Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 65 papers

Tryptophan in the pore of the mechanosensitive channel MscS: assessment of pore conformations by fluorescence spectroscopy.

  • Tim Rasmussen‎ et al.
  • The Journal of biological chemistry‎
  • 2010‎

Structural changes in channel proteins give critical insights required for understanding the gating transitions that underpin function. Tryptophan (Trp) is uniquely sensitive to its environment and can be used as a reporter of conformational changes. Here, we have used site-directed Trp insertion within the pore helices of the small mechanosensitive channel protein, MscS, to monitor conformational transitions. We show that Trp can be inserted in place of Leu at the two pore seal positions, Leu(105) and Leu(109), resulting in functional channels. Using Trp(105) as a probe, we demonstrate that the A106V mutation causes a modified conformation in the purified channel protein consistent with a more open state in solution. Moreover, we show that solubilized MscS changes to a more open conformation in the presence of phospholipids or their lysoforms.


Phospholipid tail asymmetry allows cellular adaptation to anoxic environments.

  • Luca Panconi‎ et al.
  • The Journal of biological chemistry‎
  • 2023‎

Membrane biophysical properties are critical to cell fitness and depend on unsaturated phospholipid acyl tails. These can only be produced in aerobic environments since eukaryotic desaturases require molecular oxygen. This raises the question of how cells maintain bilayer properties in anoxic environments. Using advanced microscopy, molecular dynamics simulations, and lipidomics by mass spectrometry we demonstrated the existence of an alternative pathway to regulate membrane fluidity that exploits phospholipid acyl tail length asymmetry, replacing unsaturated species in the membrane lipidome. We show that the fission yeast, Schizosaccharomyces japonicus, which can grow in aerobic and anaerobic conditions, is capable of utilizing this strategy, whereas its sister species, the well-known model organism Schizosaccharomyces pombe, cannot. The incorporation of asymmetric-tailed phospholipids might be a general adaptation to hypoxic environmental niches.


Low pH and Anionic Lipid-dependent Fusion of Uukuniemi Phlebovirus to Liposomes.

  • David Bitto‎ et al.
  • The Journal of biological chemistry‎
  • 2016‎

Many phleboviruses (family Bunyaviridae) are emerging as medically important viruses. These viruses enter target cells by endocytosis and low pH-dependent membrane fusion in late endosomes. However, the necessary and sufficient factors for fusion have not been fully characterized. We have studied the minimal fusion requirements of a prototypic phlebovirus, Uukuniemi virus, in an in vitro virus-liposome assay. We show that efficient lipid mixing between viral and liposome membranes requires close to physiological temperatures and phospholipids with negatively charged headgroups, such as the late endosomal phospholipid bis(monoacylglycero)phosphate. We further demonstrate that bis(monoacylglycero)phosphate increases Uukuniemi virus fusion beyond the lipid mixing stage. By using electron cryotomography of viral particles in the presence or absence of liposomes, we observed that the conformation of phlebovirus glycoprotein capsomers changes from the native conformation toward a more elongated conformation at a fusion permissive pH. Our results suggest a rationale for phlebovirus entry in late endosomes.


The role of the C-terminal tail region as a plug to regulate XKR8 lipid scramblase.

  • Takaharu Sakuragi‎ et al.
  • The Journal of biological chemistry‎
  • 2024‎

XK-related 8 (XKR8), in complex with the transmembrane glycoprotein basigin, functions as a phospholipid scramblase activated by the caspase-mediated cleavage or phosphorylation of its C-terminal tail. It carries a putative phospholipid translocation path of multiple hydrophobic and charged residues in the transmembrane region. It also has a crucial tryptophan at the exoplasmic end of the path that regulates its scrambling activity. We herein investigated the tertiary structure of the human XKR8-basigin complex embedded in lipid nanodiscs at an overall resolution of 3.66 Å. We found that the C-terminal tail engaged in intricate polar and van der Waals interactions with a groove at the cytoplasmic surface of XKR8. These interactions maintained the inactive state of XKR8. Point mutations to disrupt these interactions strongly enhanced the scrambling activity of XKR8, suggesting that the activation of XKR8 is mediated by releasing the C-terminal tail from the cytoplasmic groove. We speculate that the cytoplasmic tail region of XKR8 functions as a plug to prevent the scrambling of phospholipids.


Phenothiazines alter plasma membrane properties and sensitize cancer cells to injury by inhibiting annexin-mediated repair.

  • Anne Sofie Busk Heitmann‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

Repair of damaged plasma membrane in eukaryotic cells is largely dependent on the binding of annexin repair proteins to phospholipids. Changing the biophysical properties of the plasma membrane may provide means to compromise annexin-mediated repair and sensitize cells to injury. Since, cancer cells experience heightened membrane stress and are more dependent on efficient plasma membrane repair, inhibiting repair may provide approaches to sensitize cancer cells to plasma membrane damage and cell death. Here, we show that derivatives of phenothiazines, which have widespread use in the fields of psychiatry and allergy treatment, strongly sensitize cancer cells to mechanical-, chemical-, and heat-induced injury by inhibiting annexin-mediated plasma membrane repair. Using a combination of cell biology, biophysics, and computer simulations, we show that trifluoperazine acts by thinning the membrane bilayer, making it more fragile and prone to ruptures. Secondly, it decreases annexin binding by compromising the lateral diffusion of phosphatidylserine, inhibiting the ability of annexins to curve and shape membranes, which is essential for their function in plasma membrane repair. Our results reveal a novel avenue to target cancer cells by compromising plasma membrane repair in combination with noninvasive approaches that induce membrane injuries.


Arachidonic acid reverses cholesterol and zinc inhibition of human voltage-gated proton channels.

  • Shuo Han‎ et al.
  • The Journal of biological chemistry‎
  • 2023‎

Unlike other members of the voltage-gated ion channel superfamily, voltage-gated proton (Hv) channels are solely composed of voltage sensor domains without separate ion-conducting pores. Due to their unique dependence on both voltage and transmembrane pH gradients, Hv channels normally open to mediate proton efflux. Multiple cellular ligands were also found to regulate the function of Hv channels, including Zn2+, cholesterol, polyunsaturated arachidonic acid, and albumin. Our previous work showed that Zn2+ and cholesterol inhibit the human voltage-gated proton channel (hHv1) by stabilizing its S4 segment at resting state conformations. Released from phospholipids by phospholipase A2 in cells upon infection or injury, arachidonic acid regulates the function of many ion channels, including hHv1. In the present work, we examined the effects of arachidonic acid on purified hHv1 channels using liposome flux assays and revealed underlying structural mechanisms using single-molecule FRET. Our data indicated that arachidonic acid strongly activates hHv1 channels by promoting transitions of the S4 segment toward opening or "preopening" conformations. Moreover, we found that arachidonic acid even activates hHv1 channels inhibited by Zn2+ and cholesterol, providing a biophysical mechanism to activate hHv1 channels in nonexcitable cells upon infection or injury.


A+-helix of protein C inhibitor (PCI) is a cell-penetrating peptide that mediates cell membrane permeation of PCI.

  • Hanjiang Yang‎ et al.
  • The Journal of biological chemistry‎
  • 2015‎

Protein C inhibitor (PCI) is a serpin with broad protease reactivity. It binds glycosaminoglycans and certain phospholipids that can modulate its inhibitory activity. PCI can penetrate through cellular membranes via binding to phosphatidylethanolamine. The exact mechanism of PCI internalization and the intracellular role of the serpin are not well understood. Here we showed that testisin, a glycosylphosphatidylinositol-anchored serine protease, cleaved human PCI and mouse PCI (mPCI) at their reactive sites as well as at sites close to their N terminus. This cleavage was observed not only with testisin in solution but also with cell membrane-anchored testisin on U937 cells. The cleavage close to the N terminus released peptides rich in basic amino acids. Synthetic peptides corresponding to the released peptides of human PCI (His(1)-Arg(11)) and mPCI (Arg(1)-Ala(18)) functioned as cell-penetrating peptides. Because intact mPCI but not testisin-cleaved mPCI was internalized by Jurkat T cells, a truncated mPCI mimicking testisin-cleaved mPCI was created. The truncated mPCI lacking 18 amino acids at the N terminus was not taken up by Jurkat T cells. Therefore our model suggests that testisin or other proteases could regulate the internalization of PCI by removing its N terminus. This may represent one of the mechanisms regulating the intracellular functions of PCI.


The transcription factor ChREBP links mitochondrial lipidomes to mitochondrial morphology and progression of diabetic kidney disease.

  • Li Li‎ et al.
  • The Journal of biological chemistry‎
  • 2023‎

A substantial body of evidence has established the contributions of both mitochondrial dynamics and lipid metabolism to the pathogenesis of diabetic kidney disease (DKD). However, the precise interplay between these two key metabolic regulators of DKD is not fully understood. Here, we uncover a link between mitochondrial dynamics and lipid metabolism by investigating the role of carbohydrate-response element-binding protein (ChREBP), a glucose-responsive transcription factor and a master regulator of lipogenesis, in kidney podocytes. We find that inducible podocyte-specific knockdown of ChREBP in diabetic db/db mice improves key biochemical and histological features of DKD in addition to significantly reducing mitochondrial fragmentation. Because of the critical role of ChREBP in lipid metabolism, we interrogated whether and how mitochondrial lipidomes play a role in ChREBP-mediated mitochondrial fission. Our findings suggest a key role for a family of ether phospholipids in ChREBP-induced mitochondrial remodeling. We find that overexpression of glyceronephosphate O-acyltransferase, a critical enzyme in the biosynthesis of plasmalogens, reverses the protective phenotype of ChREBP deficiency on mitochondrial fragmentation. Finally, our data also points to Gnpat as a direct transcriptional target of ChREBP. Taken together, our results uncover a distinct mitochondrial lipid signature as the link between ChREBP-induced mitochondrial dynamics and progression of DKD.


Structural determinants of integrin binding to the talin rod.

  • Alexandre R Gingras‎ et al.
  • The Journal of biological chemistry‎
  • 2009‎

The adaptor protein talin serves both to activate the integrin family of cell adhesion molecules and to couple integrins to the actin cytoskeleton. Integrin activation has been shown to involve binding of the talin FERM domain to membrane proximal sequences in the cytoplasmic domain of the integrin beta-subunit. However, a second integrin-binding site (IBS2) has been identified near the C-terminal end of the talin rod. Here we report the crystal structure of IBS2 (residues 1974-2293), which comprises two five-helix bundles, "IBS2-A" (1974-2139) and "IBS2-B" (2140-2293), connected by a continuous helix with a distinct kink at its center that is stabilized by side-chain H-bonding. Solution studies using small angle x-ray scattering and NMR point to a fairly flexible quaternary organization. Using pull-down and enzyme-linked immunosorbent assays, we demonstrate that integrin binding requires both IBS2 domains, as does binding to acidic phospholipids and robust targeting to focal adhesions. We have defined the membrane proximal region of the integrin cytoplasmic domain as the major binding region, although more membrane distal regions are also required for strong binding. Alanine-scanning mutagenesis points to an important electrostatic component to binding. Thermal unfolding experiments show that integrin binding induces conformational changes in the IBS2 module, which we speculate are linked to vinculin and membrane binding.


Allosteric regulation by membranes and hydrophobic subsites in phospholipase A2 enzymes determine their substrate specificity.

  • Edward A Dennis‎
  • The Journal of biological chemistry‎
  • 2022‎

Lipids play critical roles in several major chronic diseases of our times, including those that involve inflammatory sequelae such as metabolic syndrome including obesity, insulin sensitivity, and cardiovascular diseases. However, defining the substrate specificity of enzymes of lipid metabolism is a challenging task. For example, phospholipase A2 (PLA2) enzymes constitute a superfamily of degradative, biosynthetic, and signaling enzymes that all act stereospecifically to hydrolyze and release the fatty acids of membrane phospholipids. This review focuses on how membranes interact allosterically with enzymes to regulate cell signaling and metabolic pathways leading to inflammation and other diseases. Our group has developed "substrate lipidomics" to quantify the substrate phospholipid specificity of each PLA2 and coupled this with molecular dynamics simulations to reveal that enzyme specificity is linked to specific hydrophobic binding subsites for membrane phospholipid substrates. We have also defined unexpected headgroup and acyl chain specificity for each of the major human PLA2 enzymes, which explains the observed specificity at a structural level. Finally, we discovered that a unique hydrophobic binding site-and not each enzyme's catalytic residues or polar headgroup binding site-predominantly determines enzyme specificity. We also discuss how PLA2s release specific fatty acids after allosteric enzyme association with membranes and extraction of the phospholipid substrate, which can be blocked by stereospecific inhibitors. After decades of work, we can now correlate PLA2 specificity and inhibition potency with molecular structure and physiological function.


Docosahexaenoic acid preserves visual function by maintaining correct disc morphology in retinal photoreceptor cells.

  • Hideo Shindou‎ et al.
  • The Journal of biological chemistry‎
  • 2017‎

Docosahexaenoic acid (DHA) has essential roles in photoreceptor cells in the retina and is therefore crucial to healthy vision. Although the influence of dietary DHA on visual acuity is well known and the retina has an abundance of DHA-containing phospholipids (PL-DHA), the mechanisms associated with DHA's effects on visual function are unknown. We previously identified lysophosphatidic acid acyltransferase 3 (LPAAT3) as a PL-DHA biosynthetic enzyme. Here, using comprehensive phospholipid analyses and imaging mass spectroscopy, we found that LPAAT3 is expressed in the inner segment of photoreceptor cells and that PL-DHA disappears from the outer segment in the LPAAT3-knock-out mice. Dynamic light-scattering analysis of liposomes and molecular dynamics simulations revealed that the physical characteristics of DHA reduced membrane-bending rigidity. Following loss of PL-DHA, LPAAT3-knock-out mice exhibited abnormalities in the retinal layers, such as incomplete elongation of the outer segment and decreased thickness of the outer nuclear layers and impaired visual function, as well as disordered disc morphology in photoreceptor cells. Our results indicate that PL-DHA contributes to visual function by maintaining the disc shape in photoreceptor cells and that this is a function of DHA in the retina. This study thus provides the reason why DHA is required for visual acuity and may help inform approaches for overcoming retinal disorders associated with DHA deficiency or dysfunction.


LPGAT1 controls the stearate/palmitate ratio of phosphatidylethanolamine and phosphatidylcholine in sn-1 specific remodeling.

  • Yang Xu‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

Most mammalian phospholipids contain a saturated fatty acid at the sn-1 carbon atom and an unsaturated fatty acid at the sn-2 carbon atom of the glycerol backbone group. While the sn-2 linked chains undergo extensive remodeling by deacylation and reacylation (Lands cycle), it is not known how the composition of saturated fatty acids is controlled at the sn-1 position. Here, we demonstrate that lysophosphatidylglycerol acyltransferase 1 (LPGAT1) is an sn-1 specific acyltransferase that controls the stearate/palmitate ratio of phosphatidylethanolamine (PE) and phosphatidylcholine. Bacterially expressed murine LPGAT1 transferred saturated acyl-CoAs specifically into the sn-1 position of lysophosphatidylethanolamine (LPE) rather than lysophosphatidylglycerol and preferred stearoyl-CoA over palmitoyl-CoA as the substrate. In addition, genetic ablation of LPGAT1 in mice abolished 1-LPE:stearoyl-CoA acyltransferase activity and caused a shift from stearate to palmitate species in PE, dimethyl-PE, and phosphatidylcholine. Lysophosphatidylglycerol acyltransferase 1 KO mice were leaner and had a shorter life span than their littermate controls. Finally, we show that total lipid synthesis was reduced in isolated hepatocytes of LPGAT1 knockout mice. Thus, we conclude that LPGAT1 is an sn-1 specific LPE acyltransferase that controls the stearate/palmitate homeostasis of PE and the metabolites of the PE methylation pathway and that LPGAT1 plays a central role in the regulation of lipid biosynthesis with implications for body fat content and longevity.


αβ T-cell receptor recognition of self-phosphatidylinositol presented by CD1b.

  • Rachel Farquhar‎ et al.
  • The Journal of biological chemistry‎
  • 2023‎

CD1 glycoproteins present lipid-based antigens to T-cell receptors (TCRs). A role for CD1b in T-cell-mediated autoreactivity was proposed when it was established that CD1b can present self-phospholipids with short alkyl chains (∼C34) to T cells; however, the structural characteristics of this presentation and recognition are unclear. Here, we report the 1.9 Å resolution binary crystal structure of CD1b presenting a self-phosphatidylinositol-C34:1 and an endogenous scaffold lipid. Moreover, we also determined the 2.4 Å structure of CD1b-phosphatidylinositol complexed to an autoreactive αβ TCR, BC8B. We show that the TCR docks above CD1b and directly contacts the presented antigen, selecting for both the phosphoinositol headgroup and glycerol neck region via antigen remodeling within CD1b and allowing lateral escape of the inositol moiety through a channel formed by the TCR α-chain. Furthermore, through alanine scanning mutagenesis and surface plasmon resonance, we identified key CD1b residues mediating this interaction, with Glu-80 abolishing TCR binding. We in addition define a role for both CD1b α1 and CD1b α2 molecular domains in modulating this interaction. These findings suggest that the BC8B TCR contacts both the presented phospholipid and the endogenous scaffold lipid via a dual mechanism of corecognition. Taken together, these data expand our understanding into the molecular mechanisms of CD1b-mediated T-cell autoreactivity.


Evidence for membrane microheterogeneity in the sarcoplasmic reticulum of fast twitch skeletal muscle.

  • W B Van Winkle‎ et al.
  • The Journal of biological chemistry‎
  • 1982‎

Sarcoplasmic reticulum (SR) from rabbit back muscles can be readily subfractionated into two morphologically and compositionally different vesicular populations, SRH (heavy) and SRL (light) derived from terminal cisternae and longitudinal SR, respectively. Polyacrylamide gels indicate that SRH contains most of the calsequestrin. Quantitation of freeze-fractured isolated preparations reveals that, while differences in vesicular dimensions are seen in SRH and SRL, the intramembrane particle (Ca2+ ATPase) density is identical. Phospholipid headgroup composition is the same in SRH and SRL, but fatty acyl moieties show significant differences in the ratio of saturated to unsaturated phospholipids in the two fractions. The vesicular dimensions of the purified Ca2+-ATPases, SRHP and SRLP, from the two fractions are identical, but the freeze-fracture particle density is higher in the SRLP fraction. The phospholipid composition remains similar after purification, but the differences in phospholipid fatty acyl composition of the preparations are maintained. SRH and SRHP contain almost twice as much of the unsaturated species as compared to SRL and SRLP. Differences in intramembrane particle density in purified fractions, thermotropic segregation of particles in freeze-fractured purified fractions, as well as differences in turnover of the acyl phosphate, appear to reflect the differences in fatty acyl chain composition of the two SR fractions and provide evidence of microheterogeneity in lipid-protein environment of the SR.


Intermolecular functional coupling between phosphoinositides and the potassium channel KcsA.

  • Takunari Kiya‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

Biological membranes are composed of a wide variety of lipids. Phosphoinositides (PIPns) in the membrane inner leaflet only account for a small percentage of the total membrane lipids but modulate the functions of various membrane proteins, including ion channels, which play important roles in cell signaling. KcsA, a prototypical K+ channel that is small, simple, and easy to handle, has been broadly examined regarding its crystallography, in silico molecular analysis, and electrophysiology. It has been reported that KcsA activity is regulated by membrane phospholipids, such as phosphatidylglycerol. However, there has been no quantitative analysis of the correlation between direct lipid binding and the functional modification of KcsA, and it is unknown whether PIPns modulate KcsA function. Here, using contact bubble bilayer recording, we observed that the open probability of KcsA increased significantly (from about 10% to 90%) when the membrane inner leaflet contained only a small percentage of PIPns. In addition, we found an increase in the electrophysiological activity of KcsA correlated with a larger number of negative charges on PIPns. We further analyzed the affinity of the direct interaction between PIPns and KcsA using microscale thermophoresis and observed a strong correlation between direct lipid binding and the functional modification of KcsA. In conclusion, our approach was able to reconstruct the direct modification of KcsA by PIPns, and we propose that it can also be applied to elucidate the mechanism of modification of other ion channels by PIPns.


The role of ethanolamine phosphate phospholyase in regulation of astrocyte lipid homeostasis.

  • Cory J White‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

Dietary lipid composition has been shown to impact brain morphology, brain development, and neurologic function. However, how diet uniquely regulates brain lipid homeostasis compared with lipid homeostasis in peripheral tissues remains largely uncharacterized. To evaluate the lipid response to dietary changes in the brain, we assessed actively translating mRNAs in astrocytes and neurons across multiple diets. From this data, ethanolamine phosphate phospholyase (Etnppl) was identified as an astrocyte-specific fasting-induced gene. Etnppl catabolizes phosphoethanolamine (PEtN), a prominent headgroup precursor in phosphatidylethanolamine (PE) also found in other classes of neurologically relevant lipid species. Altered Etnppl expression has also previously been associated with humans with mood disorders. We evaluated the relevance of Etnppl in maintaining brain lipid homeostasis by characterizing Etnppl across development and in coregulation with PEtN-relevant genes, as well as determining the impact to the brain lipidome after Etnppl loss. We found that Etnppl expression dramatically increased during a critical window of early brain development in mice and was also induced by glucocorticoids. Using a constitutive knockout of Etnppl (EtnpplKO), we did not observe robust changes in expression of PEtN-related genes. However, loss of Etnppl altered the phospholipid profile in the brain, resulting in increased total abundance of PE and in polyunsaturated fatty acids within PE and phosphatidylcholine species in the brain. Together, these data suggest that brain phospholipids are regulated by the phospholyase action of the enzyme Etnppl, which is induced by dietary fasting in astrocytes.


Implications of conformational flexibility, lipid binding, and regulatory domains in cell-traversal protein CelTOS for apicomplexan migration.

  • Hirdesh Kumar‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

Malaria and other apicomplexan-caused diseases affect millions of humans, agricultural animals, and pets. Cell traversal is a common feature used by multiple apicomplexan parasites to migrate through host cells and can be exploited to develop therapeutics against these deadly parasites. Here, we provide insights into the mechanism of the Cell-traversal protein for ookinetes and sporozoites (CelTOS), a conserved cell-traversal protein in apicomplexan parasites and malaria vaccine candidate. CelTOS has previously been shown to form pores in cell membranes to enable traversal of parasites through cells. We establish roles for the distinct protein regions of Plasmodium vivax CelTOS and examine the mechanism of pore formation. We further demonstrate that CelTOS dimer dissociation is required for pore formation, as disulfide bridging between monomers inhibits pore formation, and this inhibition is rescued by disulfide-bridge reduction. We also show that a helix-destabilizing amino acid, Pro127, allows CelTOS to undergo significant conformational changes to assemble into pores. The flexible C terminus of CelTOS is a negative regulator that limits pore formation. Finally, we highlight that lipid binding is a prerequisite for pore assembly as mutation of a phospholipids-binding site in CelTOS resulted in loss of lipid binding and abrogated pore formation. These findings identify critical regions in CelTOS and will aid in understanding the egress mechanism of malaria and other apicomplexan parasites as well as have implications for studying the function of other essential pore-forming proteins.


Disturbed intramitochondrial phosphatidic acid transport impairs cellular stress signaling.

  • Akinori Eiyama‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

Lipid transfer proteins of the Ups1/PRELID1 family facilitate the transport of phospholipids across the intermembrane space of mitochondria in a lipid-specific manner. Heterodimeric complexes of yeast Ups1/Mdm35 or human PRELID1/TRIAP1 shuttle phosphatidic acid (PA) mainly synthesized in the endoplasmic reticulum (ER) to the inner membrane, where it is converted to cardiolipin (CL), the signature phospholipid of mitochondria. Loss of Ups1/PRELID1 proteins impairs the accumulation of CL and broadly affects mitochondrial structure and function. Unexpectedly and unlike yeast cells lacking the CL synthase Crd1, Ups1-deficient yeast cells exhibit glycolytic growth defects, pointing to functions of Ups1-mediated PA transfer beyond CL synthesis. Here, we show that the disturbed intramitochondrial transport of PA in ups1Δ cells leads to altered unfolded protein response (UPR) and mTORC1 signaling, independent of disturbances in CL synthesis. The impaired flux of PA into mitochondria is associated with the increased synthesis of phosphatidylcholine and a reduced phosphatidylethanolamine/phosphatidylcholine ratio in the ER of ups1Δ cells which suppresses the UPR. Moreover, we observed inhibition of target of rapamycin complex 1 (TORC1) signaling in these cells. Activation of either UPR by ER protein stress or of TORC1 signaling by disruption of its negative regulator, the Seh1-associated complex inhibiting TORC1 complex, increased cytosolic protein synthesis, and restored glycolytic growth of ups1Δ cells. These results demonstrate that PA influx into mitochondria is required to preserve ER membrane homeostasis and that its disturbance is associated with impaired glycolytic growth and cellular stress signaling.


Biophysical analysis of the plant-specific GIPC sphingolipids reveals multiple modes of membrane regulation.

  • Adiilah Mamode Cassim‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

The plant plasma membrane (PM) is an essential barrier between the cell and the external environment, controlling signal perception and transmission. It consists of an asymmetrical lipid bilayer made up of three different lipid classes: sphingolipids, sterols, and phospholipids. The glycosyl inositol phosphoryl ceramides (GIPCs), representing up to 40% of total sphingolipids, are assumed to be almost exclusively in the outer leaflet of the PM. However, their biological role and properties are poorly defined. In this study, we investigated the role of GIPCs in membrane organization. Because GIPCs are not commercially available, we developed a protocol to extract and isolate GIPC-enriched fractions from eudicots (cauliflower and tobacco) and monocots (leek and rice). Lipidomic analysis confirmed the presence of trihydroxylated long chain bases and 2-hydroxylated very long-chain fatty acids up to 26 carbon atoms. The glycan head groups of the GIPCs from monocots and dicots were analyzed by gas chromatograph-mass spectrometry, revealing different sugar moieties. Multiple biophysics tools, namely Langmuir monolayer, ζ-Potential, light scattering, neutron reflectivity, solid state 2H-NMR, and molecular modeling, were used to investigate the physical properties of the GIPCs, as well as their interaction with free and conjugated phytosterols. We showed that GIPCs increase the thickness and electronegativity of model membranes, interact differentially with the different phytosterols species, and regulate the gel-to-fluid phase transition during temperature variations. These results unveil the multiple roles played by GIPCs in the plant PM.


Transcription factor Reb1p regulates DGK1-encoded diacylglycerol kinase and lipid metabolism in Saccharomyces cerevisiae.

  • Yixuan Qiu‎ et al.
  • The Journal of biological chemistry‎
  • 2013‎

In the yeast Saccharomyces cerevisiae, the DGK1-encoded diacylglycerol kinase catalyzes the CTP-dependent phosphorylation of diacylglycerol to form phosphatidate. This enzyme, in conjunction with PAH1-encoded phosphatidate phosphatase, controls the levels of phosphatidate and diacylglycerol for phospholipid synthesis, membrane growth, and lipid droplet formation. In this work, we showed that a functional level of diacylglycerol kinase is regulated by the Reb1p transcription factor. In the electrophoretic mobility shift assay, purified recombinant Reb1p was shown to specifically bind its consensus recognition sequence (CGGGTAA, -166 to -160) in the DGK1 promoter. Analysis of cells expressing the PDGK1-lacZ reporter gene showed that mutations (GT→TG) in the Reb1p-binding sequence caused an 8.6-fold reduction in β-galactosidase activity. The expression of DGK1(reb1), a DGK1 allele containing the Reb1p-binding site mutation, was greatly lower than that of the wild type allele, as indicated by analyses of DGK1 mRNA, Dgk1p, and diacylglycerol kinase activity. In the presence of cerulenin, an inhibitor of de novo fatty acid synthesis, the dgk1Δ mutant expressing DGK1(reb1) exhibited a significant defect in growth as well as in the synthesis of phospholipids from triacylglycerol mobilization. Unlike DGK1, the DGK1(reb1) expressed in the dgk1Δ pah1Δ mutant did not result in the nuclear/endoplasmic reticulum membrane expansion, which occurs in cells lacking phosphatidate phosphatase activity. Taken together, these results indicate that the Reb1p-mediated regulation of diacylglycerol kinase plays a major role in its in vivo functions in lipid metabolism.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: