Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 24 papers out of 24 papers

Targeting acetylcholinesterase: identification of chemical leads by high throughput screening, structure determination and molecular modeling.

  • Lotta Berg‎ et al.
  • PloS one‎
  • 2011‎

Acetylcholinesterase (AChE) is an essential enzyme that terminates cholinergic transmission by rapid hydrolysis of the neurotransmitter acetylcholine. Compounds inhibiting this enzyme can be used (inter alia) to treat cholinergic deficiencies (e.g. in Alzheimer's disease), but may also act as dangerous toxins (e.g. nerve agents such as sarin). Treatment of nerve agent poisoning involves use of antidotes, small molecules capable of reactivating AChE. We have screened a collection of organic molecules to assess their ability to inhibit the enzymatic activity of AChE, aiming to find lead compounds for further optimization leading to drugs with increased efficacy and/or decreased side effects. 124 inhibitors were discovered, with considerable chemical diversity regarding size, polarity, flexibility and charge distribution. An extensive structure determination campaign resulted in a set of crystal structures of protein-ligand complexes. Overall, the ligands have substantial interactions with the peripheral anionic site of AChE, and the majority form additional interactions with the catalytic site (CAS). Reproduction of the bioactive conformation of six of the ligands using molecular docking simulations required modification of the default parameter settings of the docking software. The results show that docking-assisted structure-based design of AChE inhibitors is challenging and requires crystallographic support to obtain reliable results, at least with currently available software. The complex formed between C5685 and Mus musculus AChE (C5685•mAChE) is a representative structure for the general binding mode of the determined structures. The CAS binding part of C5685 could not be structurally determined due to a disordered electron density map and the developed docking protocol was used to predict the binding modes of this part of the molecule. We believe that chemical modifications of our discovered inhibitors, biochemical and biophysical characterization, crystallography and computational chemistry provide a route to novel AChE inhibitors and reactivators.


Post-VX exposure treatment of rats with engineered phosphotriesterases.

  • Lisa Stigler‎ et al.
  • Archives of toxicology‎
  • 2022‎

The biologically stable and highly toxic organophosphorus nerve agent (OP) VX poses a major health threat. Standard medical therapy, consisting of reactivators and competitive muscarinic receptor antagonists, is insufficient. Recently, two engineered mutants of the Brevundimonas diminuta phosphotriesterase (PTE) with enhanced catalytic efficiency (kcat/KM = 21 to 38 × 106 M-1 min-1) towards VX and a preferential hydrolysis of the more toxic P(-) enantiomer were described: PTE-C23(R152E)-PAS(100)-10-2-C3(I106A/C59V/C227V/E71K)-PAS(200) (PTE-2), a single-chain bispecific enzyme with a PAS linker and tag having enlarged substrate spectrum, and 10-2-C3(C59V/C227V)-PAS(200) (PTE-3), a stabilized homodimeric enzyme with a double PASylation tag (PAS-tag) to reduce plasma clearance. To assess in vivo efficacy, these engineered enzymes were tested in an anesthetized rat model post-VX exposure (~ 2LD50) in comparison with the recombinant wild-type PTE (PTE-1), dosed at 1.0 mg kg-1 i.v.: PTE-2 dosed at 1.3 mg kg-1 i.v. (PTE-2.1) and 2.6 mg kg-1 i.v. (PTE-2.2) and PTE-3 at 1.4 mg kg-1 i.v. Injection of the mutants PTE-2.2 and PTE-3, 5 min after s.c. VX exposure, ensured survival and prevented severe signs of a cholinergic crisis. Inhibition of erythrocyte acetylcholinesterase (AChE) could not be prevented. However, medulla oblongata and diaphragm AChE activity was partially preserved. All animals treated with the wild-type enzyme, PTE-1, showed severe cholinergic signs and died during the observation period of 180 min. PTE-2.1 resulted in the survival of all animals, yet accompanied by severe signs of OP poisoning. This study demonstrates for the first time efficient detoxification in vivo achieved with low doses of heterodimeric PTE-2 as well as PTE-3 and indicates the suitability of these engineered enzymes for the development of highly effective catalytic scavengers directed against VX.


Room temperature crystallography of human acetylcholinesterase bound to a substrate analogue 4K-TMA: Towards a neutron structure.

  • Oksana Gerlits‎ et al.
  • Current research in structural biology‎
  • 2021‎

Acetylcholinesterase (AChE) catalyzes hydrolysis of acetylcholine thereby terminating cholinergic nerve impulses for efficient neurotransmission. Human AChE (hAChE) is a target of nerve agent and pesticide organophosphorus compounds that covalently attach to the catalytic Ser203 residue. Reactivation of inhibited hAChE can be achieved with nucleophilic antidotes, such as oximes. Understanding structural and electrostatic (i.e. protonation states) determinants of the catalytic and reactivation processes is crucial to improve design of oxime reactivators. Here we report X-ray structures of hAChE conjugated with a reversible covalent inhibitor 4K-TMA (4K-TMA:hAChE) at 2.8 ​Å resolution and of 4K-TMA:hAChE conjugate with oxime reactivator methoxime, MMB4 (4K-TMA:hAChE:MMB4) at 2.6 ​Å resolution, both at physiologically relevant room temperature, as well as cryo-crystallographic structure of 4K-TMA:hAChE at 2.4 ​Å resolution. 4K-TMA acts as a substrate analogue reacting with the hydroxyl of Ser203 and generating a reversible tetrahedral hemiketal intermediate that closely resembles the first tetrahedral intermediate state during hAChE-catalyzed acetylcholine hydrolysis. Structural comparisons of room temperature with cryo-crystallographic structures of 4K-TMA:hAChE and published mAChE complexes with 4K-TMA, as well as the effect of MMB4 binding to the peripheral anionic site (PAS) of the 4K-TMA:hAChE complex, revealed only discrete, minor differences. The active center geometry of AChE, already highly evolved for the efficient catalysis, was thus indicative of only minor conformational adjustments to accommodate the tetrahedral intermediate in the hydrolysis of the neurotransmitter acetylcholine (ACh). To map protonation states in the hAChE active site gorge we collected 3.5 ​Å neutron diffraction data paving the way for obtaining higher resolution datasets that will be needed to determine locations of individual hydrogen atoms.


The Efficacy of Pralidoxime in the Treatment of Organophosphate Poisoning in Humans: A Systematic Review and Meta-analysis of Randomized Trials.

  • Himal Kharel‎ et al.
  • Cureus‎
  • 2020‎

Introduction The benefits of atropine in the treatment of acute organophosphate (OP) poisoning has been well established, while that of oximes is still uncertain. Pralidoxime is the most often used oxime worldwide. In vitro experiments have consistently shown that oximes are effective reactivators of human acetylcholinesterase enzyme, inhibited by OP compounds. However, the clinical benefit of pralidoxime is still unclear. A recent meta-analysis has found that pralidoxime provides no significant improvement in outcome and rather may cause harm while increasing the economic burden in low-income communities where its use is the most prevalent. Objectives This study aimed to provide an updated evaluation of the efficacy of pralidoxime in addition to atropine alone in the treatment of patients with acute OP poisoning in terms of mortality, need for ventilator support, and the incidence of intermediate syndrome. The intermediate syndrome is a clinical syndrome that occurs 24 to 96 hours after the ingestion of an OP compound and is characterized by prominent weakness of neck flexors, muscles of respiration, and proximal limb muscles.  Materials and methods We searched MEDLINE, EMBASE, CENTRAL, and ClinicalTrials.gov databases until January 2019 for randomized controlled trials (RCTs) in the English language that evaluated the use of pralidoxime in individuals of any age, gender or nationality presenting with an alleged history of OP intake. The primary outcome was mortality. Secondary outcomes were the need for ventilator support and the incidence of intermediate syndrome. The risk of bias in included studies was assessed using the tool recommended by the Cochrane Handbook of Systematic Review of Interventions. Treatment/control differences in these outcomes across included studies were combined using risk ratios (RR). Results Six randomized controlled trials (n = 646) fulfilled the inclusion criteria, including one further trial missed from the most recent systematic review. The risk of bias varied across studies, with Eddleston 2009 being of the lowest risk and Cherian 2005 being of high risk. The risk of mortality (RR = 1.53, 95% confidence interval (CI) 0.97 to 2.41, P = 0.07) and the need for ventilator support (RR = 1.29, 95% CI 0.97 to 1.71, P = 0.08) were not significantly different between the pralidoxime and the control group. There was a significant increase in the incidence of intermediate syndrome in the pralidoxime group (RR = 1.63; 95% CI 1.01 to 2.62, P = 0.04). Conclusions Based on our meta-analysis of the available RCTs, pralidoxime was not shown to be beneficial in patients with acute OP poisoning. Our findings are consistent with the other literature.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: