2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 62 papers

Pathogenic ACVR1R206H activation by Activin A-induced receptor clustering and autophosphorylation.

  • Anassuya Ramachandran‎ et al.
  • The EMBO journal‎
  • 2021‎

Fibrodysplasia ossificans progressiva (FOP) and diffuse intrinsic pontine glioma (DIPG) are debilitating diseases that share causal mutations in ACVR1, a TGF-β family type I receptor. ACVR1R206H is a frequent mutation in both diseases. Pathogenic signaling via the SMAD1/5 pathway is mediated by Activin A, but how the mutation triggers aberrant signaling is not known. We show that ACVR1 is essential for Activin A-mediated SMAD1/5 phosphorylation and is activated by two distinct mechanisms. Wild-type ACVR1 is activated by the Activin type I receptors, ACVR1B/C. In contrast, ACVR1R206H activation does not require upstream kinases, but is predominantly activated via Activin A-dependent receptor clustering, which induces its auto-activation. We use optogenetics and live-imaging approaches to demonstrate Activin A-induced receptor clustering and show it requires the type II receptors ACVR2A/B. Our data provide molecular mechanistic insight into the pathogenesis of FOP and DIPG by linking the causal activating genetic mutation to disrupted signaling.


Insight into Molecular Mechanism for Activin A-Induced Bone Morphogenetic Protein Signaling.

  • Chen Xie‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Activins transduce the TGF-β pathway through a heteromeric signaling complex consisting of type I and type II receptors, and activins also inhibit bone morphogenetic protein (BMP) signaling mediated by type I receptor ALK2. Recent studies indicated that activin A cross-activates the BMP pathway through ALK2R206H, a mutation associated with Fibrodysplasia Ossificans Progressiva (FOP). How activin A inhibits ALK2WT-mediated BMP signaling but activates ALK2R206H-mediated BMP signaling is not well understood, and here we offer some insights into its molecular mechanism. We first demonstrated that among four BMP type I receptors, ALK2 is the only subtype able to mediate the activin A-induced BMP signaling upon the dissociation of FKBP12. We further showed that BMP4 does not cross-signal TGF-β pathway upon FKBP12 inhibition. In addition, although the roles of type II receptors in the ligand-independent BMP signaling activated by FOP-associated mutant ALK2 have been reported, their roles in activin A-induced BMP signaling remains unclear. We demonstrated in this study that the known type II BMP receptors contribute to activin A-induced BMP signaling through their kinase activity. Together, the current study provided important mechanistic insights at the molecular level into further understanding physiological and pathophysiological BMP signaling.


Activin B can signal through both ALK4 and ALK7 in gonadotrope cells.

  • Daniel J Bernard‎ et al.
  • Reproductive biology and endocrinology : RB&E‎
  • 2006‎

Activins stimulate pituitary FSH synthesis via transcriptional regulation of the FSHbeta subunit gene (Fshb). Like other members of the TGFbeta superfamily, these ligands signal through complexes of type I and type II receptor serine/threonine kinases. The type I receptors, or activin receptor-like kinases (ALKs), propagate intracellular signals upon ligand binding and phosphorylation by associated type II receptors. ALK4 is generally regarded as the type I receptor for activins; however, recent data suggested that activin B and AB might also signal through ALK7. Here, we examined a role for ALK7 in activin B-regulated Fshb transcription.


Adenovirus‑mediated knockdown of activin A receptor type 2A attenuates immune‑induced hepatic fibrosis in mice and inhibits interleukin‑17‑induced activation of primary hepatic stellate cells.

  • Hongjun Zhang‎ et al.
  • International journal of molecular medicine‎
  • 2018‎

Fibrosis induces a progressive loss of liver function, thus leading to organ failure. Activins are secreted proteins that belong to the transforming growth factor (TGF)‑β superfamily, which initiate signaling by binding to their two type II receptors: Activin A receptor type 2A (ACVR2A) and activin A receptor type 2B. Previous studies that have explored the mechanisms underlying immune‑induced hepatic fibrosis have mainly focused on TGF‑β signaling, not activin signaling. To investigate the role of the activin pathway in this disease, adenovirus particles containing short hairpin (sh)RNA targeting ACVR2A mRNA (Ad‑ACVR2A shRNA) were administered to mice, which were chronically treated with concanavalin A (Con A). The pathological changes in the liver were evaluated with hematoxylin/eosin staining, Masson trichrome staining and immunohistochemical assay. The results detected an increase in serum activin A and liver ACVR2A in Con A‑treated animals. Conversely, liver function was partially restored and fibrotic injury was attenuated when activin signaling was blocked. In addition, the activation of hepatic stellate cells (HSCs) in response to Con A was suppressed by Ad‑ACVR2A shRNA, as evidenced by decreased α‑smooth muscle actin, and type I and IV collagen expression. Furthermore, primary mouse HSCs (mHSCs) were activated when exposed to interleukin (IL)‑17A or IL‑17F, which are two major cytokines produced by cluster of differentiation 4+ T helper 17 cells. The levels of activin A, type I and IV collagen were determined with ELISA kits and the expression of fibrotic molecules was determined with western blot analysis. Conversely, blocking activin/ACVR2A impaired the potency of HSCs to produce collagens in response to IL‑17s. In addition, C terminus phosphorylation of Smad2 on Ser465 and Ser467, induced by either Con A in the liver or by IL‑17s in mHSCs, was partly inhibited when activin A/ACVR2A signaling was suppressed. Collectively, the present study demonstrated an involvement of activated activin A/ACVR2A/Smad2 signaling in immune‑induced hepatic fibrosis.


Bone Morphogenetic Protein 2 Promotes Human Trophoblast Cell Invasion by Inducing Activin A Production.

  • Hong-Jin Zhao‎ et al.
  • Endocrinology‎
  • 2018‎

Bone morphogenetic protein (BMP) 2 and activin A belong to the TGF-β superfamily and are highly expressed in human endometrium and placenta. Studies have demonstrated that activin A and BMP2 play essential roles in the process of early embryo implantation by promoting human trophoblast cell invasion. However, whether activin A production can be regulated by BMP2 in human trophoblast cells remains unknown. The aim of our study was to determine the effects of BMP2 on activin A production and its role in human trophoblast invasion. Primary human extravillous trophoblast (EVT) cells were used as study models. BMP2 treatment significantly increased inhibin βA (INHBA) mRNA levels and activin A production without altering inhibin α and inhibin βB levels. BMP2-induced EVT cell invasion was attenuated by knockdown of INHBA. The increased INHBA transcription and activin A production by BMP2 were blocked by the type I receptor activin receptor (ACVR)-like kinase 2 (ALK2) and activin receptor-like kinase 3 (ALK3) inhibitor dorsomorphin homolog 1 (DMH-1). BMP2-induced INHBA upregulation was also inhibited by knockdown of type I receptor ALK3 or combined knockdown of type II receptors for BMP2 (BMPR2) and ACVR2A. Whereas BMP2 initiated both canonical SMAD1/5/8 and noncanonical SMAD2/3 signaling, only knockdown of SMAD4, but not SMAD2 and SMAD3, abolished the effects of BMP2 on INHBA. Our results show that BMP2 increases human trophoblast invasion by upregulating INHBA and activin A production via ALK3-BMPR2/ACVR2A-SMAD1/5/8-SMAD4 signaling.


Mutational Analysis of the Putative Anti-Müllerian Hormone (AMH) Binding Interface on its Type II Receptor, AMHR2.

  • Kaitlin N Hart‎ et al.
  • Endocrinology‎
  • 2020‎

Anti-Müllerian hormone (AMH) or Müllerian inhibiting substance is a unique member of the TGF-β family responsible for development and differentiation of the reproductive system. AMH signals through its own dedicated type II receptor, anti-Müllerian hormone receptor type II (AMHR2), providing an exclusive ligand-receptor pair within the broader TGF-β family. In this study, we used previous structural information to derive a model of AMH bound to AMHR2 to guide mutagenesis studies to identify receptor residues important for AMH signaling. Nonconserved mutations were introduced in AMHR2 and characterized in an AMH-responsive cell-based luciferase assay and native PAGE. Collectively, our results identified several residues important for AMH signaling within the putative ligand binding interface of AMHR2. Our results show that AMH engages AMHR2 at a similar interface to how activin and BMP class ligands bind the type II receptor, ACVR2B; however, there are significant molecular differences at the ligand interface of these 2 receptors, where ACVR2B is mostly hydrophobic and AMHR2 is predominately charged. Overall, this study shows that although the location of ligand binding on the receptor is similar to ACVR2A, ACVR2B, and BMPR2; AMHR2 uses unique ligand-receptor interactions to impart specificity for AMH.


Structural characterization of an activin class ternary receptor complex reveals a third paradigm for receptor specificity.

  • Erich J Goebel‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2019‎

TGFβ family ligands, which include the TGFβs, BMPs, and activins, signal by forming a ternary complex with type I and type II receptors. For TGFβs and BMPs, structures of ternary complexes have revealed differences in receptor assembly. However, structural information for how activins assemble a ternary receptor complex is lacking. We report the structure of an activin class member, GDF11, in complex with the type II receptor ActRIIB and the type I receptor Alk5. The structure reveals that receptor positioning is similar to the BMP class, with no interreceptor contacts; however, the type I receptor interactions are shifted toward the ligand fingertips and away from the dimer interface. Mutational analysis shows that ligand type I specificity is derived from differences in the fingertips of the ligands that interact with an extended loop specific to Alk4 and Alk5. The study also reveals differences for how TGFβ and GDF11 bind to the same type I receptor, Alk5. For GDF11, additional contacts at the fingertip region substitute for the interreceptor interactions that are seen for TGFβ, indicating that Alk5 binding to GDF11 is more dependent on direct contacts. In support, we show that a single residue of Alk5 (Phe84), when mutated, abolishes GDF11 signaling, but has little impact on TGFβ signaling. The structure of GDF11/ActRIIB/Alk5 shows that, across the TGFβ family, different mechanisms regulate type I receptor binding and specificity, providing a molecular explanation for how the activin class accommodates low-affinity type I interactions without the requirement of cooperative receptor interactions.


High circulating activin A level is associated with tumor progression and predicts poor prognosis in lung adenocarcinoma.

  • Mir Alireza Hoda‎ et al.
  • Oncotarget‎
  • 2016‎

Activin A (ActA)/follistatin (FST) signaling has been shown to be deregulated in different tumor types including lung adenocarcinoma (LADC). Here, we report that serum ActA protein levels are significantly elevated in LADC patients (n=64) as compared to controls (n=46, p=0.015). ActA levels also correlated with more advanced disease stage (p<0.0001) and T (p=0.0035) and N (p=0.0002) factors. M1 patients had significantly higher ActA levels than M0 patients (p<0.001). High serum ActA level was associated with poor overall survival (p<0.0001) and was confirmed as an independent prognostic factor (p=0.004). Serum FST levels were increased only in female LADC patients (vs. female controls, p=0.031). Two out of five LADC cell lines secreted biologically active ActA, while FST was produced in all of them. Transcripts of both type I and II ActA receptors were detected in all five LADC cell lines. In conclusion, our study does not only suggest that measuring blood ActA levels in LADC patients might improve the prediction of prognosis, but also indicates that this parameter might be a novel non-invasive biomarker for identifying LADC patients with organ metastases.


Terminal differentiation of human granulosa cells as luteinization is reversed by activin-A through silencing of Jnk pathway.

  • Gamze Bildik‎ et al.
  • Cell death discovery‎
  • 2020‎

Molecular mechanisms underlying luteinization (terminal differentiation of granulosa and theca cells after ovulation) and luteolysis (demise of corpus luteum) are poorly understood in human ovary. Here we report that activin-A, after binding to its cognate receptors induces a functional luteolytic state and reverses luteinization phenotype by downregulating the expression of the steroidogenic enzymes, LH receptor and VEGF and reducing estradiol (E2) progesterone (P4) production and upregulating FSH receptor and cyclin D1 expression in human primary luteinized granulosa cells. Further, this action of activin-A involves downregulation of JNK signaling pathway and is opposite to that of human chorionic gonadotropin (hCG), which acts as a luteotropic hormone and improves luteal function through the activation of JNK pathway in the same cell type. Reversal of luteinization phenotype in luteal granulosa cells by activin-A potentially makes this hormone an attractive candidate for use under certain clinical situations, where induction of luteolysis and rapid reduction of endogenous sex steroid levels are beneficial such as ovarian hyperstimulation syndrome (OHSS), in which the ovaries hyper-respond to gonadotropin stimulation by producing too many growing follicles along with development of ascites, pleural effusion, and hemo-concentrations as a result of increased vascular permeability and leakage of intravascular volume into third spaces. Our work unveils a previously undefined role for activin-A and JNK signaling pathway in human corpus luteum biology, that might have a direct clinical impact in assisted reproductive technologies.


Activin B induces human endometrial cancer cell adhesion, migration and invasion by up-regulating integrin β3 via SMAD2/3 signaling.

  • Siyuan Xiong‎ et al.
  • Oncotarget‎
  • 2015‎

Endometrial cancer is the fourth most common female cancer and the most common gynecological malignancy. Although it comprises only ~10% of all endometrial cancers, the serous histological subtype accounts for ~40% of deaths due to its aggressive behavior and propensity to metastasize. Histopathological studies suggest that elevated expression of activin/inhibin βB subunit is associated with reduced survival in non-endometrioid endometrial cancers (type II, mostly serous). However, little is known about the specific roles and mechanisms of activin B (βB dimer) in serous endometrial cancer growth and progression. In the present study, we examined the biological functions of activin B in type II endometrial cancer cell lines, HEC-1B and KLE. Our results demonstrate that treatment with activin B increases cell migration, invasion and adhesion to vitronectin, but does not affect cell viability. Moreover, we show that activin B treatment increases integrin β3 mRNA and protein levels via SMAD2/3-SMAD4 signaling. Importantly, siRNA knockdown studies revealed that integrin β3 is required for basal and activin B-induced cell migration, invasion and adhesion. Our results suggest that activin B-SMAD2/3-integrin β3 signaling could contribute to poor patient survival by promoting the invasion and/or metastasis of type II endometrial cancers.


Anti-Müllerian hormone concentration regulates activin receptor-like kinase-2/3 expression levels with opposing effects on ovarian cancer cell survival.

  • Maëva Chauvin‎ et al.
  • International journal of oncology‎
  • 2021‎

Anti‑Müllerian hormone (AMH) type II receptor (AMHRII) and the AMH/AMHRII signaling pathway are potential therapeutic targets in ovarian carcinoma. Conversely, the role of the three AMH type I receptors (AMHRIs), namely activin receptor‑like kinase (ALK)2, ALK3 and ALK6, in ovarian cancer remains to be clarified. To determine the respective roles of these three AMHRIs, the present study used four ovarian cancer cell lines (COV434‑AMHRII, SKOV3‑AMHRII, OVCAR8, KGN) and primary cells isolated from tumor ascites from patients with ovarian cancer. The results demonstrated that ALK2 and ALK3 may be the two main AMHRIs involved in AMH signaling at physiological endogenous and supraphysiological exogenous AMH concentrations, respectively. Supraphysiological AMH concentrations (25 nM recombinant AMH) were associated with apoptosis in all four cell lines and decreased clonogenic survival in COV434‑AMHRII and SKOV3‑AMHRII cells. These biological effects were induced via ALK3 recruitment by AMHRII, as ALK3‑AMHRII dimerization was favored at increasing AMH concentrations. By contrast, ALK2 was associated with AMHRII at physiological endogenous concentrations of AMH (10 pM). Based on these results, tetravalent IgG1‑like bispecific antibodies (BsAbs) against AMHRII and ALK2, and against AMHRII and ALK3 were designed and evaluated. In vivo, COV434‑AMHRII tumor cell xenograft growth was significantly reduced in all BsAb‑treated groups compared with that in the vehicle group (P=0.018 for BsAb 12G4‑3D7; P=0.001 for all other BsAbs). However, the growth of COV434‑AMHRII tumor cell xenografts was slower in mice treated with the anti‑AMRII‑ALK2 BsAb 12G4‑2F9 compared with that in animals that received a control BsAb that targeted AMHRII and CD5 (P=0.048). These results provide new insights into type I receptor specificity in AMH signaling pathways and may lead to an innovative therapeutic approach to modulate AMH signaling using anti‑AMHRII/anti‑AMHRI BsAbs.


Bone morphogenetic protein 9 (BMP9) and BMP10 enhance tumor necrosis factor-α-induced monocyte recruitment to the vascular endothelium mainly via activin receptor-like kinase 2.

  • Claudia-Gabriela Mitrofan‎ et al.
  • The Journal of biological chemistry‎
  • 2017‎

Bone morphogenetic proteins 9 and 10 (BMP9/BMP10) are circulating cytokines with important roles in endothelial homeostasis. The aim of this study was to investigate the roles of BMP9 and BMP10 in mediating monocyte-endothelial interactions using an in vitro flow adhesion assay. Herein, we report that whereas BMP9/BMP10 alone had no effect on monocyte recruitment, at higher concentrations both cytokines synergized with tumor necrosis factor-α (TNFα) to increase recruitment to the vascular endothelium. The BMP9/BMP10-mediated increase in monocyte recruitment in the presence of TNFα was associated with up-regulated expression levels of E-selectin, vascular cell adhesion molecule (VCAM-1), and intercellular adhesion molecule 1 (ICAM-1) on endothelial cells. Using siRNAs to type I and II BMP receptors and the signaling intermediaries (Smads), we demonstrated a key role for ALK2 in the BMP9/BMP10-induced surface expression of E-selectin, and both ALK1 and ALK2 in the up-regulation of VCAM-1 and ICAM-1. The type II receptors, BMPR-II and ACTR-IIA were both required for this response, as was Smad1/5. The up-regulation of cell surface adhesion molecules by BMP9/10 in the presence of TNFα was inhibited by LDN193189, which inhibits ALK2 but not ALK1. Furthermore, LDN193189 inhibited monocyte recruitment induced by TNFα and BMP9/10. BMP9/10 increased basal IκBα protein expression, but did not alter p65/RelA levels. Our findings suggest that higher concentrations of BMP9/BMP10 synergize with TNFα to induce the up-regulation of endothelial selectins and adhesion molecules, ultimately resulting in increased monocyte recruitment to the vascular endothelium. This process is mediated mainly via the ALK2 type I receptor, BMPR-II/ACTR-IIA type II receptors, and downstream Smad1/5 signaling.


Induction of transforming growth factor beta receptors following focal ischemia in the rat brain.

  • Gabriella Pál‎ et al.
  • PloS one‎
  • 2014‎

Transforming growth factor-βs (TGF-βs) regulate cellular proliferation, differentiation, and survival. TGF-βs bind to type I (TGF-βRI) and II receptors (TGF-βRII), which are transmembrane kinase receptors, and an accessory type III receptor (TGF-βRIII). TGF-β may utilize another type I receptor, activin-like kinase receptor (Alk1). TGF-β is neuroprotective in the middle cerebral artery occlusion (MCAO) model of stroke. Recently, we reported the expression pattern of TGF-β1-3 after MCAO. To establish how TGF-βs exert their actions following MCAO, the present study describes the induction of TGF-βRI, RII, RIII and Alk1 at 24 h, 72 h and 1 mo after transient 1 h MCAO as well as following 24 h permanent MCAO using in situ hybridization histochemistry. In intact brain, only TGF-βRI had significant expression: neurons in cortical layer IV contained TGF-βRI. At 24 h after the occlusion, no TGF-β receptors showed induction. At 72 h following MCAO, all four types of TGF-β receptors were induced in the infarct area, while TGF-βRI and RII also appeared in the penumbra. Most cells with elevated TGF-βRI mRNA levels were microglia. TGF-βRII co-localized with both microglial and endothelial markers while TGF-βRIII and Alk1 were present predominantly in endothels. All four TGF-β receptors were induced within the lesion 1 mo after the occlusion. In particular, TGF-βRIII was further induced as compared to 72 h after MCAO. At this time point, TGF-βRIII signal was predominantly not associated with blood vessels suggesting its microglial location. These data suggest that TGF-β receptors are induced after MCAO in a timely and spatially regulated fashion. TGF-β receptor expression is preceded by increased TGF-β expression. TGF-βRI and RII are likely to be co-expressed in microglial cells while Alk1, TGF-βRII, and RIII in endothels within the infarct where TGF-β1 may be their ligand. At later time points, TGF-βRIII may also appear in glial cells to potentially affect signal transduction via TGF-βRI and RII.


Bone morphogenetic protein 2 stimulates noncanonical SMAD2/3 signaling via the BMP type 1A receptor in gonadotrope-like cells: implications for FSH synthesis.

  • Ying Wang‎ et al.
  • Endocrinology‎
  • 2014‎

FSH is an essential regulator of mammalian reproduction. Its synthesis by pituitary gonadotrope cells is regulated by multiple endocrine and paracrine factors, including TGFβ superfamily ligands, such as the activins and inhibins. Activins stimulate FSH synthesis via transcriptional regulation of its β-subunit gene (Fshb). More recently, bone morphogenetic proteins (BMPs) were shown to stimulate murine Fshb transcription alone and in synergy with activins. BMP2 signals via its canonical type I receptor, BMPR1A (or activin receptor-like kinase 3 [ALK3]), and SMAD1 and SMAD5 to stimulate transcription of inhibitor of DNA binding proteins. Inhibitor of DNA binding proteins then potentiate the actions of activin-stimulated SMAD3 to regulate the Fshb gene in the gonadotrope-like LβT2 cell line. Here, we report the unexpected observation that BMP2 also stimulates the SMAD2/3 pathway in these cells and that it does so directly via ALK3. Indeed, this novel, noncanonical ALK3 activity is completely independent of ALK4, ALK5, and ALK7, the type I receptors most often associated with SMAD2/3 pathway activation. Induction of the SMAD2/3 pathway by ALK3 is dependent upon its own previous activation by associated type II receptors, which phosphorylate conserved serine and threonine residues in the ALK3 juxtamembrane glycine-serine-rich domain. ALK3 signaling via SMAD3 is necessary for the receptor to stimulate Fshb transcription, whereas its activation of the SMAD1/5/8 pathway alone is insufficient. These data challenge current dogma that ALK3 and other BMP type I receptors signal via SMAD1, SMAD5, and SMAD8 and not SMAD2 or SMAD3. Moreover, they suggest that BMPs and activins may use similar intracellular signaling mechanisms to activate the murine Fshb promoter in immortalized gonadotrope-like cells.


Type III Transforming Growth Factor-β Receptor RNA Interference Enhances Transforming Growth Factor β3-Induced Chondrogenesis Signaling in Human Mesenchymal Stem Cells.

  • Shuhui Zheng‎ et al.
  • Stem cells international‎
  • 2018‎

The type III transforming growth factor-β (TGF-β) receptor (TβRIII), a coreceptor of the TGF-β superfamily, is known to bind TGF-βs and regulate TGF-β signaling. However, the regulatory roles of TβRIII in TGF-β-induced mesenchymal stem cell (MSC) chondrogenesis have not been explored. The present study examined the effect of TβRIII RNA interference (RNAi) on TGF-β3-induced human MSC (hMSC) chondrogenesis and possible signal mechanisms. A lentiviral expression vector containing TβRIII small interfering RNA (siRNA) (SiTβRIII) or a control siRNA (SiNC) gene was constructed and infected into hMSCs. The cells were cultured in chondrogenic medium containing TGF-β3 or control medium. TβRIII RNAi significantly enhanced TGF-β3-induced chondrogenic differentiation of hMSCs, the ratio of type II (TβRII) to type I (TβRI) TGF-β receptors, and phosphorylation levels of Smad2/3 as compared with cells infected with SiNC. An inhibitor of the TGF-β signal, SB431542, not only inhibited TβRIII RNAi-stimulated TGF-β3-mediated Smad2/3 phosphorylation but also inhibited the effects of TβRIII RNAi on TGF-β3-induced chondrogenic differentiation. These results demonstrate that TβRIII RNAi enhances TGF-β3-induced chondrogenic differentiation in hMSCs by activating TGF-β/Smad2/3 signaling. The finding points to the possibility of modifying MSCs by TβRIII knockdown as a potent future strategy for cell-based cartilage tissue engineering.


Structural and functional evidences for a type 1 TGF-beta sensu stricto receptor in the lophotrochozoan Crassostrea gigas suggest conserved molecular mechanisms controlling mesodermal patterning across bilateria.

  • A Herpin‎ et al.
  • Mechanisms of development‎
  • 2005‎

The transforming growth factor beta (TGFbeta) superfamily includes bone morphogenetic proteins, activins and TGF-betasensu stricto (s.s.). These ligands have been shown to play a key role in numerous biological processes including early embryonic development and immune regulation. They transduce their signal through a hetromeric complex of type I and type II receptors. Such receptors have been identified in ecdysozoans but none have been found as yet in the other major protostomal clade, the lophotrochozoans. Here, we report the identification of the first lophotrochozoan TGFbetas.s. type I receptor (Cg-TGFbetaRI) from the mollusk Crassostrea gigas. The phylogenetic and structural analyses as well as the expression pattern during early development suggest Cg-TGFbetaRI to belong to the TGFbetas.s./activin type I receptor clade and functional studies corroborate these deductions. The use of the zebrafish embryo as a reporter organism reveals that either Cg-TGFbetaRI or its dominant negative acting truncated form, when overexpressed during gastrulation, resulted in a range of phenotypes displaying severe disturbance of anterioposterior patterning due to a strong modulation of ventrolateral mesoderm patterning. Finally, a Cg-TGFbetaRI cytokine activity during immune regulation in C. gigas has been investigated by real-time PCR in haemocytes and mantle edge during an in vivo bacterial LPS challenge. One piece of evidence from this study suggests that the molecular mechanisms controlling mesodermal patterning and some immune regulations across all bilateria could be conserved through a functional TGF-beta s.s. pathway in lophotrochozoans.


Utilizing BMP-2 muteins for treatment of multiple myeloma.

  • Axel Seher‎ et al.
  • PloS one‎
  • 2017‎

Multiple myeloma (MM) represents a haematological cancer characterized by the pathological hyper proliferation of antibody-producing B-lymphocytes. Patients typically suffer from kidney malfunction and skeletal disorders. In the context of MM, the transforming growth factor β (TGFβ) member Activin A was recently identified as a promoter of both accompanying symptoms. Because studies have shown that bone morphogenetic protein (BMP)-2-mediated activities are counteracted by Activin A, we analysed whether BMP2, which also binds to the Activin A receptors ActRII and ActRIIB but activates the alternative SMAD-1/5/8 pathway, can be used to antagonize Activin A activities, such as in the context of MM. Therefore three BMP2 derivatives were generated with modified binding activities for the type II (ActRIIB) and/or type I receptor (BMPRIA) showing either increased or decreased BMP2 activity. In the context of MM these BMP2 muteins show two functionalities since they act as a) an anti-proliferative/apoptotic agent against neoplastic B-cells, b) as a bone-formation promoting growth factor. The molecular basis of both activities was shown in two different cellular models to clearly rely on the properties of the investigated BMP2 muteins to compete for the binding of Activin A to the Activin type II receptors. The experimental outcome suggests new therapeutic strategies using BMP2 variants in the treatment of MM-related pathologies.


Functional characterization of a unique mutant of ALK2, p.K400E, that is associated with a skeletal disorder, diffuse idiopathic skeletal hyperostosis.

  • Sho Tsukamoto‎ et al.
  • Bone‎
  • 2020‎

Bone morphogenetic protein (BMP) signaling regulates the physiological and pathological development of skeletal tissues. Activin receptor-like kinase 2 (ALK2) is a BMP type I transmembrane serine/threonine kinase receptor. Recently, a p.K400E mutation was found in ALK2 in a patient with diffuse idiopathic skeletal hyperostosis (DISH), which is a disorder characterized by calcification and ossification of spinal ligaments and entheses. We report here the functional characterization of ALK2 p.K400E in vitro. Cells overexpressing ALK2 p.K400E activated BMP signaling in response to osteogenic BMP ligands. However, ALK2 p.K400E was not activated by a nonosteogenic ligand, Activin A. BMP signaling through ALK2 p.K400E was further enhanced by the coexpression of a BMP type II receptor. The type II receptor increased the phosphorylation level of ALK2 p.K400E, suggesting that ALK2 p.K400E is a hypersensitive mutant to the BMP type II receptor kinases. Our findings suggest that pathological calcification and ossification in DISH are caused by overactivated BMP signaling through ALK2 p.K400E enhanced by type II receptors in response to osteogenic BMPs rather than Activin A.


Plasma Proteomics of COVID-19-Associated Cardiovascular Complications: Implications for Pathophysiology and Therapeutics.

  • Jason D Roh‎ et al.
  • JACC. Basic to translational science‎
  • 2022‎

To gain insights into the mechanisms driving cardiovascular complications in COVID-19, we performed a case-control plasma proteomics study in COVID-19 patients. Our results identify the senescence-associated secretory phenotype, a marker of biological aging, as the dominant process associated with disease severity and cardiac involvement. FSTL3, an indicator of senescence-promoting Activin/TGFβ signaling, and ADAMTS13, the von Willebrand Factor-cleaving protease whose loss-of-function causes microvascular thrombosis, were among the proteins most strongly associated with myocardial stress and injury. Findings were validated in a larger COVID-19 patient cohort and the hamster COVID-19 model, providing new insights into the pathophysiology of COVID-19 cardiovascular complications with therapeutic implications.


Plasma Proteomics of COVID-19 Associated Cardiovascular Complications: Implications for Pathophysiology and Therapeutics.

  • Jason Roh‎ et al.
  • Research square‎
  • 2021‎

Cardiovascular complications are common in COVID-19 and strongly associated with disease severity and mortality. However, the mechanisms driving cardiac injury and failure in COVID-19 are largely unknown. We performed plasma proteomics on 80 COVID-19 patients and controls, grouped according to disease severity and cardiac involvement. Findings were validated in 305 independent COVID-19 patients and investigated in an animal model. Here we show that senescence-associated secretory proteins, markers of biological aging, strongly associate with disease severity and cardiac involvement even in age-matched cohorts. FSTL3, an indicator of Activin/TGFβ signaling, was the most significantly upregulated protein associated with the heart failure biomarker, NTproBNP (β = 0.4;p adj =4.6x10 - 7 ), while ADAMTS13, a vWF-cleaving protease whose loss-of-function causes microvascular thrombosis, was the most downregulated protein associated with myocardial injury (β=-0.4;p adj =8x10 - 7 ). Mendelian randomization supported a causal role for ADAMTS13 in myocardial injury. These data provide important new insights into the pathophysiology of COVID-19 cardiovascular complications with therapeutic implications.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: