Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 75 papers

Evidence that processing of ribonucleotides in DNA by topoisomerase 1 is leading-strand specific.

  • Jessica S Williams‎ et al.
  • Nature structural & molecular biology‎
  • 2015‎

Ribonucleotides incorporated during DNA replication are removed by RNase H2-dependent ribonucleotide excision repair (RER). In RER-defective yeast, topoisomerase 1 (Top1) incises DNA at unrepaired ribonucleotides, initiating their removal, but this is accompanied by RNA-DNA-damage phenotypes. Here we show that these phenotypes are incurred by a high level of ribonucleotides incorporated by a leading strand-replicase variant, DNA polymerase (Pol) ɛ, but not by orthologous variants of the lagging-strand replicases, Pols α or δ. Moreover, loss of both RNases H1 and H2 is lethal in combination with increased ribonucleotide incorporation by Pol ɛ but not by Pols α or δ. Several explanations for this asymmetry are considered, including the idea that Top1 incision at ribonucleotides relieves torsional stress in the nascent leading strand but not in the nascent lagging strand, in which preexisting nicks prevent the accumulation of superhelical tension.


Single-nucleotide-resolution mapping of DNA gyrase cleavage sites across the Escherichia coli genome.

  • Dmitry Sutormin‎ et al.
  • Nucleic acids research‎
  • 2019‎

An important antibiotic target, DNA gyrase is an essential bacterial enzyme that introduces negative supercoils into DNA and relaxes positive supercoils accumulating in front of moving DNA and RNA polymerases. By altering the superhelical density, gyrase may regulate expression of bacterial genes. The information about how gyrase is distributed along genomic DNA and whether its distribution is affected by drugs is scarce. During catalysis, gyrase cleaves both DNA strands forming a covalently bound intermediate. By exploiting the ability of several topoisomerase poisons to stabilize this intermediate we developed a ChIP-Seq-based approach to locate, with single nucleotide resolution, DNA gyrase cleavage sites (GCSs) throughout the Escherichia coli genome. We identified an extended gyrase binding motif with phased 10-bp G/C content variation, indicating that bending ability of DNA contributes to gyrase binding. We also found that GCSs are enriched in extended regions located downstream of highly transcribed operons. Transcription inhibition leads to redistribution of gyrase suggesting that the enrichment is functionally significant. Our method can be applied for precise mapping of prokaryotic and eukaryotic type II topoisomerases cleavage sites in a variety of organisms and paves the way for future studies of various topoisomerase inhibitors.


Intracellular nucleosomes constrain a DNA linking number difference of -1.26 that reconciles the Lk paradox.

  • Joana Segura‎ et al.
  • Nature communications‎
  • 2018‎

The interplay between chromatin structure and DNA topology is a fundamental, yet elusive, regulator of genome activities. A paradigmatic case is the "linking number paradox" of nucleosomal DNA, which refers to the incongruence between the near two left-handed superhelical turns of DNA around the histone octamer and the DNA linking number difference (∆Lk) stabilized by individual nucleosomes, which has been experimentally estimated to be about -1.0. Here, we analyze the DNA topology of a library of mononucleosomes inserted into small circular minichromosomes to determine the average ∆Lk restrained by individual nucleosomes in vivo. Our results indicate that most nucleosomes stabilize about -1.26 units of ∆Lk. This value balances the twist (∆Tw  ≈ + 0.2) and writhe (∆Wr ≈ -1.5) deformations of nucleosomal DNA in terms of the equation ∆Lk = ∆Tw + ∆Wr. Our finding reconciles the existing discrepancy between theoretical and observed measurement of the ΔLk constrained by nucleosomes.


Structure and dynamics of DNA loops on nucleosomes studied with atomistic, microsecond-scale molecular dynamics.

  • Marco Pasi‎ et al.
  • Nucleic acids research‎
  • 2016‎

DNA loop formation on nucleosomes is strongly implicated in chromatin remodeling and occurs spontaneously in nucleosomes subjected to superhelical stress. The nature of such loops depends crucially on the balance between DNA deformation and DNA interaction with the nucleosome core. Currently, no high-resolution structural data on these loops exist. Although uniform rod models have been used to study loop size and shape, these models make assumptions concerning DNA mechanics and DNA-core binding. We present here atomic-scale molecular dynamics simulations for two different loop sizes. The results point to the key role of localized DNA kinking within the loops. Kinks enable the relaxation of DNA bending strain to be coupled with improved DNA-core interactions. Kinks lead to small, irregularly shaped loops that are asymmetrically positioned with respect to the nucleosome core. We also find that loop position can influence the dynamics of the DNA segments at the extremities of the nucleosome.


Single-molecule visualization of the effects of ionic strength and crowding on structure-mediated interactions in supercoiled DNA molecules.

  • Shane Scott‎ et al.
  • Nucleic acids research‎
  • 2019‎

DNA unwinding is an important cellular process involved in DNA replication, transcription and repair. In cells, molecular crowding caused by the presence of organelles, proteins, and other molecules affects numerous internal cellular structures. Here, we visualize plasmid DNA unwinding and binding dynamics to an oligonucleotide probe as functions of ionic strength, crowding agent concentration, and crowding agent species using single-molecule CLiC microscopy. We demonstrate increased probe-plasmid interaction over time with increasing concentration of 8 kDa polyethylene glycol (PEG), a crowding agent. We show decreased probe-plasmid interactions as ionic strength is increased without crowding. However, when crowding is introduced via 10% 8 kDa PEG, interactions between plasmids and oligos are enhanced. This is beyond what is expected for normal in vitro conditions, and may be a critically important, but as of yet unknown, factor in DNA's proper biological function in vivo. Our results show that crowding has a strong effect on the initial concentration of unwound plasmids. In the dilute conditions used in these experiments, crowding does not impact probe-plasmid interactions once the site is unwound.


Probing interactions between lysine residues in histone tails and nucleosomal DNA via product and kinetic analysis.

  • Liwei Weng‎ et al.
  • ACS chemical biology‎
  • 2015‎

The histone proteins in nucleosome core particles are known to catalyze DNA cleavage at abasic and oxidized abasic sites, which are produced by antitumor antibiotics and as a consequence of other modalities of DNA damage. The lysine rich histone tails whose post-translational modifications regulate genetic expression in cells are mainly responsible for this chemistry. Cleavage at a C4'-oxidized abasic site (C4-AP) concomitantly results in modification of lysine residues in histone tails. Using LC-MS/MS, we demonstrate here that that Lys8, -12, -16, and -20 of histone H4 were modified when C4-AP was incorporated at a hot spot (superhelical location 1.5) for DNA damage within a nucleosome core particle. A new DNA-protein cross-linking method that provides a more quantitative analysis of individual amino acid reactivity is also described. DNA-protein cross-links were produced by an irreversible reaction between a nucleic acid electrophile that was produced following oxidatively induced rearrangement of a phenyl selenide derivative of thymidine (3) and nucleophilic residues within proteins. In addition to providing high yields of DNA-protein cross-links, kinetic analysis of the cross-linking reaction yielded rate constants that enabled ranking the contributions by individual or groups of amino acids. Cross-linking from 3 at superhelical location 1.5 revealed the following order of reactivity for the nucleophilic amino acids in the histone H4 tail: His18 > Lys16 > Lys20 ≈ Lys8, Lys12 > Lys5. Cross-linking via 3 will be generally useful for investigating DNA-protein interactions.


Mapping the phase diagram of the writhe of DNA nanocircles using atomistic molecular dynamics simulations.

  • Sarah A Harris‎ et al.
  • Nucleic acids research‎
  • 2008‎

We have investigated the effects of duplex length, sequence, salt concentration and superhelical density on the conformation of DNA nanocircles containing up to 178 base pairs using atomistic molecular dynamics simulation. These calculations reveal that the partitioning of twist and writhe is governed by a delicate balance of competing energetic terms. We have identified conditions which favour circular, positively or negatively writhed and denatured DNA conformations. Our simulations show that AT-rich DNA is more prone to denaturation when subjected to torsional stress than the corresponding GC containing circles. In contrast to the behaviour expected for a simple elastic rod, there is a distinct asymmetry in the behaviour of over and under-wound DNA nanocircles. The most biologically relevant negatively writhed state is more elusive than the corresponding positively writhed conformation, and is only observed for larger circles under conditions of high electrostatic screening. The simulation results have been summarised by plotting a phase diagram describing the various conformational states of nanocircles over the range of circle sizes and experimental conditions explored during the study. The changes in DNA structure that accompany supercoiling suggest a number of mechanisms whereby changes in DNA topology in vivo might be used to influence gene expression.


Using energy to go downhill-a genoprotective role for ATPase activity in DNA topoisomerase II.

  • Afif F Bandak‎ et al.
  • Nucleic acids research‎
  • 2024‎

Type II topoisomerases effect topological changes in DNA by cutting a single duplex, passing a second duplex through the break, and resealing the broken strand in an ATP-coupled reaction cycle. Curiously, most type II topoisomerases (topos II, IV and VI) catalyze DNA transformations that are energetically favorable, such as the removal of superhelical strain; why ATP is required for such reactions is unknown. Here, using human topoisomerase IIβ (hTOP2β) as a model, we show that the ATPase domains of the enzyme are not required for DNA strand passage, but that their loss elevates the enzyme's propensity for DNA damage. The unstructured C-terminal domains (CTDs) of hTOP2β strongly potentiate strand passage activity in ATPase-less enzymes, as do cleavage-prone mutations that confer hypersensitivity to the chemotherapeutic agent etoposide. The presence of either the CTD or the mutations lead ATPase-less enzymes to promote even greater levels of DNA cleavage in vitro, as well as in vivo. By contrast, aberrant cleavage phenotypes of these topo II variants is significantly repressed when the ATPase domains are present. Our findings are consistent with the proposal that type II topoisomerases acquired ATPase function to maintain high levels of catalytic activity while minimizing inappropriate DNA damage.


HIV chromatin is a preferred target for drugs that bind in the DNA minor groove.

  • Clayton K Collings‎ et al.
  • PloS one‎
  • 2019‎

The HIV genome is rich in A but not G or U and deficient in C. This nucleotide bias controls HIV phenotype by determining the highly unusual composition of all major HIV proteins. The bias is also responsible for the high frequency of narrow DNA minor groove sites in the double-stranded HIV genome as compared to cellular protein coding sequences and the bulk of the human genome. Since drugs that bind in the DNA minor groove disrupt nucleosomes on sequences that contain closely spaced oligo-A tracts which are prevalent in HIV DNA because of its bias, it was of interest to determine if these drugs exert this selective inhibitory effect on HIV chromatin. To test this possibility, nucleosomes were reconstituted onto five double-stranded DNA fragments from the HIV-1 pol gene in the presence and in the absence of several minor groove binding drugs (MGBDs). The results demonstrated that the MGBDs inhibited the assembly of nucleosomes onto all of the HIV-1 segments in a manner that was proportional to the A-bias, but had no detectable effect on the formation of nucleosomes on control cloned fragments or genomic DNA from chicken and human. Nucleosomes preassembled onto HIV DNA were also preferentially destabilized by the drugs as evidenced by enhanced nuclease accessibility in physiological ionic strength and by the preferential loss of the histone octamer in hyper-physiological salt solutions. The drugs also selectively disrupted HIV-containing nucleosomes in yeast as revealed by enhanced nuclease accessibility of the in vivo assembled HIV chromatin and reductions in superhelical densities of plasmid chromatin containing HIV sequences. A comparison of these results to the density of A-tracts in the HIV genome indicates that a large fraction of the nucleosomes that make up HIV chromatin should be preferred in vitro targets for the MGBDs. These results show that the MGBDs preferentially disrupt HIV-1 chromatin in vitro and in vivo and raise the possibility that non-toxic derivatives of certain MGBDs might serve as a novel class of anti-HIV agents.


Structural coupling between RNA polymerase composition and DNA supercoiling in coordinating transcription: a global role for the omega subunit?

  • Marcel Geertz‎ et al.
  • mBio‎
  • 2011‎

In growing bacterial cells, the global reorganization of transcription is associated with alterations of RNA polymerase composition and the superhelical density of the DNA. However, the existence of any regulatory device coordinating these changes remains elusive. Here we show that in an exponentially growing Escherichia coli rpoZ mutant lacking the polymerase ω subunit, the impact of the Eσ(38) holoenzyme on transcription is enhanced in parallel with overall DNA relaxation. Conversely, overproduction of σ(70) in an rpoZ mutant increases both overall DNA supercoiling and the transcription of genes utilizing high negative superhelicity. We further show that transcription driven by the Eσ(38) and Eσ(70) holoenzymes from cognate promoters induces distinct superhelical densities of plasmid DNA in vivo. We thus demonstrate a tight coupling between polymerase holoenzyme composition and the supercoiling regimen of genomic transcription. Accordingly, we identify functional clusters of genes with distinct σ factor and supercoiling preferences arranging alternative transcription programs sustaining bacterial exponential growth. We propose that structural coupling between DNA topology and holoenzyme composition provides a basic regulatory device for coordinating genome-wide transcription during bacterial growth and adaptation. IMPORTANCE Understanding the mechanisms of coordinated gene expression is pivotal for developing knowledge-based approaches to manipulating bacterial physiology, which is a problem of central importance for applications of biotechnology and medicine. This study explores the relationships between variations in the composition of the transcription machinery and chromosomal DNA topology and suggests a tight interdependence of these two variables as the major coordinating principle of gene regulation. The proposed structural coupling between the transcription machinery and DNA topology has evolutionary implications and suggests a new methodology for studying concerted alterations of gene expression during normal and pathogenic growth both in bacteria and in higher organisms.


Coupling between Histone Conformations and DNA Geometry in Nucleosomes on a Microsecond Timescale: Atomistic Insights into Nucleosome Functions.

  • Alexey K Shaytan‎ et al.
  • Journal of molecular biology‎
  • 2016‎

An octamer of histone proteins wraps about 200bp of DNA into two superhelical turns to form nucleosomes found in chromatin. Although the static structure of the nucleosomal core particle has been solved, details of the dynamic interactions between histones and DNA remain elusive. We performed extensively long unconstrained, all-atom microsecond molecular dynamics simulations of nucleosomes including linker DNA segments and full-length histones in explicit solvent. For the first time, we were able to identify and characterize the rearrangements in nucleosomes on a microsecond timescale including the coupling between the conformation of the histone tails and the DNA geometry. We found that certain histone tail conformations promoted DNA bulging near its entry/exit sites, resulting in the formation of twist defects within the DNA. This led to a reorganization of histone-DNA interactions, suggestive of the formation of initial nucleosome sliding intermediates. We characterized the dynamics of the histone tails upon their condensation on the core and linker DNA and showed that tails may adopt conformationally constrained positions due to the insertion of "anchoring" lysines and arginines into the DNA minor grooves. Potentially, these phenomena affect the accessibility of post-translationally modified histone residues that serve as important sites for epigenetic marks (e.g., at H3K9, H3K27, H4K16), suggesting that interactions of the histone tails with the core and linker DNA modulate the processes of histone tail modifications and binding of the effector proteins. We discuss the implications of the observed results on the nucleosome function and compare our results to different experimental studies.


Novel insight into the composition of human single-stranded DNA-binding protein 1 (hSSB1)-containing protein complexes.

  • Nicholas W Ashton‎ et al.
  • BMC molecular biology‎
  • 2016‎

Single-stranded DNA-binding proteins are essential cellular components required for the protection, metabolism and processing of single-stranded DNA. Human single-stranded DNA-binding protein 1 (hSSB1) is one such protein, with described roles in genome stability maintenance and transcriptional regulation. As yet, however, the mechanisms through which hSSB1 functions and the binding partners with which it interacts remain poorly understood.


Base-pair resolution analysis of the effect of supercoiling on DNA flexibility and major groove recognition by triplex-forming oligonucleotides.

  • Alice L B Pyne‎ et al.
  • Nature communications‎
  • 2021‎

In the cell, DNA is arranged into highly-organised and topologically-constrained (supercoiled) structures. It remains unclear how this supercoiling affects the detailed double-helical structure of DNA, largely because of limitations in spatial resolution of the available biophysical tools. Here, we overcome these limitations, by a combination of atomic force microscopy (AFM) and atomistic molecular dynamics (MD) simulations, to resolve structures of negatively-supercoiled DNA minicircles at base-pair resolution. We observe that negative superhelical stress induces local variation in the canonical B-form DNA structure by introducing kinks and defects that affect global minicircle structure and flexibility. We probe how these local and global conformational changes affect DNA interactions through the binding of triplex-forming oligonucleotides to DNA minicircles. We show that the energetics of triplex formation is governed by a delicate balance between electrostatics and bonding interactions. Our results provide mechanistic insight into how DNA supercoiling can affect molecular recognition, that may have broader implications for DNA interactions with other molecular species.


Molecular recognition of DNA by small molecules: AT base pair specific intercalative binding of cytotoxic plant alkaloid palmatine.

  • Kakali Bhadra‎ et al.
  • Biochimica et biophysica acta‎
  • 2007‎

The base dependent binding of the cytotoxic alkaloid palmatine to four synthetic polynucleotides, poly(dA).poly(dT), poly(dA-dT).poly(dA-dT), poly(dG).poly(dC) and poly(dG-dC).poly(dG-dC) was examined by competition dialysis, spectrophotometric, spectrofluorimetric, thermal melting, circular dichroic, viscometric and isothermal titration calorimetric (ITC) studies. Binding of the alkaloid to various polynucleotides was dependent upon sequences of base pairs. Binding data obtained from absorbance measurements according to neighbour exclusion model indicated that the intrinsic binding constants decreased in the order poly(dA).poly(dT)>poly(dA-dT).poly(dA-dT)>poly(dG-dC).poly(dG-dC)>poly(dG).poly(dC). This affinity was also revealed by the competition dialysis, increase of steady state fluorescence intensity, increase in fluorescence quantum yield, stabilization against thermal denaturation and perturbations in circular dichroic spectrum. Among the polynucleotides, poly(dA).poly(dT) showed positive cooperativity at binding values lower than r=0.05. Viscosity studies revealed that in the strong binding region, the increase of contour length of DNA depended strongly on the sequence of base pairs being higher for AT polymers and induction of unwinding-rewinding process of covalently closed superhelical DNA. Isothermal titration calorimetric data showed a single entropy driven binding event in the AT homo polymer while that with the hetero polymer involved two binding modes, an entropy driven strong binding followed by an enthalpy driven weak binding. These results unequivocally established that the alkaloid palmatine binds strongly to AT homo and hetero polymers by mechanism of intercalation.


Hopping into a hot seat: Role of DNA structural features on IS5-mediated gene activation and inactivation under stress.

  • M Zafri Humayun‎ et al.
  • PloS one‎
  • 2017‎

Insertion sequence elements (IS elements) are proposed to play major roles in shaping the genetic and phenotypic landscapes of prokaryotic cells. Recent evidence has raised the possibility that environmental stress conditions increase IS hopping into new sites, and often such hopping has the phenotypic effect of relieving the stress. Although stress-induced targeted mutations have been reported for a number of E. coli genes, the glpFK (glycerol utilization) and the cryptic bglGFB (β-glucoside utilization) systems are among the best characterized where the effects of IS insertion-mediated gene activation are well-characterized at the molecular level. In the glpFK system, starvation of cells incapable of utilizing glycerol leads to an IS5 insertion event that activates the glpFK operon, and enables glycerol utilization. In the case of the cryptic bglGFB operon, insertion of IS5 (and other IS elements) into a specific region in the bglG upstream sequence has the effect of activating the operon in both growing cells, and in starving cells. However, a major unanswered question in the glpFK system, the bgl system, as well as other examples, has been why the insertion events are promoted at specific locations, and how the specific stress condition (glycerol starvation for example) can be mechanistically linked to enhanced insertion at a specific locus. In this paper, we show that a specific DNA structural feature (superhelical stress-induced duplex destabilization, SIDD) is associated with "stress-induced" IS5 insertion in the glpFK, bglGFB, flhDC, fucAO and nfsB systems. We propose a speculative mechanistic model that links specific environmental conditions to the unmasking of an insertional hotspot in the glpFK system. We demonstrate that experimentally altering the predicted stability of a SIDD element in the nfsB gene significantly impacts IS5 insertion at its hotspot.


The solution structure of the amino-terminal domain of human DNA polymerase epsilon subunit B is homologous to C-domains of AAA+ proteins.

  • Tarmo Nuutinen‎ et al.
  • Nucleic acids research‎
  • 2008‎

DNA polymerases alpha, delta and epsilon are large multisubunit complexes that replicate the bulk of the DNA in the eukaryotic cell. In addition to the homologous catalytic subunits, these enzymes possess structurally related B subunits, characterized by a carboxyterminal calcineurin-like and an aminoproximal oligonucleotide/oligosaccharide binding-fold domain. The B subunits also share homology with the exonuclease subunit of archaeal DNA polymerases D. Here, we describe a novel domain specific to the N-terminus of the B subunit of eukaryotic DNA polymerases epsilon. The N-terminal domain of human DNA polymerases epsilon (Dpoe2NT) expressed in Escherichia coli was characterized. Circular dichroism studies demonstrated that Dpoe2NT forms a stable, predominantly alpha-helical structure. The solution structure of Dpoe2NT revealed a domain that consists of a left-handed superhelical bundle. Four helices are arranged in two hairpins and the connecting loops contain short beta-strand segments that form a short parallel sheet. DALI searches demonstrated a striking structural similarity of the Dpoe2NT with the alpha-helical subdomains of ATPase associated with various cellular activity (AAA+) proteins (the C-domain). Like C-domains, Dpoe2NT is rich in charged amino acids. The biased distribution of the charged residues is reflected by a polarization and a considerable dipole moment across the Dpoe2NT. Dpoe2NT represents the first C-domain fold not associated with an AAA+ protein.


A human transcription factor in search mode.

  • Kevin Hauser‎ et al.
  • Nucleic acids research‎
  • 2016‎

Transcription factors (TF) can change shape to bind and recognize DNA, shifting the energy landscape from a weak binding, rapid search mode to a higher affinity recognition mode. However, the mechanism(s) driving this conformational change remains unresolved and in most cases high-resolution structures of the non-specific complexes are unavailable. Here, we investigate the conformational switch of the human mitochondrial transcription termination factor MTERF1, which has a modular, superhelical topology complementary to DNA. Our goal was to characterize the details of the non-specific search mode to complement the crystal structure of the specific binding complex, providing a basis for understanding the recognition mechanism. In the specific complex, MTERF1 binds a significantly distorted and unwound DNA structure, exhibiting a protein conformation incompatible with binding to B-form DNA. In contrast, our simulations of apo MTERF1 revealed significant flexibility, sampling structures with superhelical pitch and radius complementary to the major groove of B-DNA. Docking these structures to B-DNA followed by unrestrained MD simulations led to a stable complex in which MTERF1 was observed to undergo spontaneous diffusion on the DNA. Overall, the data support an MTERF1-DNA binding and recognition mechanism driven by intrinsic dynamics of the MTERF1 superhelical topology.


Structure of Importin13-Ubc9 complex: nuclear import and release of a key regulator of sumoylation.

  • Marlene Grünwald‎ et al.
  • The EMBO journal‎
  • 2011‎

Importin13 (Imp13) is an unusual β-karyopherin that is able to both import and export cargoes in and out of the nucleus. In the cytoplasm, Imp13 associates with different cargoes such as Mago-Y14 and Ubc9, and facilitates their import into the nucleus where RanGTP binding promotes the release of the cargo. In this study, we present the 2.8 Å resolution crystal structure of Imp13 in complex with the SUMO E2-conjugating enzyme, Ubc9. The structure shows an uncommon mode of cargo-karyopherin recognition with Ubc9 binding at the N-terminal portion of Imp13, occupying the entire RanGTP-binding site. Comparison of the Imp13-Ubc9 complex with Imp13-Mago-Y14 shows the remarkable plasticity of Imp13, whose conformation changes from a closed ring to an open superhelix when bound to the two different cargoes. The structure also shows that the binding mode is compatible with the sumoylated states of Ubc9. Indeed, we find that Imp13 is able to bind sumoylated Ubc9 in vitro and suppresses autosumoylation activity in the complex.


Application of Plasmid Engineering to Enhance Yield and Quality of Plasmid for Vaccine and Gene Therapy.

  • Olusegun Folarin‎ et al.
  • Bioengineering (Basel, Switzerland)‎
  • 2019‎

There is an increased interest in plasmid DNA as therapeutics. This is evident in the number of ongoing clinical trials involving the use of plasmid DNA. In order to be an effective therapeutic, high yield and high level of supercoiling are required. From the bioprocessing point of view, the supercoiling level potentially has an impact on the ease of downstream processing. We approached meeting these requirements through plasmid engineering. A 7.2 kb plasmid was developed by the insertion of a bacteriophage Mu strong gyrase-binding sequence (Mu-SGS) to a 6.8 kb pSVβ-Gal and it was used to transform four different E. coli strains, and cultured in order to investigate the Mu-SGS effect and dependence on strain. There was an increase of over 20% in the total plasmid yield with pSVβ-Gal398 in two of the strains. The supercoiled topoisomer content was increased by 5% in both strains leading to a 27% increase in the overall yield. The extent of supercoiling was examined using superhelical density (σ) quantification with pSVβ-Gal398 maintaining a superhelical density of -0.022, and pSVβ-Gal -0.019, in both strains. This study has shown that plasmid modification with the Mu-phage SGS sequence has a beneficial effect on improving not only the yield of total plasmid but also the supercoiled topoisomer content of therapeutic plasmid DNA during bioprocessing.


Structural basis for ATP-dependent chromatin remodelling by the INO80 complex.

  • Sebastian Eustermann‎ et al.
  • Nature‎
  • 2018‎

In the eukaryotic nucleus, DNA is packaged in the form of nucleosomes, each of which comprises about 147 base pairs of DNA wrapped around a histone protein octamer. The position and histone composition of nucleosomes is governed by ATP-dependent chromatin remodellers1-3 such as the 15-subunit INO80 complex 4 . INO80 regulates gene expression, DNA repair and replication by sliding nucleosomes, the exchange of histone H2A.Z with H2A, and the positioning of + 1 and -1 nucleosomes at promoter DNA5-8. The structures and mechanisms of these remodelling reactions are currently unknown. Here we report the cryo-electron microscopy structure of the evolutionarily conserved core of the INO80 complex from the fungus Chaetomium thermophilum bound to a nucleosome, at a global resolution of 4.3 Å and with major parts at 3.7 Å. The INO80 core cradles one entire gyre of the nucleosome through multivalent DNA and histone contacts. An Rvb1/Rvb2 AAA+ ATPase heterohexamer is an assembly scaffold for the complex and acts as a 'stator' for the motor and nucleosome-gripping subunits. The Swi2/Snf2 ATPase motor binds to nucleosomal DNA at superhelical location -6, unwraps approximately 15 base pairs, disrupts the H2A-DNA contacts and is poised to pump entry DNA into the nucleosome. Arp5 and Ies6 bind superhelical locations -2 and -3 to act as a counter grip for the motor, on the other side of the H2A-H2B dimer. The Arp5 insertion domain forms a grappler element that binds the nucleosome dyad, connects the Arp5 actin-fold and entry DNA over a distance of about 90 Å and packs against histone H2A-H2B near the 'acidic patch'. Our structure together with biochemical data 8 suggests a unified mechanism for nucleosome sliding and histone editing by INO80. The motor is part of a macromolecular ratchet, persistently pumping entry DNA across the H2A-H2B dimer against the Arp5 grip until a large nucleosome translocation step occurs. The transient exposure of H2A-H2B by motor activity as well as differential recognition of H2A.Z and H2A may regulate histone exchange.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: