Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 27,383 papers

Intestinal microbiota profiles in a genetic model of colon tumorigenesis correlates with colon cancer biomarkers.

  • Francesco Vitali‎ et al.
  • Scientific reports‎
  • 2022‎

Faecal (FM) and colon mucosal associated microbiota (MAM) were studied in a model of colorectal cancer (CRC), the Apc-mutated Pirc rats, and in age-paired wt F344 rats. Principal Coordinates Analysis indicated that samples' distribution was driven by age, with samples of young rats (1 month old; without tumours) separated from older ones (11-month-old; bearing tumours). Diversity analysis showed significant differences between FM and MAM in older Pirc rats, and between MAM of both Pirc and wt rats and the tumour microbiota, enriched in Enterococcus, Escherichia/Shigella, Proteus and Bifidobacteriaceae. In young animals, Pirc FM was enriched in the genus Delftia, while wt FM was enriched in Lactobacillus and Streptococcus. Some CRC biomarkers and faecal short chain fatty acids (SCFAs) were also measured. Colon proliferation and DClK1 expression, a pro-survival mucosal marker, were higher in Pirc than in wt rats, while the mucin MUC2, was lower in Pirc rats. Branched SCFAs were higher in Pirc than in wt animals. By Spearman analysis CRC biomarkers correlated with FM (in both young and old rats) and with MAM (in young rats), suggesting a specific relationship between the gut microbiota profile and these functional mucosal parameters deserving further investigation.


Endoscopic localization of colon cancers.

  • P Vignati‎ et al.
  • Surgical endoscopy‎
  • 1994‎

In order to determine the accuracy of endoscopic localization of colon cancers, the endoscopic location was compared to the actual location at the time of operation in 320 patients who underwent resection of intraabdominal colon cancer between 1983 and 1988. The endoscopic location was correct in 86% of the cases. There were 44 endoscopic errors, including seven missed cancers. One-third of all endoscopic errors occurred when the tumor was in the cecum. We conclude that endoscopy is an accurate method of localizing colon cancers. However, with the advent of laparoscopic surgery and the loss of the ability to palpate the colon, the 14% of endoscopic errors take on a greater importance and additional means for localizing tumors should be pursued in selected cases.


Laparoscopic surgery for colon cancer.

  • Paolo Millo‎ et al.
  • Annals of gastroenterology‎
  • 2013‎

Colon cancer is a major problem in Western countries and complete surgical resection is the main treatment. Since its introduction the laparoscopic approach has been used to achieve bowel resection with a better postoperative course and better aesthetic outcomes. Initial concerns about the radicality of the resection and the oncologic outcomes have been overcome in the last decade. All over the world large trials have been conducted to compare the laparoscopic approach and the traditional laparotomic one. A review of literature has been conducted to find evidence about this issue, revealing 24 relevant trials. The laparoscopic approach showed short-term benefits without compromising oncological safety. However intraoperative complication rates during laparoscopic colon resections seem to be increased, mainly due to the increased rate of intraoperative bowel injury. This finding confirms a great need for training and a wide learning curve for the surgeon. Our review supports the continued use of laparoscopic surgery in patients with colon cancer.


Vasohibin-1 suppresses colon cancer.

  • Shuai Liu‎ et al.
  • Oncotarget‎
  • 2015‎

Vasohibin-1 (VASH1) is an endogenous angiogenesis inhibitor.However, the clinical relevance of VASH1 in colon cancer and its regulations on cancer angiogenesis and cancer cell biological characteristics are still unknown. Here we showed that stromal VASH1 levels were negatively correlated with tumor size, advanced clinical stage and distant metastases in colon cancer patients. Overexpression of VASH1 in colon cancer cells induced apoptosis and senescence, inhibiting cancer cell growth and colony formation in vitro and tumor growth in vivo. In addition, knockdown of VASH1 in cancer cells promoted cell growth, adhesion and migration in vitro, and enhanced tumorigenesis and metastasis in vivo.


Aberrant repair of etheno-DNA adducts in leukocytes and colon tissue of colon cancer patients.

  • Tomasz Obtułowicz‎ et al.
  • Free radical biology & medicine‎
  • 2010‎

To assess the role of lipid peroxidation-induced DNA damage and repair in colon carcinogenesis, the excision rates and levels of 1,N(6)-etheno-2'-deoxyadenosine (epsilondA), 3,N(4)-etheno-2'-deoxycytidine (epsilondC), and 1,N(2)-etheno-2'-deoxyguanosine (1,N(2)-epsilondG) were analyzed in polymorphic blood leukocytes (PBL) and resected colon tissues of 54 colorectal carcinoma (CRC) patients and PBL of 56 healthy individuals. In PBL the excision rates of 1,N(6)-ethenoadenine (epsilonAde) and 3,N(4)-ethenocytosine (epsilonCyt), measured by the nicking of oligodeoxynucleotide duplexes with single lesions, and unexpectedly also the levels of epsilondA and 1,N(2)-epsilondG, measured by LC/MS/MS, were lower in CRC patients than in controls. In contrast the mRNA levels of repair enzymes, alkylpurine- and thymine-DNA glycosylases and abasic site endonuclease (APE1), were higher in PBL of CRC patients than in those of controls, as measured by QPCR. In the target colon tissues epsilonAde and epsilonCyt excision rates were higher, whereas the epsilondA and epsilondC levels in DNA, measured by (32)P-postlabeling, were lower in tumor than in adjacent colon tissue, although a higher mRNA level was observed only for APE1. This suggests that during the onset of carcinogenesis, etheno adduct repair in the colon seems to be under a complex transcriptional and posttranscriptional control, whereby deregulation may act as a driving force for malignancy.


Left colon as a novel high-risk factor for postoperative recurrence of stage II colon cancer.

  • Liming Wang‎ et al.
  • World journal of surgical oncology‎
  • 2020‎

It is not clear whether stage II colon and rectal cancer have the same risk factors for recurrence. Thus, the purpose of this study was to identify the risk factors for postoperative recurrence in stage II colorectal cancer.


Comparative Analysis of Colon Cancer-Derived Fusobacterium nucleatum Subspecies: Inflammation and Colon Tumorigenesis in Murine Models.

  • Jessica Queen‎ et al.
  • mBio‎
  • 2021‎

Fusobacteria are commonly associated with human colorectal cancer (CRC), but investigations are hampered by the absence of a stably colonized murine model. Further, Fusobacterium nucleatum subspecies isolated from human CRC have not been investigated. While F. nucleatum subspecies are commonly associated with CRC, their ability to induce tumorigenesis and contributions to human CRC pathogenesis are uncertain. We sought to establish a stably colonized murine model and to understand the inflammatory potential and virulence genes of human CRC F. nucleatum, representing the 4 subspecies, animalis, nucleatum, polymorphum, and vincentii. Five human CRC-derived and two non-CRC derived F. nucleatum strains were tested for colonization, tumorigenesis, and cytokine induction in specific-pathogen-free (SPF) and/or germfree (GF) wild-type and ApcMin/+ mice, as well as in vitro assays and whole-genome sequencing (WGS). SPF wild-type and ApcMin/+ mice did not achieve stable colonization with F. nucleatum, whereas certain subspecies stably colonized some GF mice but without inducing colon tumorigenesis. F. nucleatum subspecies did not form in vivo biofilms or associate with the mucosa in mice. In vivo inflammation was inconsistent across subspecies, whereas F. nucleatum induced greater cytokine responses in a human colorectal cell line, HCT116. While F. nucleatum subspecies displayed genomic variability, no distinct virulence genes associated with human CRC strains were identified that could reliably distinguish these strains from non-CRC clinical isolates. We hypothesize that the lack of F. nucleatum-induced tumorigenesis in our model reflects differences in human and murine biology and/or a synergistic role for F. nucleatum in concert with other bacteria to promote carcinogenesis. IMPORTANCE Colon cancer is a leading cause of cancer morbidity and mortality, and it is hypothesized that dysbiosis in the gut microbiota contributes to colon tumorigenesis. Fusobacterium nucleatum, a member of the oropharyngeal microbiome, is enriched in a subset of human colon tumors. However, it is unclear whether this genetically varied species directly promotes tumor formation, modulates mucosal immune responses, or merely colonizes the tumor microenvironment. Mechanistic studies to address these questions have been stymied by the lack of an animal model that does not rely on daily orogastric gavage. Using multiple murine models, in vitro assays with a human colon cancer cell line, and whole-genome sequencing analysis, we investigated the proinflammatory and tumorigenic potential of several F. nucleatum clinical isolates. The significance of this research is development of a stable colonization model of F. nucleatum that does not require daily oral gavages in which we demonstrate that a diverse library of clinical isolates do not promote tumorigenesis.


Reelin Protects against Colon Pathology via p53 and May Be a Biomarker for Colon Cancer Progression.

  • José M Serrano-Morales‎ et al.
  • Biology‎
  • 2022‎

Previous observations made in human and mouse colons suggest that reelin protects the colon from pathology. In this study, we evaluated reelin expression during the transition from either colitis or precancerous lesions to colon cancer and tried to elucidate reelin regulation under these transition processes. Samples of healthy and pathological colons from humans and mice treated with either azoxymethane/dextran sulfate sodium (DSS) or azoxymethane alone were used. The relative abundances of reelin, DNMT-1 and ApoER2 mRNAs were determined by PCR in the colon samples cited above and in the tissue adjacent to mouse colon polyps and adenocarcinomas. In both, humans and mice, reelin mRNA abundance increased significantly in ulcerative colitis and slightly in polyps and decreased in adenomas and adenocarcinomas. Reelin expression was higher in the tissue adjacent to the colon adenocarcinoma and lower in the lesion itself. The reelin expression changes may result, at least in part, from those in DNMT-1 and appear to be independent of ApoER2. Lack of reelin downregulated p-Akt and p53 in healthy colon and prevented their increases in the inflamed colon, whereas it increased GSK-3β in DSS-untreated mice. In conclusion, reelin mRNA abundance depends on the severity of the colon pathology, and its upregulation in response to initial injuries might prevent the beginning of colon cancer, whereas reelin repression favors it. Increased p53 expression and activation may be involved in this protection. We also propose that changes in colon reelin abundance could be used to predict colon pathology progression.


Bio-impedance method to monitor colon motility response to direct distal colon stimulation in anesthetized pigs.

  • Yushan Wang‎ et al.
  • Scientific reports‎
  • 2022‎

Electrical stimulation has been demonstrated as an alternative approach to alleviate intractable colonic motor disorders, whose effectiveness can be evaluated through colonic motility assessment. Various methods have been proposed to monitor the colonic motility and while each has contributed towards better understanding of colon motility, a significant limitation has been the spatial and temporal low-resolution colon motility data acquisition and analysis. This paper presents the study of employing bio-impedance characterization to monitor colonic motor activity. Direct distal colon stimulation was undertaken in anesthetized pigs to validate the bio-impedance scheme simultaneous with luminal manometry monitoring. The results indicated that the significant decreases of bio-impedance corresponded to strong colonic contraction in response to the electrical stimulation in the distal colon. The magnitude/power of the dominant frequencies of phasic colonic contractions identified at baseline (in the range 2-3 cycles per minute (cpm)) were increased after the stimulation. In addition, positive correlations have been found between bio-impedance and manometry. The proposed bio-impedance-based method can be a viable candidate for monitoring colonic motor pattern with high spatial and temporal resolution. The presented technique can be integrated into a closed-loop therapeutic device in order to optimize its stimulation protocol in real-time.


Comprehensive Proteomic Analysis of Colon Cancer Tissue Revealed the Reason for the Worse Prognosis of Right-Sided Colon Cancer and Mucinous Colon Cancer at the Protein Level.

  • Yanyu Chen‎ et al.
  • Current oncology (Toronto, Ont.)‎
  • 2021‎

To clarify the molecular mechanisms underlying the poor prognosis of right-sided and mucinous colon cancer at the proteomic level. A tandem mass tag-proteomics approach was used to identify differentially expressed proteins (DEPs) in colon carcinoma tissues from different locations and with different histological types to reveal the underlying mechanisms of these differences at the protein level. In additional, the DEPs were analyzed using bioinformatics methods. The proteomics profiles among colon cancers with different tumor locations and histological types were dramatically distinguished. In terms of tumor locations, the right-sided carcinoma specific DEPs may promote the tumor progression via activating inflammation, metastasis associated pathways. When referring to histological types, the mucinous colon cancers perhaps increased the invasion and metastasis through distinct mechanisms in different tumor locations. For mucinous cancer located in right-sided colon, the mucinous specific DEPs were mainly associated with ECM-related remodeling and the IL-17 signal pathway. For mucinous cancer located in left-sided colon, the mucinous specific DEPs showed a strong relationship with ACE2/Ang-(1-7)/MasR axis. The proteomics profiles of colon cancers showed distinct differences related to locations and histological types. These results suggested a distinct mechanism underlying the diverse subtypes of colon cancers.


Th17 Immunity in the Colon Is Controlled by Two Novel Subsets of Colon-Specific Mononuclear Phagocytes.

  • Hsin-I Huang‎ et al.
  • Frontiers in immunology‎
  • 2021‎

Intestinal immunity is coordinated by specialized mononuclear phagocyte populations, constituted by a diversity of cell subsets. Although the cell subsets constituting the mononuclear phagocyte network are thought to be similar in both small and large intestine, these organs have distinct anatomy, microbial composition, and immunological demands. Whether these distinctions demand organ-specific mononuclear phagocyte populations with dedicated organ-specific roles in immunity are unknown. Here we implement a new strategy to subset murine intestinal mononuclear phagocytes and identify two novel subsets which are colon-specific: a macrophage subset and a Th17-inducing dendritic cell (DC) subset. Colon-specific DCs and macrophages co-expressed CD24 and CD14, and surprisingly, both were dependent on the transcription factor IRF4. Novel IRF4-dependent CD14+CD24+ macrophages were markedly distinct from conventional macrophages and failed to express classical markers including CX3CR1, CD64 and CD88, and surprisingly expressed little IL-10, which was otherwise robustly expressed by all other intestinal macrophages. We further found that colon-specific CD14+CD24+ mononuclear phagocytes were essential for Th17 immunity in the colon, and provide definitive evidence that colon and small intestine have distinct antigen presenting cell requirements for Th17 immunity. Our findings reveal unappreciated organ-specific diversity of intestine-resident mononuclear phagocytes and organ-specific requirements for Th17 immunity.


Prognostic value of total number of lymph nodes retrieved differs between left-sided colon cancer and right-sided colon cancer in stage III patients with colon cancer.

  • Lin Yang‎ et al.
  • BMC cancer‎
  • 2018‎

The consensus is that a minimum of 12 lymph nodes should be analyzed at colectomy for colon cancer. However, right colon cancer and left colon cancer have different characteristics, and this threshold value for total number of lymph nodes retrieved may not be universally applicable.


Curcumin Regulates Colon Cancer by Inhibiting P-Glycoprotein in In-situ Cancerous Colon Perfusion Rat Model.

  • Prasad Neerati‎ et al.
  • Journal of cancer science & therapy‎
  • 2013‎

Studies on p-glycoprotein was carried out world vide with cell lines like Caco2, MDR1-LLC-PK1 and MDR1-MDCK in-vitro, but most of the results were failed to produce similar results in-vivo. In the present study curcumin inhibitory action on p-glycoprotein increased permeability of irinotecan, so in the colon cancer it would be beneficial if curcumin used as add on therapy.


Thymoquinone reduces mouse colon tumor cell invasion and inhibits tumor growth in murine colon cancer models.

  • Hala Gali-Muhtasib‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2008‎

We have shown that thymoquinone (TQ) is a potent antitumor agent in human colorectal cancer cells. In this study, we evaluated TQ's therapeutic potential in two different mice colon cancer models [1,2-dimethyl hydrazine (DMH) and xenografts]. We also examined TQ effects on the growth of C26 mouse colorectal carcinoma spheroids and assessed tumor invasion in vitro. Mice were treated with saline, TQ, DMH, or combinations once per week for 30 weeks and the multiplicity, size and distribution of aberrant crypt foci (ACF) and tumors were determined at weeks 10, 20 and 30. TQ injected intraperitoneally (i.p.) significantly reduced the numbers and sizes of ACF at week 10; ACF numbers were reduced by 86%. Tumor multiplicity was reduced at week 20 from 17.8 in the DMH group to 4.2 in mice injected with TQ. This suppression was observed at week 30 and was long-term; tumors did not re-grow even when TQ injection was discontinued for 10 weeks. In a xenograft model of HCT116 colon cancer cells, TQ significantly (P < 0.05) delayed the growth of the tumor cells. Using a matrigel artificial basement membrane invasion assay, we demonstrated that sub-cyto-toxic doses of TQ (40 microM) decreased C26 cell invasion by 50% and suppressed growth in three-dimensional spheroids. Apoptotic signs seen morphologically were increased significantly in TQ-treated spheroids. TUNEL staining of xenografts and immunostaining for caspase 3 cleavage in DMH tumors confirmed increased apoptosis in mouse tumors in response to TQ. These data should encourage further in vivo testing and support the potential use of TQ as a therapeutic agent in human colorectal cancer.


Effects of the lncRNA ENST00000623984 on colon cancer and the biological characteristics of colon cancer cells.

  • Zhi-Bao Liu‎ et al.
  • European journal of histochemistry : EJH‎
  • 2021‎

The aim of this study was to explore the effects of the lncRNA ENST00000623984 on colorectal cancer. In this study, the expression levels of ENST000000623984 were first examined in tumor tissue and adjacent normal tissue from 40 patients with colorectal cancer and LoVo cells using quantitative real-time PCR. By siRNA transfection, ENST00000623984 expression was knocked down. Using flow cytometry, cell cycle progression and cell viability were examined in basal and knockdown LoVo cells. The CCK-8 assay was used to assess the cell proliferation rate, and the Transwell assay was used to determine the migration and invasion abilities. The ENST000000623984 expression level was increased in colorectal cancer. Knockdown of ENST000000623984 reduced cell viability, proliferation rate, cell migration and invasion. These results suggested that lncRNA ENST000000623984 may be involved in colorectal cancer development.


Glucosylceramide production maintains colon integrity in response to Bacteroides fragilis toxin-induced colon epithelial cell signaling.

  • Logan Patterson‎ et al.
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology‎
  • 2020‎

Enterotoxigenic Bacteroides fragilis (ETBF) is a commensal bacterium of great importance to human health due to its ability to induce colitis and cause colon tumor formation in mice through the production of B. fragilis toxin (BFT). The formation of tumors is dependent on a pro-inflammatory signaling cascade, which begins with the disruption of epithelial barrier integrity through cleavage of E-cadherin. Here, we show that BFT increases levels of glucosylceramide, a vital intestinal sphingolipid, both in mice and in colon organoids (colonoids) generated from the distal colons of mice. When colonoids are treated with BFT in the presence of an inhibitor of glucosylceramide synthase (GCS), the enzyme responsible for generating glucosylceramide, colonoids become highly permeable, lose structural integrity, and eventually burst, releasing their contents into the extracellular matrix. By increasing glucosylceramide levels in colonoids via an inhibitor of glucocerebrosidase (GBA, the enzyme that degrades glucosylceramide), colonoid permeability was reduced, and bursting was significantly decreased. In the presence of BFT, pharmacological inhibition of GCS caused levels of tight junction protein 1 (TJP1) to decrease. However, when GBA was inhibited, TJP1 levels remained stable, suggesting that BFT-induced production of glucosylceramide helps to stabilize tight junctions. Taken together, our data demonstrate a glucosylceramide-dependent mechanism by which the colon epithelium responds to BFT.


Human Colon-on-a-Chip Enables Continuous In Vitro Analysis of Colon Mucus Layer Accumulation and Physiology.

  • Alexandra Sontheimer-Phelps‎ et al.
  • Cellular and molecular gastroenterology and hepatology‎
  • 2020‎

The mucus layer in the human colon protects against commensal bacteria and pathogens, and defects in its unique bilayered structure contribute to intestinal disorders, such as ulcerative colitis. However, our understanding of colon physiology is limited by the lack of in vitro models that replicate human colonic mucus layer structure and function. Here, we investigated if combining organ-on-a-chip and organoid technologies can be leveraged to develop a human-relevant in vitro model of colon mucus physiology.


Walnut Phenolic Extract and Its Bioactive Compounds Suppress Colon Cancer Cell Growth by Regulating Colon Cancer Stemness.

  • Jisoo Lee‎ et al.
  • Nutrients‎
  • 2016‎

Walnut has been known for its health benefits, including anti-cardiovascular disease and anti-oxidative properties. However, there is limited evidence elucidating its effects on cancer stem cells (CSCs) which represent a small subset of cancer cells that provide resistance against chemotherapy. This study aimed to evaluate the anti-CSCs potential of walnut phenolic extract (WPE) and its bioactive compounds, including (+)-catechin, chlorogenic acid, ellagic acid, and gallic acid. In the present study, CD133⁺CD44⁺ cells were isolated from HCT116 cells using fluorescence-activated cell sorting (FACS) and then treated with WPE. As a result, survival of the CD133⁺CD44⁺ HCT116 cells was inhibited and cell differentiation was induced by WPE. In addition, WPE down-regulated the CSC markers, CD133, CD44, DLK1, and Notch1, as well as the β-catenin/p-GSK3β signaling pathway. WPE suppressed the self-renewal capacity of CSCs. Furthermore, the WPE exhibited stronger anti-CSC effects than its individual bioactive compounds. Finally, the WPE inhibited specific CSC markers in primary colon cancer cells isolated from primary colon tumor. These results suggest that WPE can suppress colon cancer by regulating the characteristics of colon CSCs.


The gut microbiome modulates colon tumorigenesis.

  • Joseph P Zackular‎ et al.
  • mBio‎
  • 2013‎

Recent studies have shown that individuals with colorectal cancer have an altered gut microbiome compared to healthy controls. It remains unclear whether these differences are a response to tumorigenesis or actively drive tumorigenesis. To determine the role of the gut microbiome in the development of colorectal cancer, we characterized the gut microbiome in a murine model of inflammation-associated colorectal cancer that mirrors what is seen in humans. We followed the development of an abnormal microbial community structure associated with inflammation and tumorigenesis in the colon. Tumor-bearing mice showed enrichment in operational taxonomic units (OTUs) affiliated with members of the Bacteroides, Odoribacter, and Akkermansia genera and decreases in OTUs affiliated with members of the Prevotellaceae and Porphyromonadaceae families. Conventionalization of germfree mice with microbiota from tumor-bearing mice significantly increased tumorigenesis in the colon compared to that for animals colonized with a healthy gut microbiome from untreated mice. Furthermore, at the end of the model, germfree mice colonized with microbiota from tumor-bearing mice harbored a higher relative abundance of populations associated with tumor formation in conventional animals. Manipulation of the gut microbiome with antibiotics resulted in a dramatic decrease in both the number and size of tumors. Our results demonstrate that changes in the gut microbiome associated with inflammation and tumorigenesis directly contribute to tumorigenesis and suggest that interventions affecting the composition of the microbiome may be a strategy to prevent the development of colon cancer.


Muscarinic receptor signaling in colon cancer.

  • Erik C Von Rosenvinge‎ et al.
  • Cancers‎
  • 2011‎

According to the adenoma-carcinoma sequence, colon cancer results from accumulating somatic gene mutations; environmental growth factors accelerate and augment this process. For example, diets rich in meat and fat increase fecal bile acids and colon cancer risk. In rodent cancer models, increased fecal bile acids promote colon dysplasia. Conversely, in rodents and in persons with inflammatory bowel disease, low-dose ursodeoxycholic acid treatment alters fecal bile acid composition and attenuates colon neoplasia. In the course of elucidating the mechanism underlying these actions, we discovered that bile acids interact functionally with intestinal muscarinic receptors. The present communication reviews muscarinic receptor expression in normal and neoplastic colon epithelium, the role of autocrine signaling following synthesis and release of acetylcholine from colon cancer cells, post-muscarinic receptor signaling including the role of transactivation of epidermal growth factor receptors and activation of the ERK and PI3K/AKT signaling pathways, the structural biology and metabolism of bile acids and evidence for functional interaction of bile acids with muscarinic receptors on human colon cancer cells. In murine colon cancer models, deficiency of subtype 3 muscarinic receptors attenuates intestinal neoplasia; a proof-of-concept supporting muscarinic receptor signaling as a therapeutic target for colon cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: