Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 1,397 papers

Use of sodium-glucose co-transporter-2 inhibitors in Asian patients with type 2 diabetes and kidney disease: An Asian perspective and expert recommendations.

  • Chin Meng Khoo‎ et al.
  • Diabetes, obesity & metabolism‎
  • 2021‎

Early onset of type 2 diabetes and a high prevalence of co-morbidities predispose the Asian population to a high risk for, and rapid progression of, diabetic kidney disease (DKD). Apart from renin-angiotensin system inhibitors, sodium-glucose co-transporter-2 (SGLT-2) inhibitors have been shown to delay renal disease progression in patients with DKD. In this review article, we consolidate the existing literature on SGLT-2 inhibitor use in Asian patients with DKD to establish contemporary guidance for clinicians. We extensively reviewed recommendations from international and regional guidelines, data from studies on Asian patients with DKD, global trials (DAPA-CKD, CREDENCE and DELIGHT) and cardiovascular outcomes trials. In patients with DKD, SGLT-2 inhibitor therapy significantly reduced albuminuria and the risk of hard renal outcomes (defined as the onset of end-stage kidney disease, substantial decline in renal function from baseline and renal death), cardiovascular outcomes and hospitalization for heart failure. In all the cardiovascular and renal outcomes trials, there was an initial decline in the estimated glomerular filtration rate (eGFR), which was followed by a slowing in the decline of renal function compared with that seen with placebo. Despite an attenuation in glucose-lowering efficacy in patients with low eGFR, there were sustained reductions in body weight and blood pressure, and an increase in haematocrit. Based on the available evidence, we conclude that SGLT-2 inhibitors represent an evidence-based therapeutic option for delaying the progression of renal disease in Asian patients with DKD and preserving renal function in patients at high risk of kidney disease.


Carcinogenicity risk assessment supports the chronic safety of dapagliflozin, an inhibitor of sodium-glucose co-transporter 2, in the treatment of type 2 diabetes mellitus.

  • Timothy P Reilly‎ et al.
  • Diabetes therapy : research, treatment and education of diabetes and related disorders‎
  • 2014‎

Dapagliflozin is a selective inhibitor of the sodium-glucose co-transporter 2 (SGLT2) that increases urinary glucose excretion to reduce hyperglycemia in the treatment of type 2 diabetes mellitus. A robust carcinogenicity risk assessment was undertaken to assess the chronic safety of dapagliflozin and SGLT2 inhibition.


Sodium glucose co-transporter 2 inhibition reduces succinate levels in diabetic mice.

  • Lakshini Y Herat‎ et al.
  • World journal of gastroenterology‎
  • 2020‎

Type 1 diabetes (T1D) is associated with major chronic microvascular complications which contribute significantly to diabetes associated morbidity. The protein primarily responsible for glucose reabsorption in the kidney is sodium glucose co-transporter 2 (SGLT2). Presently, SGLT2 inhibitors are widely used in diabetic patients to improve blood glucose levels and prevent cardiovascular and renal complications. Given the broad therapeutic application of SGLT2 inhibitors, we hypothesised that SGLT2 inhibition may exert its protective effects via alterations of the gut microbiome and tested this in a type 1 diabetic mouse model of diabetic retinopathy.


Piceatannol, a resveratrol derivative, promotes glucose uptake through glucose transporter 4 translocation to plasma membrane in L6 myocytes and suppresses blood glucose levels in type 2 diabetic model db/db mice.

  • Miki Minakawa‎ et al.
  • Biochemical and biophysical research communications‎
  • 2012‎

The skeletal muscle cells are one of the main sites of glucose uptake through glucose transporter 4 (GLUT4) in response to insulin. In muscle cells, 5' adenosine monophosphate-activated protein kinase (AMPK) is known as another GLUT4 translocation promoter. Natural compounds that activate AMPK have a possibility to overcome insulin resistance in the diabetic state. Piceatannol is a natural analog and a metabolite of resveratrol, a known AMPK activator. In this study, we investigate the in vitro effect of piceatannol on glucose uptake, AMPK phosphorylation and GLUT4 translocation to plasma membrane in L6 myocytes, and its in vivo effect on blood glucose levels in type 2 diabetic model db/db mice. Piceatannol was found to promote glucose uptake, AMPK phosphorylation and GLUT4 translocation by Western blotting analyses in L6 myotubes under a condition of insulin absence. Promotion by piceatannol of glucose uptake as well as GLUT4 translocation to plasma membrane by immunocytochemistry was also demonstrated in L6 myoblasts transfected with a glut4 cDNA-coding vector. Piceatannol suppressed the rises in blood glucose levels at early stages and improved the impaired glucose tolerance at late stages in db/db mice. These in vitro and in vivo findings suggest that piceatannol may be preventive and remedial for type 2 diabetes and become an antidiabetic phytochemical.


Chronic Hyperglycaemia Inhibits Tricarboxylic Acid Cycle in Rat Cardiomyoblasts Overexpressing Glucose Transporter Type 4.

  • Bernd Stratmann‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

An oversupply of nutrients with a loss of metabolic flexibility and subsequent cardiac dysfunction are hallmarks of diabetic cardiomyopathy. Even if excess substrate is offered, the heart suffers energy depletion as metabolic fluxes are diminished. To study the effects of a high glucose supply, a stably glucose transporter type 4 (GLUT4)-overexpressing cell line presenting an onset of diabetic cardiomyopathy-like phenotype was established. Long-term hyperglycaemia effects were analysed. Rat cardiomyoblasts overexpressing GLUT4 (H9C2KE2) were cultured under normo- and hyperglycaemic conditions for long-term. Expression profiles of several proteins were compared to non-transfected H9C2 cells (H9C2) using RT-qPCR, proteomics-based analysis, or Western blotting. GLUT4 surface analysis, glucose uptake, and cell morphology changes as well as apoptosis/necrosis measurements were performed using flow cytometry. Additionally, brain natriuretic peptide (BNP) levels, reactive oxygen species (ROS) formation, glucose consumption, and lactate production were quantified. Long-term hyperglycaemia in H9C2KE2 cells induced increased GLUT4 presence on the cell surface and was associated with exaggerated glucose influx and lactate production. On the metabolic level, hyperglycaemia affected the tricarboxylic acid (TCA) cycle with accumulation of fumarate. This was associated with increased BNP-levels, oxidative stress, and lower antioxidant response, resulting in pronounced apoptosis and necrosis. Chronic glucose overload in cardiomyoblasts induced by GLUT4 overexpression and hyperglycaemia resulted in metabolically stimulated proteome profile changes and metabolic alterations on the TCA level.


Sex Dimorphic Glucose Transporter-2 Regulation of Hypothalamic Astrocyte Glucose and Energy Sensor Expression and Glycogen Metabolism.

  • Madhu Babu Pasula‎ et al.
  • Neurochemical research‎
  • 2023‎

The plasma membrane glucose transporter-2 (GLUT2) monitors brain cell uptake of the critical nutrient glucose, and functions within astrocytes of as-yet-unknown location to control glucose counter-regulation. Hypothalamic astrocyte-neuron metabolic coupling provides vital cues to the neural glucostatic network. Current research utilized an established hypothalamic primary astrocyte culture model along with gene knockdown tools to investigate whether GLUT2 imposes sex-specific regulation of glucose/energy sensor function and glycogen metabolism in this cell population. Data show that GLUT2 stimulates or inhibits glucokinase (GCK) expression in glucose-supplied versus -deprived male astrocytes, but does not control this protein in female. Astrocyte 5'-AMP-activated protein kinaseα1/2 (AMPK) protein is augmented by GLUT2 in each sex, but phosphoAMPKα1/2 is coincidently up- (male) or down- (female) regulated. GLUT2 effects on glycogen synthase (GS) diverges in the two sexes, but direction of this control is reversed by glucoprivation in each sex. GLUT2 increases (male) or decreases (female) glycogen phosphorylase-brain type (GPbb) protein during glucoprivation, yet simultaneously inhibits (male) or stimulates (female) GP-muscle type (GPmm) expression. Astrocyte glycogen accumulation is restrained by GLUT2 when glucose is present (male) or absent (both sexes). Outcomes disclose sex-dependent GLUT2 control of the astrocyte glycolytic pathway sensor GCK. Data show that glucose status determines GLUT2 regulation of GS (both sexes), GPbb (female), and GPmm (male), and that GLUT2 imposes opposite control of GS, GPbb, and GPmm profiles between sexes during glucoprivation. Ongoing studies aim to investigate molecular mechanisms underlying sex-dimorphic GLUT2 regulation of hypothalamic astrocyte metabolic-sensory and glycogen metabolic proteins, and to characterize effects of sex-specific astrocyte target protein responses to GLUT2 on glucose regulation.


Effects of sodium-glucose co-transporter 2 (SGLT2) inhibition on renal function and albuminuria in patients with type 2 diabetes: a systematic review and meta-analysis.

  • Lubin Xu‎ et al.
  • PeerJ‎
  • 2017‎

To evaluate the effects of sodium-glucose co-transporter 2 (SGLT2) inhibition on renal function and albuminuria in patients with type 2 diabetes.


Comparative safety of different sodium-glucose transporter 2 inhibitors in patients with type 2 diabetes: a systematic review and network meta-analysis of randomized controlled trials.

  • Chun Xing Li‎ et al.
  • Frontiers in endocrinology‎
  • 2023‎

The safety of different sodium-glucose transporter 2 (SGLT-2) inhibitors remains uncertain due to the lack of head-to-head comparisons.


Dual-Target Compounds against Type 2 Diabetes Mellitus: Proof of Concept for Sodium Dependent Glucose Transporter (SGLT) and Glycogen Phosphorylase (GP) Inhibitors.

  • Ádám Sipos‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2021‎

A current trend in the quest for new therapies for complex, multifactorial diseases, such as diabetes mellitus (DM), is to find dual or even multi-target inhibitors. In DM, the sodium dependent glucose cotransporter 2 (SGLT2) in the kidneys and the glycogen phosphorylase (GP) in the liver are validated targets. Several (β-D-glucopyranosylaryl)methyl (het)arene type compounds, called gliflozins, are marketed drugs that target SGLT2. For GP, low nanomolar glucose analogue inhibitors exist. The purpose of this study was to identify dual acting compounds which inhibit both SGLTs and GP. To this end, we have extended the structure-activity relationships of SGLT2 and GP inhibitors to scarcely known (C-β-D-glucopyranosylhetaryl)methyl arene type compounds and studied several (C-β-D-glucopyranosylhetaryl)arene type GP inhibitors against SGLT. New compounds, such as 5-arylmethyl-3-(β-D-glucopyranosyl)-1,2,4-oxadiazoles, 5-arylmethyl-2-(β-D-glucopyranosyl)-1,3,4-oxadiazoles, 4-arylmethyl-2-(β-D-glucopyranosyl)pyrimidines and 4(5)-benzyl-2-(β-D-glucopyranosyl)imidazole were prepared by adapting our previous synthetic methods. None of the studied compounds exhibited cytotoxicity and all of them were assayed for their SGLT1 and 2 inhibitory potentials in a SGLT-overexpressing TSA201 cell system. GP inhibition was also determined by known methods. Several newly synthesized (C-β-D-glucopyranosylhetaryl)methyl arene derivatives had low micromolar SGLT2 inhibitory activity; however, none of these compounds inhibited GP. On the other hand, several (C-β-D-glucopyranosylhetaryl)arene type GP inhibitor compounds with low micromolar efficacy against SGLT2 were identified. The best dual inhibitor, 2-(β-D-glucopyranosyl)-4(5)-(2-naphthyl)-imidazole, had a Ki of 31 nM for GP and IC50 of 3.5 μM for SGLT2. This first example of an SGLT-GP dual inhibitor can prospectively be developed into even more efficient dual-target compounds with potential applications in future antidiabetic therapy.


Susceptibility to serious skin and subcutaneous tissue disorders and skin tissue distribution of sodium-dependent glucose co-transporter type 2 (SGLT2) inhibitors.

  • Toshiyuki Sakaeda‎ et al.
  • International journal of medical sciences‎
  • 2018‎

Objectives: In Japan, sodium-glucose co-transporter type 2 (SGLT2) inhibitors have been reported to be associated with serious skin and subcutaneous tissue disorders. A post-marketing surveillance (PMS) study suggested that the association was specific for ipragliflozin and, to a lesser extent for dapagliflozin. These studies were performed to confirm the association of 6 SGLT2 inhibitors with serious skin disorders in a clinical setting, to elucidate the role of melanin in serious skin disorders and to understand the underlying mechanisms. Methods: The latest PMS records were retrieved from the Japanese Adverse Drug Event Report (JADER) database, and the associations were analyzed by data mining techniques. In silico 3-D docking simulation of SGLT2 inhibitors with melanin was performed using the MOE software. The skin tissue distribution of SGLT2 inhibitors was evaluated using albino rats after oral administration at clinical doses. Results: The adjusted reporting odds ratio (95% confidential limit) was 1.667 (1.415, 1.963) for ipragliflozin, 0.514 (0.317, 0.835) for dapagliflozin, 0.149 (0.048, 0.465) for tofogliflozin, 0.624 (0.331, 1.177) for luseogliflozin, 0.590 (0.277, 1.257) for canagliflozin and 0.293 (0.073, 1.187) for empagliflozin, when drugs other than the SGLT2 inhibitors were referred, and the association was detected only for ipragliflozin in clinical use. In silico 3-D docking simulation suggested the influence of melanin in ipragliflozin-specific serious skin disorders. The skin tissue-to-plasma concentration ratio of ipragliflozin was 0.45 ± 0.20 (±SD) at 1 hr after administration and increased in a time-dependent manner to 5.82 ± 3.66 at 24 hr (p<0.05), but not in case of other SGLT2 inhibitors. Conclusions: Serious skin disorders were suggested to be specific for ipragliflozin. Interaction with melanin might be implicated in ipragliflozin-specific serious skin disorders. Ipragliflozin was retained in the skin tissue, which suggested its interaction with the skin tissue in serious skin disorders.


Use of sodium-glucose co-transporter-2 inhibitors in patients with type 2 diabetes mellitus and multiple cardiovascular risk factors: An Asian perspective and expert recommendations.

  • Chaicharn Deerochanawong‎ et al.
  • Diabetes, obesity & metabolism‎
  • 2019‎

Diabetes mellitus in Asia accounts for more than half of the global prevalence. There is a high prevalence of cardiovascular disease (CVD) in the region among people with type 2 diabetes mellitus (T2DM) and it is often associated with multiple risk factors including hypertension, renal disease and obesity. The early onset of T2DM and the eventual long disease duration portends an increasing proportion of the population to premature CVD. In addition to lowering blood glucose, sodium-glucose co-transporter-2 (SGLT-2) inhibitors exert favourable effects on multiple risk factors (including blood pressure, body weight and renal function) and provide an opportunity to reduce the risk of CVD in patients with T2DM. In this article, we consolidated the existing literature on SGLT-2 inhibitor use in Asian patients with T2DM and established contemporary guidance for clinicians. We extensively reviewed recommendations from international and regional guidelines, published data from clinical trials in the Asian population (dapagliflozin, canagliflozin, empagliflozin, ipragliflozin, luseogliflozin and tofogliflozin), CVD outcomes trials (EMPAREG-OUTCOME, CANVAS and DECLARE-TIMI 58) and real-world evidence studies (CVD-REAL, EASEL, CVD-REAL 2 and OBSERVE-4D). A series of clinical recommendations on the use of SGLT-2 inhibitors in Asian patients with T2DM was deliberated among experts with multiple rounds of review and voting. Based on the available evidence, we conclude that SGLT-2 inhibitors represent an evidence-based therapeutic option for the primary prevention of heart failure hospitalization and secondary prevention of CVD in patients with T2DM, and should be considered early on in the treatment algorithm for patients with multiple risk factors, or those with established CVD.


A model-based meta analysis study of sodium glucose co-transporter-2 inhibitors.

  • Xueting Yao‎ et al.
  • CPT: pharmacometrics & systems pharmacology‎
  • 2023‎

Type 2 diabetes mellitus (T2DM) agent sodium-glucose co-transporter 2 (SGLT2) inhibitors show special benefits in reducing body weight and heart failure risks. To accelerate clinical development for novel SGLT2 inhibitors, a quantitative relationship among pharmacokinetics, pharmacodynamics, and disease end points (PK/PD/end points) in healthy subjects and patients with T2DM was developed. PK/PD/end point data in published clinical studies for three globally marketed SGLT2 inhibitors (dapagliflozin, canagliflozin, and empagliflozin) were collected according to pre-set criteria. Overall, 80 papers with 880 PK, 27 PD, 848 fasting plasma glucose (FPG), and 1219 hemoglobin A1c (HbA1c) data were collected. A two-compartmental model with Hill's equation was utilized to capture PK/PD profiles. A novel translational biomarker, the change of urine glucose excretion (UGE) from baseline normalized by FPG (ΔUGEc ) was identified to bridge healthy subjects and patients with T2DM with different disease statuses. ΔUGEc was found to have a similar maximum increase with different half-maximal effective concentration values of 56.6, 2310, and 841 mg/mL·h for dapagliflozin, canagliflozin, and empagliflozin respectively. ΔUGEc will change FPG based on linear function. HbA1c profiles were captured by indirect response model. Additional placebo effect was also considered for both end points. The PK/ΔUGEc /FPG/HbA1c relationship was validated internally using diagnostic plots and visual assessment and further validated externally using the fourth globally approved same-in-class drug (ertugliflozin). This validated quantitative PK/PD/end point relationship offers novel insight into long-term efficacy prediction for SGLT2 inhibitors. The novelty identified ΔUGEc could make the comparison of different SGLT2 inhibitors' efficacy characteristics easier, and achieve early prediction from healthy subjects to patients.


Effect of Sodium Glucose Co-Transporter 2 Inhibitors on Liver Fat Mass and Body Composition in Patients with Nonalcoholic Fatty Liver Disease and Type 2 Diabetes Mellitus.

  • Yoshitaka Arase‎ et al.
  • Clinical drug investigation‎
  • 2019‎

Sodium glucose co-transporter 2 inhibitors increase urinary glucose excretion and reduce visceral adiposity and body weight, but their efficacy on patients with nonalcoholic fatty liver disease has not been sufficiently investigated. The aim of this study was to assess the effect of sodium glucose co-transporter 2 inhibitors on liver fat mass and body composition in patients with nonalcoholic fatty liver disease and type 2 diabetes mellitus.


Sodium-Glucose Co-transporter 2 Inhibitors in the Failing Heart: a Growing Potential.

  • Dulce Brito‎ et al.
  • Cardiovascular drugs and therapy‎
  • 2020‎

Sodium-glucose co-transporter 2 inhibitors (SGLT2i) are a new drug class designed to treat patients with type 2 diabetes (T2D). However, cardiovascular outcome trials showed that SGLT2i also offer protection against heart failure (HF)-related events and cardiovascular mortality. These benefits appear to be independent of glycaemic control and have recently been demonstrated in the HF population with reduced ejection fraction (HFrEF), with or without T2D. This comprehensive, evidence-based review focuses on the published studies concerning HF outcomes with SGLT2i, discussing issues that may underlie the different results, along with the impact of these new drugs in clinical practice. The potential translational mechanisms behind SGLT2i cardio-renal benefits and the information that ongoing studies may add to the already existing body of evidence are also reviewed. Finally, we focus on practical management issues regarding SGLT2i use in association with other T2D and HFrEF common pharmacological therapies. Safety considerations are also highlighted. Considering the paradigm shift in T2D management, from a focus on glycaemic control to a broader approach on cardiovascular protection and event reduction, including the potential for wide SGLT2i implementation in HF patients, with or without T2D, we are facing a promising time for major changes in the global management of cardiovascular disease.


Comparative effectiveness of sodium-glucose co-transporter 2 inhibitors for controlling hyperglycaemia in patients with type 2 diabetes: protocol for a systematic review and network meta-analysis.

  • Min Chen‎ et al.
  • BMJ open‎
  • 2016‎

As a new class of glucose-lowering drugs, sodium-glucose co-transporter 2 (SGLT2) inhibitors are effective for controlling hyperglycaemia, however, the relative effectiveness and safety of 6 recently available SGLT2 inhibitors have rarely been studied. Therefore, we aim to perform pairwise comparisons of the 6 SGLT2 inhibitors.


Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants.

  • Tamara J Nicolson‎ et al.
  • Diabetes‎
  • 2009‎

Zinc ions are essential for the formation of hexameric insulin and hormone crystallization. A nonsynonymous single nucleotide polymorphism rs13266634 in the SLC30A8 gene, encoding the secretory granule zinc transporter ZnT8, is associated with type 2 diabetes. We describe the effects of deleting the ZnT8 gene in mice and explore the action of the at-risk allele.


Effects of the dual sodium-glucose linked transporter inhibitor, licogliflozin vs placebo or empagliflozin in patients with type 2 diabetes and heart failure.

  • Rudolf A de Boer‎ et al.
  • British journal of clinical pharmacology‎
  • 2020‎

Explore the efficacy, safety and tolerability of the dual sodium-glucose cotransporter (SGLT) 1 and 2 inhibitor, licogliflozin in patients with type-2 diabetes mellitus (T2DM) and heart failure.


Intra- and inter-subject variability for increases in serum ketone bodies in patients with type 2 diabetes treated with the sodium glucose co-transporter 2 inhibitor canagliflozin.

  • David Polidori‎ et al.
  • Diabetes, obesity & metabolism‎
  • 2018‎

Sodium glucose co-transporter 2 (SGLT2) inhibitors have been associated with increased serum ketone body levels in patients with type 2 diabetes mellitus (T2DM). In the present analysis we evaluated serum ketone body levels and variability in 1278 Japanese patients with T2DM treated with canagliflozin 100 or 200 mg. Similar mean increases in ketone body concentrations of ~2-fold were seen with both canagliflozin doses. The median (interquartile range) percent change from baseline was 62% (0;180) for acetoacetate and 78% (2;236) for β-hydroxybutyrate. Approximately two-thirds of the variability in each ketone measure was attributed to intra-subject variability. Intra-subject variability was higher for serum ketones than other metabolites. Patients in the lowest response tertile exhibited no increase in ketones. Those in the highest response tertile tended to be male and have higher fasting plasma glucose levels, lower insulin levels, and longer T2DM duration at baseline. Moreover, changes in serum ketones were not fully explained by changes in plasma fatty acids, suggesting downstream effects of SGLT2 inhibition on hepatic metabolism that favour ketogenesis. In summary, increases in serum ketone bodies with canagliflozin were greater and more variable than changes in other metabolic measures in Japanese patients with T2DM.


Comparative safety of sodium-glucose co-transporter 2 inhibitors in elderly patients with type 2 diabetes mellitus and diabetic kidney disease: a systematic review and meta-analysis.

  • Yi Liu‎ et al.
  • Renal failure‎
  • 2023‎

The safety of sodium-glucose co-transporter 2 (SGLT2) inhibitors in elderly patients with diabetic kidney disease (DKD) is still controversial. This study aimed to analyze the safety of SGLT2 inhibitors in elderly patients with type 2 diabetes mellitus (T2DM) and DKD. We systematically searched PubMed, Embase, Web of Science, and the Cochrane Library from inception to March 2023. Randomized controlled trials (RCTs) were included. Data including patient characteristics and interesting outcomes were extracted, and the dichotomous data and continuous variables were evaluated using risk ratio (RR) with 95% confidence intervals (CIs) and mean difference (MD) with 95% CIs, respectively. A total of 14 RCTs with 59874 participants were finally included. There were 38,252 males (63.9%) and 21,622 females (36.1%). The patients' mean age was > 64.6 years. SGLT2 inhibitors could delay the further decline of estimated glomerular filtration rate (eGFR) when eGFR ≥ 60 ml/min/1.73m2 (MD: 2.36; 95%CI [1.15-3.57]). SGLT2 inhibitors in elderly patients with eGFR < 60 ml/min/1.73m2 (RR: 0.86; 95%CI [0.67-1.11]) may have a relatively increased risk of acute kidney injury compared to eGFR ≥ 60 ml/min/1.73m2. SGLT2 inhibitors increased the incidence of genital mycotic infections (RR: 3.47; 95%CI [2.97-4.04]) and diabetic ketoacidosis (RR: 2.25; 95%CI [1.57-3.24]). Except for genital mycotic infections and diabetic ketoacidosis, other adverse reactions were few, indicating that SGLT2 inhibitors are relatively safe for elderly patients with T2DM and DKD. Safety and renoprotection may be diminished when SGLT2 inhibitors are used in elderly patients with eGFR < 60 ml/min/1.73m2.


Effects of different dosages of Sodium-Glucose Transporter 2 Inhibitors on lipid levels in patients with type 2 diabetes mellitus: A protocol for systematic review and meta-analysis.

  • Tingyu Cai‎ et al.
  • Medicine‎
  • 2020‎

Type 2 diabetes mellitus is one of the most common chronic diseases, which endangers peoples health and life qualities. Sodium-Glucose Transporter 2 (SGLT2) inhibitors have been widely recognized since their clinical application in blood glucose control. While, dyslipidemia caused by SGLT2 inhibitors has been identified that affected the prognosis of this disease.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: