Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 90 papers

Regulation of DNA replication and chromosomal polyploidy by the MLL-WDR5-RBBP5 methyltransferases.

  • Fei Lu‎ et al.
  • Biology open‎
  • 2016‎

DNA replication licensing occurs on chromatin, but how the chromatin template is regulated for replication remains mostly unclear. Here, we have analyzed the requirement of histone methyltransferases for a specific type of replication: the DNA re-replication induced by the downregulation of either Geminin, an inhibitor of replication licensing protein CDT1, or the CRL4CDT2 ubiquitin E3 ligase. We found that siRNA-mediated reduction of essential components of the MLL-WDR5-RBBP5 methyltransferase complexes including WDR5 or RBBP5, which transfer methyl groups to histone H3 at K4 (H3K4), suppressed DNA re-replication and chromosomal polyploidy. Reduction of WDR5/RBBP5 also prevented the activation of H2AX checkpoint caused by re-replication, but not by ultraviolet or X-ray irradiation; and the components of MLL complexes co-localized with the origin recognition complex (ORC) and MCM2-7 replicative helicase complexes at replication origins to control the levels of methylated H3K4. Downregulation of WDR5 or RBBP5 reduced the methylated H3K4 and suppressed the recruitment of MCM2-7 complexes onto replication origins. Our studies indicate that the MLL complexes and H3K4 methylation are required for DNA replication but not for DNA damage repair.


Astragaloside IV regulates differentiation and induces apoptosis of activated CD4+ T cells in the pathogenesis of experimental autoimmune encephalomyelitis.

  • Liu Yang‎ et al.
  • Toxicology and applied pharmacology‎
  • 2019‎

CD4+ T cells, especially T-helper (Th) cells (Th1, Th2 and Th17) and regulatory T cells (Treg) play pivotal role in the pathogenesis of multiple sclerosis (MS), a demyelinating autoimmune disease occurring in central nervous system (CNS). Astragaloside IV (ASI, CAS: 84687-43-4) is one of the saponins isolated from Astragalus membranceus, a traditional Chinese medicine with immunomodulatory effect. So far, whether ASI has curative effect on experimental autoimmune encephalomyelitis (EAE), an animal model of MS, and how it affects the subsets of CD4+ T cells, as well as the underlying mechanism have not been clearly elucidated. In the present study, ASI was found to ameliorate the progression and hamper the recurrence of EAE effectively in the treatment regimens. It significantly reduced the demyelination and inflammatory infiltration of CNS in EAE mice by suppressing the percentage of Th1 and Th17 cells, which was closely associated with the inhibition of JAK/STAT and NF-κB signaling pathways. ASI also increased the percentage of Treg cells in spleen and CNS, which was accompanied by elevated Foxp3. However, in vitro experiments disclosed that ASI could regulate the differentiation of Th17 and Treg cells but not Th1 cells. In addition, it induced the apoptosis of MOG-stimulated CD4+ T cells probably through modulating STAT3/Bcl-2/Bax signaling pathways. Together, our findings suggested that ASI can modulate the differentiation of autoreactive CD4+ T cells and is a potential prodrug or drug for the treatment of MS and other similar autoimmune diseases.


Single-Cell RNA-Seq Analysis Uncovers Distinct Functional Human NKT Cell Sub-Populations in Peripheral Blood.

  • Li Zhou‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2020‎

Vα24-invariant human natural killer T (NKT) cells comprise a unique subset of CD1d-restricted T cells with potent immune regulatory function and are involved in the development of a variety of human diseases. However, the lack of comprehensive molecular subset identities limits their objective classification and clinical application. Using unbiased single-cell RNA sequencing (scRNA-seq) of over 4000 unstimulated and 7000 stimulated human peripheral blood NKT cells, we identified four and five clusters of NKT cells from each NKT group, respectively. Our study uncovers multiple previously unrecognized NKT subsets with potential functional specificities, including a cluster of NKT cells with regulatory T cell property. Flow cytometry and Ingenuity Pathway Analysis confirmed the existence of these NKT populations and indicated the related functional capacities. Our study provides the unbiased and more comprehensive molecular identities of human NKT subsets, which will eventually lead the way to tailored therapies targeting selected NKT subsets.


Hippocampal mRNA expression profiling in mice exposed to chronic unpredictable mild stress.

  • Yanlin Tao‎ et al.
  • Brain research bulletin‎
  • 2020‎

Depression is a state of low mood and aversion to activity, affecting a person's thoughts, behavior, motivation, feelings and sense of well-being, which is associated with dramatical gene expression changes in hippocampus. Rodents induced by chronic unpredictable mild stress (CUMS) demonstrate typical depression-like behaviors similar to clinical patients, therefore, are commonly used as a model for depression and antidepressant study. In order to enhance our understanding of the molecular mechanisms of the pathogenesis of depression, in the present study, the hippocampal mRNA expression profile of mice exposed to CUMS for 5 weeks was sequenced using Illumina HiSeq 4000 platform followed by enrichment analysis, including Hierarchical Cluster, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and protein-protein interaction (PPI) network. Totally, 346 differently expressed mRNAs, including 208 downregulated and 138 upregulated, were identified in the hippocampus of the CUMS mice. KEGG biological pathway analysis showed that the upregulated and downregulated mRNAs were mostly enriched in 29 pathways and 8 pathways, respectively. PPI network analysis exposed that glyceraldehyde 3-phosphate dehydrogenase was the crucial node with high connectivity degree. Additionally, most of these genes in PPI network analysis have previously been linked to energy metabolism and corticosterone responses. Overall, our results indicate the possible novel molecular targets for the therapy of depression.


A prospective multicenter phase II study on the efficacy and safety of dasatinib in the treatment of metastatic gastrointestinal stromal tumors failed by imatinib and sunitinib and analysis of NGS in peripheral blood.

  • Ye Zhou‎ et al.
  • Cancer medicine‎
  • 2020‎

Dasatinib is a small molecule tyrosine kinase inhibitor with multiple targets including kit, PDGFR, and SRC. This prospective study evaluated the efficacy and safety of dasatinib as third-line treatment for gastrointestinal stromal tumors (GIST).


Long-term stability and characteristics of behavioral, biochemical, and molecular markers of three different rodent models for depression.

  • Han Zhu‎ et al.
  • Brain and behavior‎
  • 2020‎

The present study was designed to explore the long-term differences between three mouse models for depression.


Early astragaloside IV administration attenuates experimental autoimmune encephalomyelitis in mice by suppressing the maturation and function of dendritic cells.

  • Liu Yang‎ et al.
  • Life sciences‎
  • 2020‎

Dendritic cells (DCs) actively participate in the pathogenesis of multiple sclerosis (MS), an autoimmune disease. Astragaloside IV (ASI), an active monomer isolated from the Chinese medicine Astragalus membranaceus, has a wide range of pharmacological effects. We aimed to elucidate the effects of ASI on the development of DCs in the early stage of MS/EAE.


Expression and clinical relevance of epithelial and mesenchymal markers in circulating tumor cells from colorectal cancer.

  • Ren Zhao‎ et al.
  • Oncotarget‎
  • 2017‎

Circulating tumor cells (CTCs) with phenotypic hallmarks of epithelial-mesenchymal transition (EMT) reportedly contribute to tumor metastasis in different cancer types. We therefore evaluated the expression of EMT markers in CTCs obtained from a large cohort of Chinese patients with colorectal cancer (CRC) and investigated their clinical relevance. The CanPatrolTM CTC enrichment technique was used to isolate and classify CTCs. CTCs were detected in 1046 of 1203 patients (86.9%), and three phenotypes were identified based on the expression of epithelial and mesenchymal markers: epithelial CTCs, biophenotypic (epithelial/mesenchymal) CTCs, and mesenchymal CTCs. Total CTC numbers positively correlated with both clinical stage and lymph node metastasis and distant metastasis. Furthermore, both biophenotypic and mesenchymal, but not epithelial, CTCs, correlated with the above parameters, suggesting CTCs displaying a mesenchymal phenotype denote more aggressive disease and metastatic potential. This is the first study to demonstrate a significant correlation between CTCs displaying a mesenchymal phenotype and both clinical stage and metastasis in a large cohort of patients with CRC. Our findings suggest that assessment of not only epithelial, but also mesenchymal markers in CTC analyses may offer valuable assistance for tumor staging and metastasis evaluation in patients with CRC.


DDB2 regulates DNA replication through PCNA-independent degradation of CDT2.

  • Xiaojun Wu‎ et al.
  • Cell & bioscience‎
  • 2021‎

Targeting ubiquitin-dependent proteolysis is one of the strategies in cancer therapy. CRLCDT2 and CRLDDB2 are two key E3 ubiquitin ligases involved in DNA replication and DNA damage repair. But CDT2 and DDB2 are opposite prognostic factors in kinds of cancers, and the underlining mechanism needs to be elucidated.


Mobile Plasmid Mediated Transition From Colistin-Sensitive to Resistant Phenotype in Klebsiella pneumoniae.

  • Baoyue Zhang‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Multidrug-resistant bacteria, including carbapenem-resistant Klebsiella pneumoniae (CRKP), are becoming an increasing health crisis worldwide. For CRKP, colistin is regarded as "the last treatment option." In this study, we isolated a clinical CRKP strain named as K. pneumoniae R10-341. Phenotyping analysis showed that this strain could transit from a colistin-sensitive to a resistant phenotype by inserting an IS4 family ISKpn72 element into the colistin-resistance associated mgrB gene. To investigate the mechanism of this transition, we performed genome sequencing analysis of the colistin-sensitive parental strain and found that 12 copies of ISKpn72 containing direct repeats (DR) are located on the chromosome and 1 copy without DR is located on a multidrug-resistant plasmid pR10-341_2. Both types of ISKpn72 could be inserted into the mgrB gene to cause colistin-resistance, though the plasmid-derived ISKpn72 without DR was in higher efficiency. Importantly, we demonstrated that colistin-sensitive K. pneumoniae strain transferred with the ISKpn72 element also obtained the ability to switch from colistin-sensitive to colistin-resistant phenotype. Furthermore, we confirmed that the ISKpn72-containing pR10-341_2 plasmid was able to conjugate, suggesting that the ability of causing colistin-resistant transition is transferable through common conjugation. Our results point to new challenges for both colistin-resistance detection and CRKP treatment.


Artemisia annua water extract attenuates DNCB-induced atopic dermatitis by restraining Th2 cell mediated inflammatory responses in BALB/c mice.

  • Xinyan Han‎ et al.
  • Journal of ethnopharmacology‎
  • 2022‎

Artemisia annua L. (A. annua) is a traditional Chinese medicine that has been used since ancient times to treat malaria, eczema, dermatomycosis, jaundice, and boils. Modern pharmacological studies show that it has immunosuppressive and anti-inflammatory effects. However, the mechanism of A. annua in the treatment of atopic dermatitis (AD) remains unclear.


Atractylon, a novel dopamine 2 receptor agonist, ameliorates Parkinsonian like motor dysfunctions in MPTP-induced mice.

  • Hongli Li‎ et al.
  • Neurotoxicology‎
  • 2022‎

Motor symptoms of Parkinson's disease (PD) are characterized by bradykinesia, resting tremor, rigidity, slow movement, impaired gait and postural instability, resulting from progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Atractylon is a natural furan compound in Atractylodes rhizomes, exhibiting anticancer, anti-inflammation, antiviral and gastroprotective activities, and so on. However, it is still unknown whether atractylon is beneficial to motor dysfunctions of PD.


A Prehepatectomy Circulating Exosomal microRNA Signature Predicts the Prognosis and Adjuvant Chemotherapeutic Benefits in Colorectal Liver Metastasis.

  • Yun Wang‎ et al.
  • Cancers‎
  • 2021‎

The clinical risk score (CRS) for prediction and treatment decision in colorectal liver metastasis (CRLM) is important, but imprecise. Exosomal miRNAs play critical roles in CRLM-related biological behavior. However, an exosomal miRNA score system for predicting posthepatectomy survival and the adjuvant chemotherapy benefit of CRLM remains elusive.


RSPO4-CRISPR alleviates liver injury and restores gut microbiota in a rat model of liver fibrosis.

  • Linghua Yu‎ et al.
  • Communications biology‎
  • 2021‎

Wnt signaling dysfunction and gut dysbiosis may lead to liver fibrosis, yet the underlying mechanisms are not well elucidated. This study demonstrated the role of RSPO4, a Wnt signaling agonist, in liver fibrogenesis and its impact on the gut microbiome. RSPO4 gene in CCl4-induced fibrotic-liver rats was knockout by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) system, with healthy rats served as the control. Tissue samples and hepatic stellate cells (HSCs) isolated from rats were examined for curative effect of RSPO4-CRISPR treatment. Fecal sample were collected and analyzed with 16 S rRNA sequencing. We found RSPO4-CRISPR relieved liver fibrosis in rats and reversed HSC activation. Further, results showed RSPO4-CRISPR tended to restore the microflora composition. Significance species between groups were identified. Bacteroides and Escherichia-Shigella were the key microbes in the model and negative group, whereas Lactobacillus, Romboutsia, and Lachnospiraceae NK4A136 group were abundant in the control. Notably, Bacteroidales S24-7 group and Ruminococcaceae UCG-005 were the significantly enriched in CRISPR group. We show that the microbiome of rats treated with RSPO4-CRISPR presents a trend towards the restoration of the original condition. Our findings pave a new way to evaluate the curative effect of liver fibrosis treatment.


Chronic atrophic gastritis and intestinal metaplasia induced by high-salt and N-methyl-N'-nitro-N-nitrosoguanidine intake in rats.

  • Jing Yin‎ et al.
  • Experimental and therapeutic medicine‎
  • 2021‎

The aim of the present study was to induce chronic atrophic gastritis (CAG) with intestinal metaplasia (IM) in rats by administering saturated salt and methyl-N'-nitro-N-nitrosoguanidine (MNNG) via oral gavage. Changes in gastric mucosal blood microcirculation and activation of the cyclo-oxygenase-2 (COX-2)/hypoxia inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) signaling pathway during CAG and IM development were investigated. After administering saturated salt and MNNG for 25 weeks, mild atrophy was detected in the stomach of model rats using hematoxylin and eosin staining. CAG with IM was successfully induced in the gastric mucosa of the model rats after 35 weeks. Gastric mucosal blood flow was decreased in comparison with controls as early as 15 weeks after treatment to induce CAG and the mRNA expression levels of COX-2, HIF-1α, vascular endothelial growth factor receptor (VEGFR)1 and VEGFR2 were increased in comparison with untreated rats as early as 25 weeks after treatment. HIF-1α, COX-2 and VEGFR2 expression levels were increased as early as 25 weeks after CAG induction treatment when compared to controls and HIF-1α, COX-2, VEGFR1 and VEGFR2 expression levels were significantly increased after 35 weeks. These findings indicated that administering saturated salt and MNNG by gavage for 35 weeks successfully induced CAG and IM in rats. Furthermore, the microcirculation was disturbed before activation of the COX-2/HIF-1α/VEGF signaling pathway.


Total astragalosides promote oligodendrocyte precursor cell differentiation and enhance remyelination in cuprizone-induced mice through suppression of Wnt/β-catenin signaling pathway.

  • Jinfeng Yuan‎ et al.
  • Journal of ethnopharmacology‎
  • 2022‎

Radix Astragali is a traditional Chinese medicine with various pharmacological effects. Total astragalosides (TA), the main effective ingredients in Radix Astragali, exert properties including anti-oxidative stress, anti-neuroinflammation, and neuroprotection. We previously found that TA alleviated experimental autoimmune encephalomyelitis (EAE) progression, a widely used animal model of multiple sclerosis (MS). As a chronic demyelination disease, MS generally manifests myelin loss and fails to myelin regeneration. Regulation of oligodendrocyte progenitor cells (OPCs) differentiation and remyelination is the fundamental strategy for MS treatment. However, whether TA could directly promote OPCs differentiation and remyelination is still unknown.


Tumor-derived lactate promotes resistance to bevacizumab treatment by facilitating autophagy enhancer protein RUBCNL expression through histone H3 lysine 18 lactylation (H3K18la) in colorectal cancer.

  • Weihao Li‎ et al.
  • Autophagy‎
  • 2024‎

Bevacizumab plays an important role in the first and second line treatment for metastatic colorectal cancer (CRC). And induction of hypoxia and the tumors response to it plays an important role in determining the efficacy of antiangiogenic therapy while the connection between them remains unclear. Here, we found that lactate accumulated in the tumor environment of CRC and acted as substrates for histone lactylation, and this process was further induced by cellular enhanced glycolysis in hypoxia. We determined that CRC patients resistant to bevacizumab treatment presented with elevated levels of histone lactylation and inhibition of histone lactylation efficiently suppressed CRC tumorigenesis, progression and survival in hypoxia. Histone lactylation promoted the transcription of RUBCNL/Pacer, facilitating autophagosome maturation through interacting with BECN1 (beclin 1) and mediating the recruitment and function of the class III phosphatidylinositol 3-kinase complex, which had a crucial role in hypoxic cancer cells proliferation and survival. Moreover, combining inhibition of histone lactylation and macroautophagy/autophagy with bevacizumab treatment demonstrated remarkable treatment efficacy in bevacizumab-resistance patients-derived pre-clinical models. These findings delivered a new exploration and important supplement of metabolic reprogramming-epigenetic regulation, and provided a new strategy for improving clinical efficacy of bevacizumab in CRC by inhibition of histone lactylation.Abbreviations: 2-DG: 2-deoxy-D-glucose; BECN1: beclin 1; CQ: chloroquine; CRC: colorectal cancer; DMOG: dimethyloxalylglycine; H3K18la: histone H3 lysine 18 lactylation; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; Nala: sodium lactate; PDO: patient-derived orgnoid; PDX: patient-derived xenograft; RUBCNL/Pacer: rubicon like autophagy enhancer; SQSTM1/p62: sequestosome 1.


Deletion of mouse FXR gene disturbs multiple neurotransmitter systems and alters neurobehavior.

  • Fei Huang‎ et al.
  • Frontiers in behavioral neuroscience‎
  • 2015‎

Farnesoid X receptor (FXR) is a nuclear hormone receptor involved in bile acid synthesis and homeostasis. Dysfunction of FXR is involved in cholestasis and atherosclerosis. FXR is prevalent in liver, gallbladder, and intestine, but it is not yet clear whether it modulates neurobehavior. In the current study, we tested the hypothesis that mouse FXR deficiency affects a specific subset of neurotransmitters and results in an unique behavioral phenotype. The FXR knockout mice showed less depressive-like and anxiety-related behavior, but increased motor activity. They had impaired memory and reduced motor coordination. There were changes of glutamatergic, GABAergic, serotoninergic, and norepinephrinergic neurotransmission in either hippocampus or cerebellum. FXR deletion decreased the amount of the GABA synthesis enzyme GAD65 in hippocampus but increased GABA transporter GAT1 in cerebral cortex. FXR deletion increased serum concentrations of many bile acids, including taurodehydrocholic acid, taurocholic acid, deoxycholic acid (DCA), glycocholic acid (GCA), tauro-α-muricholic acid, tauro-ω-muricholic acid, and hyodeoxycholic acid (HDCA). There were also changes in brain concentrations of taurocholic acid, taurodehydrocholic acid, tauro-ω-muricholic acid, tauro-β-muricholic acid, deoxycholic acid, and lithocholic acid (LCA). Taken together, the results from studies with FXR knockout mice suggest that FXR contributes to the homeostasis of multiple neurotransmitter systems in different brain regions and modulates neurobehavior. The effect appears to be at least partially mediated by bile acids that are known to cross the blood-brain barrier (BBB) inducing potential neurotoxicity.


Biochemical systems identification by a random drift particle swarm optimization approach.

  • Jun Sun‎ et al.
  • BMC bioinformatics‎
  • 2014‎

Finding an efficient method to solve the parameter estimation problem (inverse problem) for nonlinear biochemical dynamical systems could help promote the functional understanding at the system level for signalling pathways. The problem is stated as a data-driven nonlinear regression problem, which is converted into a nonlinear programming problem with many nonlinear differential and algebraic constraints. Due to the typical ill conditioning and multimodality nature of the problem, it is in general difficult for gradient-based local optimization methods to obtain satisfactory solutions. To surmount this limitation, many stochastic optimization methods have been employed to find the global solution of the problem.


Plantago asiatica L. seeds extract protects against cardiomyocyte injury in isoproterenol- induced cardiac hypertrophy by inhibiting excessive autophagy and apoptosis in mice.

  • Wenjing Fan‎ et al.
  • Phytomedicine : international journal of phytotherapy and phytopharmacology‎
  • 2021‎

Cardiac hypertrophy is the early stage of many heart diseases, such as coronary heart disease, hypertension, valvular dysfunction and cardiomyopathy. Cardiomyocyte autophagy and apoptosis play an important role in the process of cardiac hypertrophic response. Plantago asiatica L. seeds extract (PASE) is prepared from a traditional herbal medicine in Asia with tremendous pharmacological activities. However, whether PASE could relieve cardiac hypertrophy has not been elucidated. The present study is aimed to investigate the effect of PASE on cardiac hypertrophy and explore its potential underlying mechanism.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: