Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 989 papers

Cloning and analysis of DnaJ family members in the silkworm, Bombyx mori.

  • Yinü Li‎ et al.
  • Gene‎
  • 2016‎

Heat shock proteins (Hsps) are involved in a variety of critical biological functions, including protein folding, degradation, and translocation and macromolecule assembly, act as molecular chaperones during periods of stress by binding to other proteins. Using expressed sequence tag (EST) and silkworm (Bombyx mori) transcriptome databases, we identified 27 cDNA sequences encoding the conserved J domain, which is found in DnaJ-type Hsps. Of the 27 J domain-containing sequences, 25 were complete cDNA sequences. We divided them into three types according to the number and presence of conserved domains. By analyzing the gene structures, intron numbers, and conserved domains and constructing a phylogenetic tree, we found that the DnaJ family had undergone convergent evolution, obtaining new domains to expand the diversity of its family members. The acquisition of the new DnaJ domains most likely occurred prior to the evolutionary divergence of prokaryotes and eukaryotes. The expression of DnaJ genes in the silkworm was generally higher in the fat body. The tissue distribution of DnaJ1 proteins was detected by western blotting, demonstrating that in the fifth-instar larvae, the DnaJ1 proteins were expressed at their highest levels in hemocytes, followed by the fat body and head. We also found that the DnaJ1 transcripts were likely differentially translated in different tissues. Using immunofluorescence cytochemistry, we revealed that in the blood cells, DnaJ1 was mainly localized in the cytoplasm.


Evolutionary expansion and structural functionalism of the ancient family of profilin proteins.

  • Dhananjay K Pandey‎ et al.
  • Gene‎
  • 2017‎

Structure and functional similarities of a recent protein's orthologs with its ancient counterpart are largely determined by the configuration of evolutionary preservation of amino acids. The emergence of genome sequencing databases allowed dissecting the evolutionarily important gene families at a comprehensive and genome-wide scale. The profilin multi-gene family is an ancient, universal, and functionally diverged across kingdoms, which regulates various aspects of cellular development in both prokarya and eukarya, especially cell-wall maintenance through actin sequestering, nucleation and cytokinesis. We performed a meta-analysis of the evolutionary expansion, structural conservation, evolution of function motifs, and transcriptional biases of profilin proteins across kingdoms. An exhaustive search of various genome databases of cyanobacteria, fungi, animalia and plantae kingdoms revealed 172 paralogous/orthologous profilins those were phylogenetically clustered in various groups. Orthologous gene comparisons indicated that segmental and tandem duplication events under strong purifying selection are predominantly responsible for their convoluted structural divergences. Evidently, structural divergences were more prevalent in the paralogs than orthologs, and evolutionary variations in the exon/intron architecture were accomplished by 'exon/intron-gain' and insertion/deletion during sequence-exonization. Remarkably, temporal expression evolution of profilin paralogs/homeologs during cotton fiber domestication provides evolutionary impressions of the selection of highly diverged transcript abundance notably in the fiber morpho-evolution. These results provide global insights into the profilin evolution, their structural design across taxa; and their future utilization in translational research.


Genome-wide identification and analysis of the MADS-box gene family in apple.

  • Yi Tian‎ et al.
  • Gene‎
  • 2015‎

The MADS-box gene family is one of the most widely studied families in plants and has diverse developmental roles in flower pattern formation, gametophyte cell division and fruit differentiation. Although the genome-wide analysis of this family has been performed in some species, little is known regarding MADS-box genes in apple (Malus domestica). In this study, 146 MADS-box genes were identified in the apple genome and were phylogenetically clustered into six subgroups (MIKC(c), MIKC*, Mα, Mβ, Mγ and Mδ) with the MADS-box genes from Arabidopsis and rice. The predicted apple MADS-box genes were distributed across all 17 chromosomes at different densities. Additionally, the MADS-box domain, exon length, gene structure and motif compositions of the apple MADS-box genes were analysed. Moreover, the expression of all of the apple MADS-box genes was analysed in the root, stem, leaf, flower tissues and five stages of fruit development. All of the apple MADS-box genes, with the exception of some genes in each group, were expressed in at least one of the tissues tested, which indicates that the MADS-box genes are involved in various aspects of the physiological and developmental processes of the apple. To the best of our knowledge, this report describes the first genome-wide analysis of the apple MADS-box gene family, and the results should provide valuable information for understanding the classification, cloning and putative functions of this family.


TDRD6 is associated with oligoasthenoteratozoospermia by sequencing the patient from a consanguineous family.

  • Yan-Wei Sha‎ et al.
  • Gene‎
  • 2018‎

Oligoasthenoteratozoospermia (OAT) is characterized as low sperm count, decreased sperm motility and structural abnormalities of the sperm head in the same patient. However, very few studies reported the genetic alterations associated with OAT. Here we report a 38-year-old patient with OAT from a consanguineous family, with 2-6 million/mL sperm density, 2.1-3.8% normal sperm morphology and immotile sperm. Whole-exome sequencing (WES) identified homozygous variant c.1259A>G:p.Y420C in the TDRD6 gene. TDRD6 is a testis-specific expressed protein that was localized to the chromatoid bodies in germ cells and played an important role in the nonsense-mediated decay pathway. This rare variant co-segregated with the OAT phenotype in this family. Bioinformatic analysis also suggested the variant a pathogenic mutation. Two intracytoplasmic sperm injection (ICSI) cycles were carried out in the patient's wife, but she did not become pregnant after embryo transfer. So the mutations in TDRD6 may be associated with human male infertility and early embryonic lethality.


Engineering transcriptional regulation in Escherichia coli using an archaeal TetR-family transcription factor.

  • David Sybers‎ et al.
  • Gene‎
  • 2022‎

Synthetic biology requires well-characterized biological parts that can be combined into functional modules. One type of biological parts are transcriptional regulators and their cognate operator elements, which enable to either generate an input-specific response or are used as actuator modules. A range of regulators has already been characterized and used for orthogonal gene expression engineering, however, previous efforts have mostly focused on bacterial regulators. This work aims to design and explore the use of an archaeal TetR family regulator, FadRSa from Sulfolobus acidocaldarius, in a bacterial system, namely Escherichia coli. This is a challenging objective given the fundamental difference between the bacterial and archaeal transcription machinery and the lack of a native TetR-like FadR regulatory system in E. coli. The synthetic σ70-dependent bacterial promoter proD was used as a starting point to design hybrid bacterial/archaeal promoter/operator regions, in combination with the mKate2 fluorescent reporter enabling a readout. Four variations of proD containing FadRSa binding sites were constructed and characterized. While expressional activity of the modified promoter proD was found to be severely diminished for two of the constructs, constructs in which the binding site was introduced adjacent to the -35 promoter element still displayed sufficient basal transcriptional activity and showed up to 7-fold repression upon expression of FadRSa. Addition of acyl-CoA has been shown to disrupt FadRSa binding to the DNA in vitro. However, extracellular concentrations of up to 2 mM dodecanoate, subsequently converted to acyl-CoA by the cell, did not have a significant effect on repression in the bacterial system. This work demonstrates that archaeal transcription regulators can be used to generate actuator elements for use in E. coli, although the lack of ligand response underscores the challenge of maintaining biological function when transferring parts to a phylogenetically divergent host.


Characterization and expression analysis of the glycosyltransferase 64 family in rice (Oryza sativa).

  • Yuelong Lin‎ et al.
  • Gene‎
  • 2022‎

The glycosyltransferase 64 (GT64) family is widely conserved in many species, including animals and plants. The functions of GT64 family genes in animals have been well characterized in the biosynthesis of extracellular heparan sulfate, whereas two GT64 members in Arabidopsis thaliana are involved in the glycosylation of plasma membrane glycosylinositol phosphorylceramides (GIPCs). GIPCs are the main components of plant sphingolipids and serve as important signal molecules in various developmental processes and stress responses. Rice (Oryza sativa), a model monocot plant, contains four GT64 members in its genome. Using phylogenetic analysis, 73 GT64s from 19 plant species were divided into three main groups. Each group can be represented by the three members in Arabidopsis and show a trend of monocot-eudicot divergence. A promoter and genomic variation analysis of GT64s in rice showed that various stress-related regulatory elements exist in their promoters, and many sequence variations were found between the two main rice subspecies, japonica and indica. Additionally, transmembrane domain and subcellular localization analyses revealed that these genes all encode membrane-bound glycosyltransferases and are localized to the Golgi apparatus. Finally, expression analysis of the four GT64 genes in rice, as assessed by quantitative real-time PCR, showed that they have distinct tissue-specific expression patterns and respond to different hormone treatments or abiotic stresses. Our results indicated that this family of genes may play a role in different stress responses and hormone signaling pathways in rice, which will provide fundamental information for further investigation of their functions in future.


Genome-wide analysis and expression profiles of NTMC2 family genes in Oryza sativa.

  • Rui Huang‎ et al.
  • Gene‎
  • 2017‎

N-terminal-TM-C2 domain proteins (NTMC2), which share domain architecture and sequence similarity to synaptotagmins (Syts) in mammals and FAM62 (extended Syts) in metazoans, form a small gene family in plants. Previous studies showed that the Arabidopsis thaliana NTMC2 type 1.1 protein (NTMC2T1.1, named AtSyt1) possesses calcium- and membrane-binding activities that allow it to function in a plasma membrane repair pathway induced by stress. However, we lack understanding of the diverse biological roles of plant NTMC2 family genes. In this study, a total of 13 OsNTMC2 genes was identified through a comprehensive bioinformatics analysis of the rice (Oryza sativa L.) genome and classified into six OsNTMC2 groups (OsNTMC2T1 to OsNTMC2T6) based on phylogeny and motif constitution. OsNTMC2T1 to OsNTMC2T3 have two calcium-binding domains (C2A and C2B), but OsNTMC2T4 to OsNTMC2T6 have single C2 domain. The expression profiles of OsNTMC2 genes were analysed at different stages of vegetative and reproductive development. This analysis revealed that at least one OsNTMC2 gene was abundantly expressed at each stage of development. These results should facilitate research on this gene family and provide new insights elucidating their functions in higher plants.


Genome-wide identification and characterization of the SPL gene family in Ziziphus jujuba.

  • Fenjuan Shao‎ et al.
  • Gene‎
  • 2017‎

SQUAMOSA Promoter-Binding Protein-Likes (SPLs) are plant specific transcription factors playing important roles in plant growth and development. The SPL gene family has been studied in various plant species; however, there is no report about SPLs in Zizyphus jujuba. In this study, we identified 18 putative ZjSPL genes in Z. jujuba using a genome-wide analysis. Sequence features, gene structures, conserved domains and motifs were analyzed. The phylogenetic relationships of SPLs in Z. jujuba and A. thaliana were revealed. A total of 5 pairs of ZjSPLs were identified, suggesting the importance of gene duplication in SPL gene expansion in Z. jujuba. In addition, 11 of the 18 ZjSPLs, belonging to G1, G2 and G5 subgroups, were found to be targets of miR156, suggesting the conservation of miR156-mediated posttranscriptional regulation in plants. Expression analysis revealed that eight ZjSPL genes were responsive to the infection of witches'-broom phytoplasma. Our results provide a basis for the further elucidation of the biological function of ZjSPLs and their regulation in witches'-broom disease.


Does familial breast cancer and thymoma suggest a cancer syndrome? A family perspective.

  • Xinxin Zhang‎ et al.
  • Gene‎
  • 2015‎

Concurrence of breast cancer or thymoma with other malignancies in individual families is often observed, but the familial concurrence of breast cancer and thymoma has not yet been reported. Herein we reported a family encompassing five breast/ovarian cancer patients and two thymoma patients. Whole genome linkage analysis detected no haplotype co-segregating with both types of the tumors. In all patients with breast/ovarian cancer, genetic analysis revealed a clinically untested variant c.5141T>G in exon 18 of the BRCA1 gene, which could be a cancer-causing variant based on the functional study of Lee et al. (2010) and our current pedigree analysis. In the two thymoma patients in our family, targeted sequencing of RAD51L1 and BMP2 genes in and near the translocation site of chromosome 14 and 20 previously reported in two thymoma families, did not find any pathogenic mutation. In the present study, we identified a clinically unconfirmed BRCA1 variant segregating with breast/ovarian cancer patients in an individual family, suggesting it to be clinically functional. Our evidence, however, did not support the notion that the concurrent appearance of breast cancer and thymoma in our family represents a familial cancer syndrome caused by the same genetic disorder.


Identification and partial characterisation of new members of the Ixodes ricinus defensin family.

  • Miray Tonk‎ et al.
  • Gene‎
  • 2014‎

The hard-bodied tick Ixodes ricinus (castor bean tick) is the most common tick species in Europe. I. ricinus is a vector of the causative agents of diseases that affect humans and animals including tick-borne encephalitis, borreliosis, tick-borne fever and babesiosis. The innate immune system provides ticks with quite an efficient defence against some pathogenic microorganisms in the event of their penetration into the tick body or through the blood meal. Antimicrobial peptides (AMPs) constitute an important feature of the tick immune system. Defensins are a well-known class of AMPs. Members of the defensin family of proteins have been reported in several tick species. So far, only two defensins had been identified from I. ricinus. In this study, we report the identification of six novel putative defensins from I. ricinus at the genomic and transcriptional levels. At the genomic level they show differences with one being intronless, while others contain two introns. The expression pattern of these molecules in the salivary glands, midgut, ovary, Malpighian tubules, haemolymph and the tick cell line IRE/CTVM19 was determined. Some of them are tissue specific while others seem to be ubiquitous. Molecular and phylogenetic analyses show that these novel members of the I. ricinus defensin family differ phylogenetically and structurally; nevertheless, the cysteine pattern is highly conserved among the family members. Finally, antimicrobial-peptide prediction tools were used to predict putative antimicrobial activity of our defensins. They show putative antimicrobial activity mainly against Gram-positive bacteria. This study displays the diversity of the defensin family in the tick I. ricinus.


A novel mutation in SLITRK6 causes deafness and myopia in a Moroccan family.

  • Sara Salime‎ et al.
  • Gene‎
  • 2018‎

Deafness and myopia syndrome is characterized by moderate-profound, bilateral, congenital or prelingual deafness and high myopia. Autosomal recessive non-syndromic hearing loss is one of the most prevalent human genetic sensorineural defects. Myopia is by far the most common human eye disorder that is known to have a clear heritable component. The analysis of the two exons of SLITRK6 gene in a Moroccan family allowed us to identify a novel single deleterious mutation c.696delG, p.Trp232Cysfs*10 at homozygous state in the exon 2 of the SLITRK6, a gene reported to cause deafness and myopia in various populations.


A novel missense mutation of CRYGS underlies congenital cataract in a Chinese family.

  • Tianxiao Zhang‎ et al.
  • Gene‎
  • 2018‎

Congenital cataract is a clinically and genetically heterogeneous disease. In this study, we examined a five-generation Chinese family with autosomal dominant nuclear congenital cataracts by whole exome sequencing. A novel heterozygous missense mutation c.199T>A, p.(Tyr67Asn) in CRYGS was identified in this family. The p.(Tyr67Asn) substitution was predicted to decrease the local hydrophobicity and affect the three-dimensional structure of γS-crystallin, and resulted in a portion of mutant protein translocation from the cytoplasm to cell membrane. Our observations expand the mutation spectrum of CRYGS and provide further evidence for the genetic basis and molecular mechanism of congenital cataract.


Expression profile and potential functional differentiation of the Speedy/RINGO family in mice.

  • HongMei Wang‎ et al.
  • Gene‎
  • 2019‎

As novel cyclin-dependent kinase (CDK) activators, Speedy/RINGO (hereafter named Speedy) proteins can directly regulate the cell cycle of vertebrates by binding to and activating various CDKs. Previous studies have shown that Speedy genes are highly associated with different types of cancer and other diseases. However, Speedy genes have not been systematically identified in mice, and their function and expression profiles remain elusive, which greatly hinders the functional and mechanistic study of Speedy genes in vivo. Here, we comprehensively identified Speedy genes in the mouse genome. Phylogenetic analysis showed that the Speedy gene family should be divided into three subfamilies, rather than the previously reported two subfamilies. Mice have two of the three subfamilies of Speedy genes, namely, subfamilies A and E. Speedy subfamily C genes have been lost from the mouse genome. By combining experimental and bioinformatics approaches, we found that the genes from subfamilies A and E have different expression profiles, indicating their functional divergence, which was also consistent with the phylogenetic results. The genes belonging to subfamily E showed only slightly different expression profiles, indicating their similar functions. Coexpression network analysis showed that the genes coexpressed with mouse Speedy genes were primarily enriched in reproduction-related mechanisms and there were significant functional differences between genes from subfamilies A and E, further demonstrating functional differentiation. In summary, we provide a comprehensive landscape (from evolution to expression and function) of the Speedy family in mice; we also demonstrate that Speedy genes mainly participate in reproduction-related mechanisms and that they have undergone functional differentiation in mice.


Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato.

  • Chao-Yang Feng‎ et al.
  • Gene‎
  • 2015‎

The SWEET (Sugars Will Eventually Be Exported Transporters) gene family encodes membrane-embedded sugar transporters containing seven transmembrane helices harboring two MtN3 and saliva domain. SWEETs play important roles in diverse biological processes, including plant growth, development, and response to environmental stimuli. Here, we conducted an exhaustive search of the tomato genome, leading to the identification of 29 SWEET genes. We analyzed the structures, conserved domains, and phylogenetic relationships of these protein-coding genes in detail. We also analyzed the transcript levels of SWEET genes in various tissues, organs, and developmental stages to obtain information about their functions. Furthermore, we investigated the expression patterns of the SWEET genes in response to exogenous sugar and adverse environmental stress (high and low temperatures). Some family members exhibited tissue-specific expression, whereas others were more ubiquitously expressed. Numerous stress-responsive candidate genes were obtained. The results of this study provide insights into the characteristics of the SWEET genes in tomato and may serve as a basis for further functional studies of such genes.


Genome-wide identification and analysis of NPR family genes in Brassica juncea var. tumida.

  • Pan Wang‎ et al.
  • Gene‎
  • 2021‎

Nonexpressor of pathogenesis-related (NPR) genes are bona fide transcription cofactors in the signal transduction pathway of salicylic acid (SA) and play critical regulatory roles in plant immunity. However, the NPR family genes in Brassica juncea var. tumida have not yet been comprehensively identified and analyzed as of yet. In the present study, NPR genes in B. juncea var. tumida seedlings were identified, and the tissue-specific expression patterns of NPR genes in the seedling were analyzed under salt stress (200 mM) treatment and infection by Plasmodiophora brassicae. A total of 19 NPR family genes clustering into six separate groups were identified in the genome of B. juncea var. tumida. These BjuNPR family genes were located in 11 of 18 chromosomes of B. juncea var. tumida and each possessed 1-5 exons. The BjuNPR family members had similar protein structures and conserved motifs. The BjuNPR genes exhibited tissue-specific expression patterns in the root, stem, leaf, flower and pod. Some BjuNPR genes were sensitive to salt stress and showed up-regulated or down-regulated expression patterns and most BjuNPR genes were up-regulated upon infection by P. brassicae. This study provides a foundation for further research into BjuNPR genes regulation in plant growth, development, and abiotic stress tolerance.


Identification and stress function verification of the HAK/KUP/KT family in Gossypium hirsutum.

  • Xingxing Wang‎ et al.
  • Gene‎
  • 2022‎

The potassium transporter family HAK/KUP/KT is a large group of proteins that are important in plant potassium transport and play a crucial role in plant growth and development. The members of the family play an important role in the response of plants to abiotic stress by maintaining osmotic balance. However, the function of the family in cotton is unclear. In this study, whole genome identification and characterization of the HAK/KUP/KT family from upland cotton (Gossypium hirsutum) were carried out. Bioinformatics methods were used to identify HAK/KUP/KT family members from the G. hirsutum genome and to analyse the physical and chemical properties, basic characteristics, phylogeny, chromosome location and expression of HAK/KUP/KT family members. A total of 41 HAK/KUP/KT family members were identified in the G. hirsutum genome. Phylogenetic analysis grouped these genes into four clusters (I, II, III, IV), containing 6, 10, 3 and 22 genes, respectively. Chromosomal distribution, gene structure and conserved motif analyses of the 41 GhHAK genes were subsequently performed. The RNA-seq data and qRT-PCR results showed that the family had a wide range of tissue expression patterns, and they responded to certain drought stresses. Through expression analysis, seven HAK/KUP/KT genes involved in drought stress were screened, and four genes with obvious phenotypes under drought stress were obtained by VIGS verification, which laid a theoretical foundation for the function of the cotton HAK/KUP/KT family.


Identification of Shaker K+ channel family members in sweetpotato and functional exploration of IbAKT1.

  • Rong Jin‎ et al.
  • Gene‎
  • 2021‎

The Shaker K+ channel family plays a vital role in potassium absorption and stress resistance in plants. However little information on the genes family is available about sweetpotato. In the present study, eleven sweetpotato Shaker K+ channel genes were identified and classified into five groups based on phylogenetic relationships, conserved motifs, and gene structure analyses. Based on synteny analysis, four duplicated gene pairs were identified, derived from both ancient and recent duplication, whereas only one resulted from tandem duplication events. Different expression pattern of Shaker K+ channel genes in roots of Xu32 and NZ1 resulted in different K+ deficiency tolerances, suggesting there is different mechanism of K+ uptake in sweetpotato cultivars with different K+-tolerance levels. Quantitative real-time PCR analysis revealed that the shaker K+ channel genes responded to drought and high salt stresses. Higher K+ influx under normal condition and lower K+ efflux under K+ deficiency stress were observed in IbAKT1 overexpressing transgenic roots than in adventitious roots, which indicated that IbAKT1 may play an important role in the regulation of K+ deficiency tolerance in sweetpotato. This is the first genome-wide analysis of Shaker K+ channel genes and the first functional analysis of IbAKT1 in sweetpotato. Our results provide valuable information on the gene structure, evolution, expression and functions of the Shaker K+ channel gene family in sweetpotato.


A new SLC20A2 mutation identified in southern Italy family with primary familial brain calcification.

  • Monica Gagliardi‎ et al.
  • Gene‎
  • 2015‎

Primary familial brain calcification (PFBC) is a rare neurodegenerative disease characterized by bilateral calcifications mostly located in the basal ganglia and in the thalami, cerebellum and subcortical white matter. Clinical manifestations of this disease include a large spectrum of movement disorders and neuropsychiatric disturbances. PFBC is genetically heterogeneous and typically transmitted in an autosomal dominant fashion. Three causative genes have been reported: SLC20A2, PDGFRB and PDGFB.


Bending is required for activation of dsz operon by the TetR family protein (DszGR).

  • Aditi Keshav‎ et al.
  • Gene‎
  • 2022‎

The dsz operon responsible for the biodesulfurization of organosulfurs is under the control of a 385 bp long promoter. Recently, a TetR family protein was identified which served as an activator of operon. Here we report that the TetR family protein (WP_058249973.1), named DszGR can specifically activate the dsz operon. Direct binding of the DszGR to DNA was observed at single molecule level by AFM. It was found that the binding of DszGR to the promoter DNA induces a bend by about ∼40-50° degrees which may not be enough for the activation of the promoter. Thus, bendability in the promoter sequence was analyzed. The results show that the promoter has a curvature at around -235 and -200 bp with respect to dszA start codon. On mutating this region, a decrease in activity of the promoter was observed. Our results suggest that the DszGR protein binds to the upstream sequences and induces a bend, which is facilitated by further bending of the DNA which is required for dsz promoter activity. IHF binding site present in the promoter, and a significant reduction in desulphurization activity in the absence of either IHF subunits, suggested role of IHF in regulation of the dsz operon.


Complete nucleotide sequence of plasmid pNA6 reveals the high plasticity of IncU family plasmids.

  • Bingjun Dang‎ et al.
  • Gene‎
  • 2016‎

Antibiotic resistance is a serious problem in health care and is of widespread public concern. Conjugative plasmids are the most important vectors in the dissemination of antibiotic resistance genes. In this study, we determined the complete sequence of plasmid pNA6, a plasmid which was isolated from the sediments of Haihe River. This plasmid confers reduced susceptibility to ampicillin, erythromycin and sulfamethoxazole. The complete sequence of plasmid pNA6 was 52,210bp in length with an average G+C content of 52.70%. Plasmid pNA6 belongs to the IncU group by sequence queries against the GenBank database. This plasmid has a typical IncU backbone and shows the highest similarities with plasmid RA3 and plasmid pFBAOT6. Plasmid pNA6 carries a class 1 integron consisting of aacA4, ereA and dfrA1 genes. Moreover, plasmid pNA6 also harbors a blaTEM-1-containing complex structure which inserted into the replication region and maintenance region. This insertion site has never been found on other IncU plasmids. The sequencing of plasmid pNA6 will add new sequence information to IncU family plasmids and enhance our understanding of the plasticity of IncU family plasmids.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: