Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 25 papers out of 25 papers

C89 Induces Autophagy of Female Germline Stem Cells via Inhibition of the PI3K-Akt Pathway In Vitro.

  • Xinyue Li‎ et al.
  • Cells‎
  • 2019‎

Postnatal female germline stem cells (FGSCs) are a type of germline stem cell with self-renewal ability and the capacity of differentiation toward oocyte. The proliferation, differentiation, and apoptosis of FGSCs have been researched in recent years, but autophagy in FGSCs has not been explored. This study investigated the effects of the small-molecule compound 89 (C89) on FGSCs and the underlying molecular mechanism in vitro. Cytometry, Cell Counting Kit-8 (CCK8), and 5-ethynyl-2'-deoxyuridine (EdU) assay showed that the number, viability, and proliferation of FGSCs were significantly reduced in C89-treated groups (0.5, 1, and 2 µM) compared with controls. C89 had no impact on FGSC apoptosis or differentiation. However, C89 treatment induced the expression of light chain 3 beta II (LC3BII) and reduced the expression of sequestosome-1 (SQSTM1) in FGSCs, indicating that C89 induced FGSC autophagy. To investigate the mechanism of C89-induced FGSC autophagy, RNA-seq technology was used to compare the transcriptome differences between C89-treated FGSCs and controls. Bioinformatics analysis of the sequencing data indicated a potential involvement of the phosphatidylinositol 3 kinase and kinase Akt (PI3K-Akt) pathway in the effects of C89's induction of autophagy in FGSCs. Western blot confirmed that levels of p-PI3K and p-Akt were significantly reduced in the C89- or LY294002 (PI3K inhibitor)-treated groups compared with controls. Moreover, we found cooperative functions of C89 and LY294002 in inducing FGSC autophagy through suppressing the PI3K-Akt pathway. Taken together, this research demonstrates that C89 can reduce the number, viability, and proliferation of FGSCs by inducing autophagy. Furthermore, C89 induced FGSC autophagy by inhibiting the activity of PI3K and Akt. The PI3K-Akt pathway may be a target to regulate FGSC proliferation and death.


Integrative analysis of the 3D genome structure reveals that CTCF maintains the properties of mouse female germline stem cells.

  • Geng G Tian‎ et al.
  • Cellular and molecular life sciences : CMLS‎
  • 2022‎

The three-dimensional configuration of the genome ensures cell type-specific gene expression profiles by placing genes and regulatory elements in close spatial proximity. Here, we used in situ high-throughput chromosome conformation (in situ Hi-C), RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) to characterize the high-order chromatin structure signature of female germline stem cells (FGSCs) and identify its regulating key factor based on the data-driven of multiple omics data. By comparison with pluripotent stem cells (PSCs), adult stem cells (ASCs), and somatic cells at three major levels of chromatin architecture, A/B compartments, topologically associating domains, and chromatin loops, the chromatin architecture of FGSCs was most similar to that of other ASCs and largely different from that of PSCs and somatic cells. After integrative analysis of the three-dimensional chromatin structure, active compartment-associating loops (aCALs) were identified as a signature of high-order chromatin organization in FGSCs, which revealed that CCCTC-binding factor was a major factor to maintain the properties of FGSCs through regulation of aCALs. We found FGSCs belong to ASCs at chromatin structure level and characterized aCALs as the high-order chromatin structure signature of FGSCs. Furthermore, CTCF was identified to play a key role in regulating aCALS to maintain the biological functions of FGSCs. These data provide a valuable resource for future studies of the features of chromatin organization in mammalian stem cells and further understanding of the fundamental characteristics of FGSCs.


Human GV oocytes generated by mitotically active germ cells obtained from follicular aspirates.

  • Xinbao Ding‎ et al.
  • Scientific reports‎
  • 2016‎

Human female germline stem cells (FGSCs) have opened new opportunities for understanding human oogenesis, delaying menopause, treating infertility, and providing a new strategy for preserving fertility. However, the shortage of adult human ovaries tissues available impedes their future investigations and clinical applications. Here, we have established FGSC lines from scarce ovarian cortical tissues that exist in follicular aspirates (faFGSCs), which are produced and discarded in in vitro fertilization centers worldwide. The faFGSCs have characteristics of germline stem cells involved in the gene expression profile, growth characteristics, and a normal karyotype consistent with that of FGSCs obtained from ovarian cortexes surgically removed from patients (srFGSCs). Furthermore, faFGSCs have developmental potentials including spontaneous differentiation into oocytes under feeder-free conditions, communicating with granulosa cells by gap junctions and paracrine factors, entering meiosis after RA induction, as well as forming follicles after injection into human ovarian cortical tissues xenografted into adult immunodeficient female mice. Lastly, we developed a strategy guiding FGSCs differentiated into germinal vesicle (GV) stage oocytes in vitro and revealed their developmental mechanisms. Our study not only provides a new approach to obtain human FGSCs for medical treatment, but also opens several avenues to investigate human oogenesis in vitro.


Integrated Glycosylation Patterns of Glycoproteins and DNA Methylation Landscapes in Mammalian Oogenesis and Preimplantation Embryo Development.

  • Jian Wang‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2020‎

Glycosylation is one of the most fundamental post-translational modifications. However, the glycosylation patterns of glycoproteins have not been analyzed in mammalian preimplantation embryos, because of technical difficulties and scarcity of the required materials. Using high-throughput lectin microarrays of low-input cells and electrochemical techniques, an integration analysis of the DNA methylation and glycosylation landscapes of mammal oogenesis and preimplantation embryo development was performed. Highly noticeable changes occurred in the level of protein glycosylation during these events. Further analysis identified several stage-specific lectins including LEL, MNA-M, and MAL I. It was later confirmed that LEL was involved in mammalian oogenesis and preimplantation embryogenesis, and might be a marker of FGSC differentiation. Modified nanocomposite polyaniline/AuNPs were characterized by electron microscopy and modification on bare gold electrodes using layer-by-layer assembly technology. These nanoparticles were further subjected to accuracy measurements by analyzing the protein level of ten-eleven translocation protein (TET), which is an important enzyme in DNA demethylation that is regulated by O-glycosylation. Subsequent results showed that the variations in the glycosylation patterns of glycoproteins were opposite to those of the TET levels. Moreover, analysis of correlation between the changes in glyco-gene expression and female germline stem cell glycosylation profiles indicated that glycosylation was related to DNA methylation. Subsequent integration analysis showed that the trend in the variations of glycosylation patterns of glycoproteins was similar to that of DNA methylation and opposite to that of the TET protein levels during female germ cell and preimplantation embryo development. Our findings provide insight into the complex molecular mechanisms that regulate human embryo development, and a foundation for further elucidation of early embryonic development and informed reproductive medicine.


Long non-coding RNA expression profiling of mouse testis during postnatal development.

  • Jin Sun‎ et al.
  • PloS one‎
  • 2013‎

Mammalian testis development and spermatogenesis play critical roles in male fertility and continuation of a species. Previous research into the molecular mechanisms of testis development and spermatogenesis has largely focused on the role of protein-coding genes and small non-coding RNAs, such as microRNAs and piRNAs. Recently, it has become apparent that large numbers of long (>200 nt) non-coding RNAs (lncRNAs) are transcribed from mammalian genomes and that lncRNAs perform important regulatory functions in various developmental processes. However, the expression of lncRNAs and their biological functions in post-natal testis development remain unknown. In this study, we employed microarray technology to examine lncRNA expression profiles of neonatal (6-day-old) and adult (8-week-old) mouse testes. We found that 8,265 lncRNAs were expressed above background levels during post-natal testis development, of which 3,025 were differentially expressed. Candidate lncRNAs were identified for further characterization by an integrated examination of genomic context, gene ontology (GO) enrichment of their associated protein-coding genes, promoter analysis for epigenetic modification, and evolutionary conservation of elements. Many lncRNAs overlapped or were adjacent to key transcription factors and other genes involved in spermatogenesis, such as Ovol1, Ovol2, Lhx1, Sox3, Sox9, Plzf, c-Kit, Wt1, Sycp2, Prm1 and Prm2. Most differentially expressed lncRNAs exhibited epigenetic modification marks similar to protein-coding genes and tend to be expressed in a tissue-specific manner. In addition, the majority of differentially expressed lncRNAs harbored evolutionary conserved elements. Taken together, our findings represent the first systematic investigation of lncRNA expression in the mammalian testis and provide a solid foundation for further research into the molecular mechanisms of lncRNAs function in mammalian testis development and spermatogenesis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: