2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 14,848 papers

BacCapSeq: a Platform for Diagnosis and Characterization of Bacterial Infections.

  • Orchid M Allicock‎ et al.
  • mBio‎
  • 2018‎

We report a platform that increases the sensitivity of high-throughput sequencing for detection and characterization of bacteria, virulence determinants, and antimicrobial resistance (AMR) genes. The system uses a probe set comprised of 4.2 million oligonucleotides based on the Pathosystems Resource Integration Center (PATRIC) database, the Comprehensive Antibiotic Resistance Database (CARD), and the Virulence Factor Database (VFDB), representing 307 bacterial species that include all known human-pathogenic species, known antimicrobial resistance genes, and known virulence factors, respectively. The use of bacterial capture sequencing (BacCapSeq) resulted in an up to 1,000-fold increase in bacterial reads from blood samples and lowered the limit of detection by 1 to 2 orders of magnitude compared to conventional unbiased high-throughput sequencing, down to a level comparable to that of agent-specific real-time PCR with as few as 5 million total reads generated per sample. It detected not only the presence of AMR genes but also biomarkers for AMR that included both constitutive and differentially expressed transcripts.IMPORTANCE BacCapSeq is a method for differential diagnosis of bacterial infections and defining antimicrobial sensitivity profiles that has the potential to reduce morbidity and mortality, health care costs, and the inappropriate use of antibiotics that contributes to the development of antimicrobial resistance.


Bacterial vaginosis and other infections in pregnant women in Senegal.

  • Marion Bonneton‎ et al.
  • BMC infectious diseases‎
  • 2021‎

Bacterial vaginosis (BV) is associated with a higher risk of preterm delivery and spontaneous abortion. Yet little data on BV prevalence exist for sub-Saharan countries. The aim of this study was to estimate the prevalence of bacterial vaginosis and associated risk factors among pregnant women in Senegal.


Metatranscriptomic Analysis Reveals Active Bacterial Communities in Diabetic Foot Infections.

  • Fatemah Sadeghpour Heravi‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

Despite the extended view of the composition of diabetic foot infections (DFIs), little is known about which transcriptionally active bacterial communities are pertinent to infection, and if any differences are associated with increased infection severity. We applied a RNA sequencing approach to analyze the composition, function, and pathogenicity of the active bacterial communities in DFIs. Taxonomic profiling of bacterial transcripts revealed the presence of 14 bacterial phyla in DFIs. The abundance of the Spiroplasma, Vibrio, and Mycoplasma were significantly different in different infection severities (P < 0.05). Mild and severe stages of infections were dominated by Staphylococcus aureus and Porphyromonas asaccharolytica, respectively. A total of 132 metabolic pathways were identified of which ribosome and thiamin being among the most highly transcribed pathways. Moreover, a total of 131 antibiotic resistance genes, primarily involved in the multidrug efflux pumps/exporters, were identified. Furthermore, iron acquisition systems (synthesize and regulation of siderophores) and pathways involved in the synthesis and regulation of cell-surface components associated with adhesion, colonization, and movement of bacterial cells were the most common virulence factors. These virulence factors may help bacteria compete for scares resources and survive the host wound proteases. Characterization of transcriptionally active bacterial communities can help to provide an understanding of the role of key pathogens in the development of DFIs. Such information can be clinically useful allowing replacement of DFIs empirical therapy with targeted treatment.


Hyaluronic Acid-Cellulose Composites as Patches for Minimizing Bacterial Infections.

  • Kelsey M Lopez‎ et al.
  • ACS omega‎
  • 2020‎

A facile method was used to synthesize biocomposites containing differing ratios of hyaluronic acid (HA) and cellulose (CEL). Based on the properties of the individual polymers, the resultant composite materials may have potentially great wound care properties. In the method outlined here, 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]), a simple ionic liquid, was used as the sole solvent without chemical modifiers to dissolve the biopolymers at ratios of 1:1 and 2:1 HA to CEL. This method was completely recyclable since the ionic liquid, [Bmim][Cl], can be recovered. Results from spectroscopic measurements [Fourier transform infrared (FT-IR) and X-ray diffraction (XRD)] confirm the interaction between HA and CEL. Scanning electron microscopy (SEM) images reflect differing biopolymer ratios and the resulting impact on the texture and porosity of these composite materials. The composites exhibited high swelling capacity in various media. These composites were also drug-loaded to examine drug release properties for greater potential in combating Staphylococcus aureus infections.


Converting organosulfur compounds to inorganic polysulfides against resistant bacterial infections.

  • Zhuobin Xu‎ et al.
  • Nature communications‎
  • 2018‎

The use of natural substance to ward off microbial infections has a long history. However, the large-scale production of natural extracts often reduces antibacterial potency, thus limiting practical applications. Here we present a strategy for converting natural organosulfur compounds into nano-iron sulfides that exhibit enhanced antibacterial activity. We show that compared to garlic-derived organosulfur compounds nano-iron sulfides exhibit an over 500-fold increase in antibacterial efficacy to kill several pathogenic and drug-resistant bacteria. Furthermore, our analysis reveals that hydrogen polysulfanes released from nano-iron sulfides possess potent bactericidal activity and the release of polysulfanes can be accelerated by the enzyme-like activity of nano-iron sulfides. Finally, we demonstrate that topical applications of nano-iron sulfides can effectively disrupt pathogenic biofilms on human teeth and accelerate infected-wound healing. Together, our approach to convert organosulfur compounds into inorganic polysulfides potentially provides an antibacterial alternative to combat bacterial infections.


Imaging of musculoskeletal bacterial infections by [124I]FIAU-PET/CT.

  • Luis A Diaz‎ et al.
  • PloS one‎
  • 2007‎

Traditional imaging techniques for the localization and monitoring of bacterial infections, although reasonably sensitive, suffer from a lack of specificity. This is particularly true for musculoskeletal infections. Bacteria possess a thymidine kinase (TK) whose substrate specificity is distinct from that of the major human TK. The substrate specificity difference has been exploited to develop a new imaging technique that can detect the presence of viable bacteria.


Engineered phage with cell-penetrating peptides for intracellular bacterial infections.

  • Min Zhao‎ et al.
  • mSystems‎
  • 2023‎

Salmonella infection is a significant threat to global public health, and the increasing prevalence of antibiotic resistance exacerbates the situation. Therefore, finding new and effective ways to combat this pathogen is essential. Phages are natural predators of bacteria and can be used as an alternative to antibiotics to kill specific bacteria, including drug-resistant strains. One significant limitation of using phages as antimicrobial agents is their low cellular uptake, which limits their effectiveness against intracellular bacterial infections. Therefore, finding ways to enhance phage uptake is crucial. Our study provides a straightforward strategy for displaying cell-penetrating peptides on non-model phages, offering a promising novel and effective therapeutic approach for treating intracellular and drug-resistant bacteria. This approach has the potential to address the global challenge of antibiotic resistance and improve public health outcomes.


Bacterial Infections in Cirrhotic Patients in a Tertiary Care Hospital.

  • Vivek A Lingiah‎ et al.
  • Journal of clinical and translational hepatology‎
  • 2021‎

Patients with cirrhosis are immunocompromised and at higher risk of developing infections compared to the general population. The aim of this study was to assess the incidence of infections in cirrhotic patients in a large academic liver center and investigate potential associations between infections, bacteria isolated, therapeutic regimens used, and mortality.


Protein Palmitoylation and Its Role in Bacterial and Viral Infections.

  • Justyna Sobocińska‎ et al.
  • Frontiers in immunology‎
  • 2017‎

S-palmitoylation is a reversible, enzymatic posttranslational modification of proteins in which palmitoyl chain is attached to a cysteine residue via a thioester linkage. S-palmitoylation determines the functioning of proteins by affecting their association with membranes, compartmentalization in membrane domains, trafficking, and stability. In this review, we focus on S-palmitoylation of proteins, which are crucial for the interactions of pathogenic bacteria and viruses with the host. We discuss the role of palmitoylated proteins in the invasion of host cells by bacteria and viruses, and those involved in the host responses to the infection. We highlight recent data on protein S-palmitoylation in pathogens and their hosts obtained owing to the development of methods based on click chemistry and acyl-biotin exchange allowing proteomic analysis of protein lipidation. The role of the palmitoyl moiety present in bacterial lipopolysaccharide and lipoproteins, contributing to infectivity and affecting recognition of bacteria by innate immune receptors, is also discussed.


Nanotoxoid vaccination protects against opportunistic bacterial infections arising from immunodeficiency.

  • Jiarong Zhou‎ et al.
  • Science advances‎
  • 2022‎

The rise in nosocomial infections caused by multidrug-resistant pathogens is a major public health concern. Patients taking immunosuppressants or chemotherapeutics are naturally more susceptible to infections. Thus, strategies for protecting immunodeficient individuals from infections are of great importance. Here, we investigate the effectiveness of a biomimetic nanotoxoid vaccine in defending animals with immunodeficiency against Pseudomonas aeruginosa. The nanotoxoids use a macrophage membrane coating to sequester and safely present bacterial virulence factors that would otherwise be too toxic to administer. Vaccination with the nanoformulation results in rapid and long-lasting immunity, protecting against lethal infections despite severe immunodeficiency. The nanovaccine can be administered through multiple routes and is effective in both pneumonia and septicemia models of infection. Mechanistically, protection is mediated by neutrophils and pathogen-specific antibodies. Overall, nanotoxoid vaccination is an attractive strategy to protect vulnerable patients and could help to mitigate the threat posed by antibiotic-resistant superbugs.


IgY Targeting Bacterial Quorum-Sensing Molecules in Implant-Associated Infections.

  • Ulrike Dapunt‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Background: Implant-associated infections are still a major complication in the field of orthopedics. Bacteria can form biofilms on implant surfaces, making them more difficult to detect and treat. Since standard antibiotic therapy is often impaired in biofilm infections, particular interest is directed towards finding treatment alternatives. Biofilm-formation is a well-organized process during which bacteria communicate via quorum-sensing molecules (QSM). The aim of this study was to inhibit bacterial communication by directing avian IgY against specific QSM. Methods: Chicken were immunized against the following QSM: (1) AtlE, a member of the autolysin family which mediates attachment to a surface in Staphylococcus epidermidis; (2) GroEL, the bacterial heat shock protein; (3) PIA (polysaccharide intercellular adhesion), which is essential for cell-cell adhesion in biofilms. Staphylococcus epidermidis biofilms were grown and inhibition of biofilm-formation by IgYs was evaluated. Additionally, human osteoblasts were cultivated and biocompatibility of IgYs was tested. Results: We were able to demonstrate that all IgYs reduced biofilm-formation, also without prior immunization. Therefore, the response was probably not specific with regard to the QSM. Osteoblasts were activated by all IgYs which was demonstrated by microscopy and an increased release of IL-8. Conclusions: In conclusion, avian IgY inhibits biofilm-formation, though the underlying mechanism is not yet clear. However, adverse effects on local tissue cells (osteoblasts) were also observed.


The Use of Antibody-Antibiotic Conjugates to Fight Bacterial Infections.

  • Marco Cavaco‎ et al.
  • Frontiers in microbiology‎
  • 2022‎

The emergence of antimicrobial resistance (AMR) is rapidly increasing and it is one of the significant twenty-first century's healthcare challenges. Unfortunately, the development of effective antimicrobial agents is a much slower and complex process compared to the spread of AMR. Consequently, the current options in the treatment of AMR are limited. One of the main alternatives to conventional antibiotics is the use of antibody-antibiotic conjugates (AACs). These innovative bioengineered agents take advantage of the selectivity, favorable pharmacokinetic (PK), and safety of antibodies, allowing the administration of more potent antibiotics with less off-target effects. Although AACs' development is challenging due to the complexity of the three components, namely, the antibody, the antibiotic, and the linker, some successful examples are currently under clinical studies.


Targeting multidrug resistant Staphylococcus infections with bacterial histidine kinase inhibitors.

  • Adeline Espinasse‎ et al.
  • Chemical science‎
  • 2023‎

The emergence of drug-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), which are not susceptible to current antibiotics has necessitated the development of novel approaches and targets to tackle this growing challenge. Bacterial two-component systems (TCSs) play a central role in the adaptative response of bacteria to their ever-changing environment. They are linked to antibiotic resistance and bacterial virulence making the proteins of the TCSs, histidine kinases and response regulators, attractive for the development of novel antibacterial drugs. Here, we developed a suite of maleimide-based compounds that we evaluated against a model histidine kinase, HK853, in vitro and in silico. The most potent leads were then assessed for their ability to decrease the pathogenicity and virulence of MRSA, resulting in the identification of a molecule that decreased the lesion size caused by a methicillin-resistant S. aureus skin infection by 65% in a murine model.


Protease activity sensors noninvasively classify bacterial infections and antibiotic responses.

  • Colin G Buss‎ et al.
  • EBioMedicine‎
  • 2018‎

Respiratory tract infections represent a significant public health risk, and timely and accurate detection of bacterial infections facilitates rapid therapeutic intervention. Furthermore, monitoring the progression of infections after intervention enables 'course correction' in cases where initial treatments are ineffective, avoiding unnecessary drug dosing that can contribute to antibiotic resistance. However, current diagnostic and monitoring techniques rely on non-specific or slow readouts, such as radiographic imaging and sputum cultures, which fail to specifically identify bacterial infections and take several days to identify optimal antibiotic treatments.


Detection of viral and bacterial pathogens in acute respiratory infections.

  • Chidi N Obasi‎ et al.
  • The Journal of infection‎
  • 2014‎

The role of bacteria in acute respiratory illnesses (ARI) of adults and interactions with viral infections is incompletely understood. This study tested the hypothesis that bacterial co-infection during ARI adds to airway inflammation and illness severity.


Anthrax toxin component, Protective Antigen, protects insects from bacterial infections.

  • Saleem Alameh‎ et al.
  • PLoS pathogens‎
  • 2020‎

Anthrax is a major zoonotic disease of wildlife, and in places like West Africa, it can be caused by Bacillus anthracis in arid nonsylvatic savannahs, and by B. cereus biovar anthracis (Bcbva) in sylvatic rainforests. Bcbva-caused anthrax has been implicated in as much as 38% of mortality in rainforest ecosystems, where insects can enhance the transmission of anthrax-causing bacteria. While anthrax is well-characterized in mammals, its transmission by insects points to an unidentified anthrax-resistance mechanism in its vectors. In mammals, a secreted anthrax toxin component, 83 kDa Protective Antigen (PA83), binds to cell-surface receptors and is cleaved by furin into an evolutionary-conserved PA20 and a pore-forming PA63 subunits. We show that PA20 increases the resistance of Drosophila flies and Culex mosquitoes to bacterial challenges, without directly affecting the bacterial growth. We further show that the PA83 loop known to be cleaved by furin to release PA20 from PA63 is, in part, responsible for the PA20-mediated protection. We found that PA20 binds directly to the Toll activating peptidoglycan-recognition protein-SA (PGRP-SA) and that the Toll/NF-κB pathway is necessary for the PA20-mediated protection of infected flies. This effect of PA20 on innate immunity may also exist in mammals: we show that PA20 binds to human PGRP-SA ortholog. Moreover, the constitutive activity of Imd/NF-κB pathway in MAPKK Dsor1 mutant flies is sufficient to confer the protection from bacterial infections in a manner that is independent of PA20 treatment. Lastly, Clostridium septicum alpha toxin protects flies from anthrax-causing bacteria, showing that other pathogens may help insects resist anthrax. The mechanism of anthrax resistance in insects has direct implications on insect-mediated anthrax transmission for wildlife management, and with potential for applications, such as reducing the sensitivity of pollinating insects to bacterial pathogens.


BDDE-Inspired Chalcone Derivatives to Fight Bacterial and Fungal Infections.

  • Ana Jesus‎ et al.
  • Marine drugs‎
  • 2022‎

The growing number of infectious diseases around the world threatens the effective response of antibiotics, contributing to the increase in antibiotic resistance seen as a global health problem. Currently, one of the main challenges in antimicrobial drug discovery is the search for new compounds that not only exhibit antimicrobial activity, but can also potentiate the antimicrobial activity and revert antibiotics' resistance, through the interference with several mechanisms, including the inhibition of efflux pumps (EPs) and biofilm formation. Inspired by macroalgae brominated bromophenol BDDE with antimicrobial activity, a series of 18 chalcone derivatives, including seven chalcones (9-15), six dihydrochalcones (16-18, and 22-24) and five diarylpropanes (19-21, and 25 and 26), was prepared and evaluated for its antimicrobial activity and potential to fight antibiotic resistance. Among them, chalcones 13 and 14 showed promising antifungal activity against the dermatophyte clinical strain of Trichophyton rubrum, and all compounds reversed the resistance to vancomycin in Enterococcus faecalis B3/101, with 9, 14, and 24 able to cause a four-fold decrease in the MIC of vancomycin against this strain. Compounds 17-24 displayed inhibition of EPs and the formation of biofilm by S. aureus 272123, suggesting that these compounds are inhibiting the EPs responsible for the extrusion of molecules involved in biofilm-related mechanisms. Interestingly, compounds 17-24 did not show cytotoxicity in mouse embryonic fibroblast cell lines (NIH/3T3). Overall, the results obtained suggest the potential of dihydrochalcones 16-18 and 22-24, and diarylpropanes 19-21, 25 and 26, as hits for bacterial EPs inhibition, as they are effective in the inhibition of EPs, but present other features that are important in this matter, such as the lack of antibacterial activity and cytotoxicity.


Genetic factors affect the susceptibility to bacterial infections in diabetes.

  • Johan R Simonsen‎ et al.
  • Scientific reports‎
  • 2021‎

Diabetes increases the risk of bacterial infections. We investigated whether common genetic variants associate with infection susceptibility in Finnish diabetic individuals. We performed genome-wide association studies and pathway analysis for bacterial infection frequency in Finnish adult diabetic individuals (FinnDiane Study; N = 5092, Diabetes Registry Vaasa; N = 4247) using national register data on antibiotic prescription purchases. Replication analyses were performed in a Swedish diabetic population (ANDIS; N = 9602) and in a Finnish non-diabetic population (FinnGen; N = 159,166). Genome-wide data indicated moderate but significant narrow-sense heritability for infection susceptibility (h2 = 16%, P = 0.02). Variants on chromosome 2 were associated with reduced infection susceptibility (rs62192851, P = 2.23 × 10-7). Homozygotic carriers of the rs62192851 effect allele (N = 44) had a 37% lower median annual antibiotic purchase rate, compared to homozygotic carriers of the reference allele (N = 4231): 0.38 [IQR 0.22-0.90] and 0.60 [0.30-1.20] respectively, P = 0.01). Variants rs6727834 and rs10188087, in linkage disequilibrium with rs62192851, replicated in the FinnGen-cohort (P < 0.05), but no variants replicated in the ANDIS-cohort. Pathway analysis suggested the IRAK1 mediated NF-κB activation through IKK complex recruitment-pathway to be a mediator of the phenotype. Common genetic variants on chromosome 2 may associate with reduced risk of bacterial infections in Finnish individuals with diabetes.


PepBiotics, novel cathelicidin-inspired antimicrobials to fight pulmonary bacterial infections.

  • Martin van Eijk‎ et al.
  • Biochimica et biophysica acta. General subjects‎
  • 2021‎

Antimicrobial peptides are considered potential alternatives to antibiotics. Here we describe the antibacterial properties of a family of novel cathelicidin-related (CR-) peptides, which we named PepBiotics, against bacteria typically present in cystic fibrosis (CF) patients.


The prevalence of serious bacterial infections in infants 90 days and younger with viral respiratory tract infections.

  • Abdullah I Almojali‎ et al.
  • Saudi medical journal‎
  • 2022‎

To determine the prevalence and risk factors of serious bacterial infections (SBIs) in infants 90 days and younger with a confirmed respiratory tract infection (RTI).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: