmitter implicated in arousal and other aspects of vertebrate behavior and physiology. In invertebrates, adrenergic signaling is considered absent and analogous functions are performed by the biogenic amines octopamine and its precursor tyramine. These chemically similar transmitters signal by related families of G-protein-coupled receptors in vertebrates and invertebrates, suggesting that octopamine/tyramine are the invertebrate equivalents of vertebrate norepinephrine. However, the evolutionary relationships and origin of these transmitter systems remain unclear.


Norepinephrine and Epinephrine Enhanced the Infectivity of Enterovirus 71.

  • Yu-Ting Liao‎ et al.
  • PloS one‎
  • 2015‎

Enterovirus 71 (EV71) infections may be associated with neurological complications, including brainstem encephalitis (BE). Severe EV71 BE may be complicated with autonomic nervous system (ANS) dysregulation and/or pulmonary edema (PE). ANS dysregulation is related to the overactivation of the sympathetic nervous system, which results from catecholamine release.


Role of calcium and EPAC in norepinephrine-induced ghrelin secretion.

  • Bharath K Mani‎ et al.
  • Endocrinology‎
  • 2014‎

Ghrelin is an orexigenic hormone secreted principally from a distinct population of gastric endocrine cells. Molecular mechanisms regulating ghrelin secretion are mostly unknown. Recently, norepinephrine (NE) was shown to enhance ghrelin release by binding to β1-adrenergic receptors on ghrelin cells. Here, we use an immortalized stomach-derived ghrelin cell line to further characterize the intracellular signaling pathways involved in NE-induced ghrelin secretion, with a focus on the roles of Ca(2+) and cAMP. Several voltage-gated Ca(2+) channel (VGCC) family members were found by quantitative PCR to be expressed by ghrelin cells. Nifedipine, a selective L-type VGCC blocker, suppressed both basal and NE-stimulated ghrelin secretion. NE induced elevation of cytosolic Ca(2+) levels both in the presence and absence of extracellular Ca(2+). Ca(2+)-sensing synaptotagmins Syt7 and Syt9 were also highly expressed in ghrelin cell lines, suggesting that they too help mediate ghrelin secretion. Raising cAMP with the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine also stimulated ghrelin secretion, although such a cAMP-mediated effect likely does not involve protein kinase A, given the absence of a modulatory response to a highly selective protein kinase A inhibitor. However, pharmacological inhibition of another target of cAMP, exchange protein-activated by cAMP (EPAC), did attenuate both basal and NE-induced ghrelin secretion, whereas an EPAC agonist enhanced basal ghrelin secretion. We conclude that constitutive ghrelin secretion is primarily regulated by Ca(2+) influx through L-type VGCCs and that NE stimulates ghrelin secretion predominantly through release of intracellular Ca(2+). Furthermore, cAMP and its downstream activation of EPAC are required for the normal ghrelin secretory response to NE.


Corneal epithelial injury-induced norepinephrine promotes Pseudomonas aeruginosa keratitis.

  • Xiubin Ma‎ et al.
  • Experimental eye research‎
  • 2020‎

Tissue injury causes the secretion of stress hormone catecholamine and increases susceptibility to opportunistic infection. Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen that is a leading cause of microbial keratitis usually associated with ocular injury or contact lens wear. However, the effect of catecholamine on P. aeruginosa induced corneal infection is unknown. Here, we test if norepinephrine (NE) would promote the progression of P. aeruginosa keratitis in mice. Adult C57BL/6 mouse corneas were scarified and then inoculated with P. aeruginosa. The content of NE was elevated in corneas after scarification and inoculation with P. aeruginosa. Then, exogenous NE was applied to the infected corneas at 24 h after inoculation; control eyes were treated with sterile saline. Topical application of NE aggravated the severity of P. aeruginosa keratitis, accompanied with the increase of clinical score, bacterial load, pathological changes, neutrophils infiltration, bacterial virulence factors and proinflammatory factors levels. In order to further verify the role of NE, N-(2-Chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4), a neurotoxin selected to deplete NE, was injected subconjunctivally 12 h before scarification. Pre-depletion of local NE by DSP-4 significantly alleviated the severity of corneal infection. Moreover, NE was also confirmed to increase the bacterial growth and the expression of virulence factors gene in vitro. Together, these data showed that increased corneal NE content facilitated the progression of P. aeruginosa keratitis in mice by amplifying host excessive inflammatory response and bacterial virulence. Therefore, targeting NE may provide a potential strategy for the treatment of P. aeruginosa keratitis.


Thermal preference behavior following clonidine, norepinephrine, isoproterenol, and ephedrine.

  • H J Carlisle‎ et al.
  • Physiology & behavior‎
  • 1999‎

A thermal gradient (temperature range 7-45 degrees C) was used to assess ambient temperature (Ta) preferences of rats following treatment with clonidine (25 microg/kg), norepinephrine (NE, 250 microg/kg), isoproterenol (ISO, 50 microg/kg), and ephedrine (EPH, 10 mg/kg). Clonidine produced a preference for a temperature (31.5 degrees C) slightly warmer than that preferred after saline (28.3 degrees C), but this resulted in no significant change in posttest colonic temperature (Tc). NE, ISO and EPH produced a preference for a colder region of the gradient (20-22 degrees C) compared to saline (24.5-28.9 degrees C). Posttest Tc was reduced significantly from 37.7-37.9 degrees C after saline to 37.2 degrees C (NE), 37.3 degrees C (ISO), and 36.8 degrees C (EPH). Thus, given the opportunity to select an environmental temperature, the animals selected a Ta that resulted in significantly lower body temperatures after NE, ISO, and EPH. This suggests that paradoxical thermoregulatory effects of these thermogenic adrenergic agonists are due, at least in part, to a preference for a lower body temperature.


[11C]NS8880, a promising PET radiotracer targeting the norepinephrine transporter.

  • Karina H Vase‎ et al.
  • Nuclear medicine and biology‎
  • 2014‎

Positron emission tomography (PET) imaging of the norepinephrine transporter (NET) is still hindered by the availability of useful PET imaging probes. The present study describes the radiosynthesis and pre-clinical evaluation of a new compound, exo-3-(6-methoxypyridin-2-yloxy)-8-H-8-azabicyclo[3.2.1]octane (NS8880), targeting NET. NS8880 has an in vitro binding profile comparable to desipramine and is structurally not related to reboxetine.


Norepinephrine stimulates mobilization of endothelial progenitor cells after limb ischemia.

  • Qijun Jiang‎ et al.
  • PloS one‎
  • 2014‎

During several pathological processes such as cancer progression, thermal injury, wound healing and hindlimb ischemia, the mobilization of endothelial progenitor cells (EPCs) mobilization was enhanced with an increase of sympathetic nerve activity and norepinephrine (NE) secretion, yet the cellular and molecular mechanisms involved in the effects of NE on EPCs has less been investigated.


The norepinephrine system and its relevance for multi-component behavior.

  • Moritz Mückschel‎ et al.
  • NeuroImage‎
  • 2017‎

The ability to execute several actions in a specific temporal order to achieve an overarching goal, a process often termed action cascading or multi-component behavior, is essential for everyday life requirements. We are only at the beginning to understand the neurobiological mechanisms important for these cognitive processes. However, it is likely that the locus coeruleus-norepinephrine (LC-NE) system may be of importance. In the current study we examine the relevance of the LC-NE system for action cascading processes using a system neurophysiological approach combining high-density EEG recordings and source localization to analyze event-related potentials (ERPs) with recordings of pupil diameter as a proximate of LC-NE system activity. N=25 healthy participants performed an action cascading stop-change paradigm. Integrating ERPs and pupil diameter using Pearson correlations, the results show that the LC-NE system is important for processes related to multi-component behavior. However, the LC-NE system does not seem to be important during the time period of response selection processes during multi-component behavior (reflected in the P3) as well as during perceptual and attentional selection (P1 and N1 ERPs). Rather, it seems that the neurophysiological processes in the fore period of a possibly upcoming imperative stimulus to initiate multi-component behavior are correlated with the LC-NE system. It seems that the LC-NE system facilitates responses to task-relevant processes and supports task-related decision and response selection processes by preparing cognitive control processes in case these are required during multi-component behavior rather than modulating these processes once they are operating.


Mechanistic insight into the norepinephrine-induced fibrosis in systemic sclerosis.

  • Akihito Uehara‎ et al.
  • Scientific reports‎
  • 2016‎

Raynaud's phenomenon is frequently observed in systemic sclerosis (SSc) patients, and cold- or stress-induced norepinephrine (NE) has been speculated to be associated with vasoconstriction. Objective was to elucidate the role of NE in fibrosis in SSc. IL-6 is a potent stimulator of collagen production in fibroblasts. NE enhanced IL-6 production and proliferation more significantly in SSc fibroblasts than in normal fibroblasts. Furthermore, the production of IL-6 and phosphorylation of p38 in SSc fibroblasts was enhanced by adrenergic receptor (AR)β agonist, isoproterenol, but not ARα agonist, oxymetazoline. ARβ blocker, propranolol, inhibited NE-induced IL-6 production and phosphorylation of p38 in SSc fibroblasts. NE-induced IL-6 was significantly inhibited by p38 inhibitor, SB203580, suggesting that NE-induced phosphorylation of p38 via ARβ enhances IL-6 production in SSc fibroblasts. NE-induced phosphorylation of ERK1/2 via ARα inhibited IL-6 production in SSc fibroblasts. Combined treatment with NE and endothelin-1 resulted in an additive increase in IL-6 production in SSc fibroblasts. NE-induced IL-6/IL-6 receptor trans-signaling increased the production of collagen type I in SSc fibroblasts, and both propranolol and SB203580 inhibited NE-induced collagen production. These results suggest that cold exposure and/or emotional stress-induced NE might contribute to the skin fibrosis via potentiation of IL-6 production from fibroblasts in SSc.


Norepinephrine modulates IL-1β-induced catabolic response of human chondrocytes.

  • Hyun Sook Hwang‎ et al.
  • BMC musculoskeletal disorders‎
  • 2021‎

The influence of the sympathetic nervous system (SNS) on metabolism of bone and cartilage expressing β-adrenergic receptors (AR) was suggested. Here, we investigated whether the SNS functions as a modulator of cartilage metabolism induced by interleukin-1beta (IL-1β).


Microglia regulate sleep through calcium-dependent modulation of norepinephrine transmission.

  • Chenyan Ma‎ et al.
  • Nature neuroscience‎
  • 2024‎

Sleep interacts reciprocally with immune system activity, but its specific relationship with microglia-the resident immune cells in the brain-remains poorly understood. Here, we show in mice that microglia can regulate sleep through a mechanism involving Gi-coupled GPCRs, intracellular Ca2+ signaling and suppression of norepinephrine transmission. Chemogenetic activation of microglia Gi signaling strongly promoted sleep, whereas pharmacological blockade of Gi-coupled P2Y12 receptors decreased sleep. Two-photon imaging in the cortex showed that P2Y12-Gi activation elevated microglia intracellular Ca2+, and blockade of this Ca2+ elevation largely abolished the Gi-induced sleep increase. Microglia Ca2+ level also increased at natural wake-to-sleep transitions, caused partly by reduced norepinephrine levels. Furthermore, imaging of norepinephrine with its biosensor in the cortex showed that microglia P2Y12-Gi activation significantly reduced norepinephrine levels, partly by increasing the adenosine concentration. These findings indicate that microglia can regulate sleep through reciprocal interactions with norepinephrine transmission.


Norepinephrine induces hepatic fibrogenesis in leptin deficient ob/ob mice.

  • Jude A Oben‎ et al.
  • Biochemical and biophysical research communications‎
  • 2003‎

Leptin's actions on certain cells require a leptin-inducible neurotransmitter, norepinephrine (NE). NE modulates hepatic fibrosis. Therefore, decreased NE may explain why leptin deficiency inhibits hepatic fibrosis. We manipulated adrenergic activity in leptin-deficient ob/ob mice, leptin-sufficient, dopamine beta-hydroxylase deficient (Dbh(-/-)) mice, and HSC cultures to determine if leptin requires NE to activate HSC and induce hepatic fibrosis. ob/ob mice have chronic liver injury, but reduced numbers of HSC. Supplemental leptin increases HSC, suggesting that leptin-dependent, injury-related factors permit expansion of HSC populations. NE also increases HSC numbers and activation, normalizing fibrogenesis. When fed hepatotoxic diets, NE-deficient Dbh(-/-) mice fail to accumulate activated HSC and have impaired fibrogenesis unless treated with adrenergic agonists. NE acts directly on HSC to modulate leptin's actions because leptin increases HSC proliferation and prazosin, an alpha-adrenoceptor antagonist, inhibits this. Thus, leptin permits injury-related increases in adrenergic activity and requires NE to activate HSC and induce hepatic fibrogenesis.


Norepinephrine transporter promotes the invasion of human colon cancer cells.

  • Huahua Zhang‎ et al.
  • Oncology letters‎
  • 2020‎

Epidemiological studies suggested the use of antidepressants to be associated with decreased risk of colorectal cancer (CRC). However, the underlying mechanism through which this decreased risk occurs remains elusive. The norepinephrine transporter (NET) is a target of antidepressants that maintains noradrenergic transmission homeostasis; however, little is known about its function in human CRC cells. The present study, using public datasets and immunohistochemistry approaches, revealed that NET was highly expressed in human CRC tissues with metastasis and in human colon cancer cells. Furthermore, knockdown of NET inhibited the invasive capability of human colon cancer cells. Additionally, epithelial (E)-cadherin expression was increased and Notch1 signaling was inhibited in NET-depleted colon cancer cells. These findings suggest that NET is highly expressed in human colon cancer, which is associated with the invasion of human colon cancer cells by influencing cell-cell adhesion through the Notch1-E-cadherin pathway. Thus, the present study revealed a novel function for NET and its downstream effectors in colon cancer cells, which will be valuable for future studies in a clinical setting.


Norepinephrine-CREB1-miR-373 axis promotes progression of colon cancer.

  • Jia Han‎ et al.
  • Molecular oncology‎
  • 2020‎

The adrenergic system contributes to the stress-induced onset and progression of cancer. Adrenergic fibers are the primary source of norepinephrine (NE). The underlying mechanisms involved in NE-induced colon cancer remain to be understood. In this study, we describe the function and regulatory network of NE in the progression of colon cancer. We demonstrate that NE-induced phosphorylation of cAMP response element-binding protein 1 (CREB1) promotes proliferation, migration, and invasion of human colon cancer cells. The downstream effector of NE, CREB1, bound to the promoter of miR-373 and transcriptionally activated its expression. miR-373 expression was shown to be necessary for NE-induced cell proliferation, invasion, and tumor growth. We confirmed that proliferation and invasion of colon cancer cells are regulated in vitro and in vivo by miR-373 through targeting of the tumor suppressors TIMP2 and APC. Our data suggest that NE promotes colon cancer cell proliferation and metastasis by activating the CREB1-miR-373 axis. The study of this novel signaling axis may provide mechanistic insights into the neural regulation of colon cancer and help in the design of future clinical studies on stress biology in colorectal cancer.


Overactivation of Norepinephrine-β2-Adrenergic Receptor Axis Promotes Corneal Neovascularization.

  • Qiaoqiao Dong‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2023‎

To investigate the role of the sympathetic nervous system in corneal neovascularization (CNV) and to identify the downstream pathway involved in this regulation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: