Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 37 papers out of 37 papers

A non-catalytic N-terminus domain of WRN prevents mitotic telomere deprotection.

  • Diana Romero-Zamora‎ et al.
  • Scientific reports‎
  • 2023‎

Telomeric ends form a loop structure (T-loop) necessary for the repression of ATM kinase activation throughout the normal cell cycle. However, cells undergoing a prolonged mitotic arrest are prone to lose the T-loop, resulting in Aurora B kinase-dependent mitotic telomere deprotection, which was proposed as an anti-tumor mechanism that eliminates precancerous cells from the population. The mechanism of mitotic telomere deprotection has not been elucidated. Here, we show that WRN, a RECQ helicase family member, can suppress mitotic telomere deprotection independently of its exonuclease and helicase activities. Truncation of WRN revealed that N-terminus amino acids 168-333, a region that contains a coiled-coil motif, is sufficient to suppress mitotic telomere deprotection without affecting both mitotic Aurora B-dependent spindle checkpoint and ATM kinase activity. The suppressive activity of the WRN168-333 fragment is diminished in cells partially depleted of TRF2, while WRN is required for complete suppression of mitotic telomere deprotection by TRF2 overexpression. Finally, we found that phosphomimetic but not alanine mutations of putative Aurora B target sites in the WRN168-333 fragment abolished its suppressive effect. Our findings reveal a non-enzymatic function of WRN, which may be regulated by phosphorylation in cells undergoing mitotic arrest. We propose that WRN enhances the protective function of TRF2 to counteract the hypothetical pathway that resolves the mitotic T-loop.


NuSAP modulates the dynamics of kinetochore microtubules by attenuating MCAK depolymerisation activity.

  • Chenyu Li‎ et al.
  • Scientific reports‎
  • 2016‎

Nucleolar and spindle-associated protein (NuSAP) is a microtubule-associated protein that functions as a microtubule stabiliser. Depletion of NuSAP leads to severe mitotic defects, however the mechanism by which NuSAP regulates mitosis remains elusive. In this study, we identify the microtubule depolymeriser, mitotic centromere-associated kinesin (MCAK), as a novel binding partner of NuSAP. We show that NuSAP regulates the dynamics and depolymerisation activity of MCAK. Phosphorylation of MCAK by Aurora B kinase, a component of the chromosomal passenger complex, significantly enhances the interaction of NuSAP with MCAK and modulates the effects of NuSAP on the depolymerisation activity of MCAK. Our results reveal an underlying mechanism by which NuSAP controls kinetochore microtubule dynamics spatially and temporally by modulating the depolymerisation function of MCAK in an Aurora B kinase-dependent manner. Hence, this study provides new insights into the function of NuSAP in spindle formation during mitosis.


hnRNPK S379 phosphorylation participates in migration regulation of triple negative MDA-MB-231 cells.

  • Hsin-Yu Tsai‎ et al.
  • Scientific reports‎
  • 2019‎

We have previously identified a novel Aurora-A-mediated Serine 379 (S379) phosphorylation of a poly(C)-binding protein, hnRNPK, the overexpression of which is frequently observed in various cancers. It is known that the oncogenic Aurora-A kinase promotes the malignancy of cancer cells. This study aims to investigate the unexplored functions of hnRNPK S379 phosphorylation using MDA-MB-231 cells, a triple negative breast cancer cell that has amplification of the Aurora-A kinase gene. Accordingly, we established two cell lines in which the endogenous hnRNPK was replaced with either S379D or S379A hnRNPK respectively. Notably, we found that a phosphorylation-mimic S379D mutant of hnRNPK suppressed cell migration and, conversely, a phosphorylation-defective S379A mutant promoted migration. Moreover, Twist was downregulated upon hnRNPK S379 phosphorylation, whereas β-catenin and MMP12 were increased when there was loss of hnRNPK S379 phosphorylation in MDA-MB-231 cells. Furthermore, S379A hnRNPK increases stability of β-catenin in MDA-MB-231 cells. In conclusion, our results suggest that hnRNPK S379 phosphorylation regulates migration via the EMT signaling pathway.


Screening of compounds to identify novel epigenetic regulatory factors that affect innate immune memory in macrophages.

  • Salisa Benjaskulluecha‎ et al.
  • Scientific reports‎
  • 2022‎

Trained immunity and tolerance are part of the innate immune memory that allow innate immune cells to differentially respond to a second encounter with stimuli by enhancing or suppressing responses. In trained immunity, treatment of macrophages with β-glucan (BG) facilitates the production of proinflammatory cytokines upon lipopolysaccharide (LPS) stimulation. For the tolerance response, LPS stimulation leads to suppressed inflammatory responses during subsequent LPS exposure. Epigenetic reprogramming plays crucial roles in both phenomena, which are tightly associated with metabolic flux. In this study, we performed a screening of an epigenetics compound library that affects trained immunity or LPS tolerance in macrophages using TNFα as a readout. Among the 181 compounds tested, one compound showed suppressive effects, while 2 compounds showed promoting effects on BG-trained TNFα production. In contrast, various inhibitors targeting Aurora kinase, histone methyltransferase, histone demethylase, histone deacetylase and DNA methyltransferase showed inhibitory activity against LPS tolerance. Several proteins previously unknown to be involved in innate immune memory, such as MGMT, Aurora kinase, LSD1 and PRMT5, were revealed. Protein network analysis revealed that the trained immunity targets are linked via Trp53, while LPS tolerance targets form three clusters of histone-modifying enzymes, cell division and base-excision repair. In trained immunity, the histone lysine methyltransferase SETD7 was identified, and its expression was increased during BG treatment. Level of the histone lysine demethylase, LSD1, increased during LPS priming and siRNA-mediated reduction resulted in increased expression of Il1b in LPS tolerance. Taken together, this screening approach confirmed the importance of epigenetic modifications in innate immune memory and provided potential novel targets for intervention.


Efficacy of the novel CDK7 inhibitor QS1189 in mantle cell lymphoma.

  • Yun Jung Choi‎ et al.
  • Scientific reports‎
  • 2019‎

Mantle cell lymphoma (MCL) is typically an aggressive and rare form of non-Hodgkin lymphoma (NHL) with a poor prognosis despite recent advances in immunochemotherapy and targeted therapeutics against NHL. New therapeutic agents are needed for MCL. In this study, we generated a potent inhibitor of cyclin-dependent kinase 7 (CDK7), designated QS1189, and confirmed its anti-cancer effects towards MCL and other lymphomas. QS1189 was highly selective for CDK7 and showed potent anticancer effects in MCL compared to other targeted therapeutic agents, such as ibrutinib and venetoclax. Consistent with a conventional CDK7 inhibitor, QS1189 treatment significantly decreased phosphorylation of the carboxyl-terminal domain of RNA polymerase II and transcription-associated genes. QS1189 induced cell cycle arrest at the G2/M phase and apoptosis. Interestingly, QS1189 overcame the acquired resistance to venetoclax, which is mediated by Bcl-xL. Similarly, QS1189 showed potent tumour cell growth inhibition of various lymphomas. Thus, CDK7 might be a suitable therapeutic target for inhibiting lymphoma, and QS1189 is a promising therapeutic option for various lymphomas and cells with acquired resistance to targeted therapy.


Characterization of subcellular localization of eukaryotic clamp loader/unloader and its regulatory mechanism.

  • Su Hyung Park‎ et al.
  • Scientific reports‎
  • 2021‎

Proliferating cell nuclear antigen (PCNA) plays a critical role as a processivity clamp for eukaryotic DNA polymerases and a binding platform for many DNA replication and repair proteins. The enzymatic activities of PCNA loading and unloading have been studied extensively in vitro. However, the subcellular locations of PCNA loaders, replication complex C (RFC) and CTF18-RFC-like-complex (RLC), and PCNA unloader ATAD5-RLC remain elusive, and the role of their subunits RFC2-5 is unknown. Here we used protein fractionation to determine the subcellular localization of RFC and RLCs and affinity purification to find molecular requirements for the newly defined location. All RFC/RLC proteins were detected in the nuclease-resistant pellet fraction. RFC1 and ATAD5 were not detected in the non-ionic detergent-soluble and nuclease-susceptible chromatin fractions, independent of cell cycle or exogenous DNA damage. We found that small RFC proteins contribute to maintaining protein levels of the RFC/RLCs. RFC1, ATAD5, and RFC4 co-immunoprecipitated with lamina-associated polypeptide 2 (LAP2) α which regulates intranuclear lamin A/C. LAP2α knockout consistently reduced detection of RFC/RLCs in the pellet fraction, while marginally affecting total protein levels. Our findings strongly suggest that PCNA-mediated DNA transaction occurs through regulatory machinery associated with nuclear structures, such as the nuclear matrix.


Toxoplasma gondii-induced host cellular cell cycle dysregulation is linked to chromosome missegregation and cytokinesis failure in primary endothelial host cells.

  • Zahady D Velásquez‎ et al.
  • Scientific reports‎
  • 2019‎

Toxoplasma gondii is a zoonotic and intracellular parasite with fast proliferating properties leading to rapid host cell lysis. T. gondii modulates its host cell on numerous functional levels. T. gondii was previously reported to influence host cellular cell cycle and to dampen host cell division. By using primary endothelial host cells, we show for the first time that T. gondii tachyzoite infections led to increased host cell proliferation and to an enhanced number of multi-nucleated host cells. As detected on DNA content level, parasite infections induced a G2/M cell cycle arrest without affecting expression of G2-specific cyclin B1. In line, parasite-driven impairment mainly concerned mitotic phase of host cells by propagating several functional alterations, such as chromosome segregation errors, mitotic spindle alteration and blockage of cytokinesis progression, with the latter most likely being mediated by the downregulation of the Aurora B kinase expression.


Dacomitinib, a pan-inhibitor of ErbB receptors, suppresses growth and invasive capacity of chemoresistant ovarian carcinoma cells.

  • Majid Momeny‎ et al.
  • Scientific reports‎
  • 2017‎

Epithelial ovarian cancer (EOC) is the most lethal gynaecological malignancy worldwide. Development of chemoresistance and peritoneal dissemination of EOC cells are the major reasons for low survival rate. Targeting signal transduction pathways which promote therapy resistance and metastatic dissemination is the key to successful treatment. Members of the ErbB family of receptors are over-expressed in EOC and play key roles in chemoresistance and invasiveness. Despite this, single-targeted ErbB inhibitors have demonstrated limited activity in chemoresistant EOC. In this report, we show that dacomitinib, a pan-ErbB receptor inhibitor, diminished growth, clonogenic potential, anoikis resistance and induced apoptotic cell death in therapy-resistant EOC cells. Dacominitib inhibited PLK1-FOXM1 signalling pathway and its down-stream targets Aurora kinase B and survivin. Moreover, dacomitinib attenuated migration and invasion of the EOC cells and reduced expression of epithelial-to-mesenchymal transition (EMT) markers ZEB1, ZEB2 and CDH2 (which encodes N-cadherin). Conversely, the anti-tumour activity of single-targeted ErbB agents including cetuximab (a ligand-blocking anti-EGFR mAb), transtuzumab (anti-HER2 mAb), H3.105.5 (anti-HER3 mAb) and erlotinib (EGFR small-molecule tyrosine kinase inhibitor) were marginal. Our results provide a rationale for further investigation on the therapeutic potential of dacomitinib in treatment of the chemoresistant EOC.


Blockade of vascular endothelial growth factor receptors by tivozanib has potential anti-tumour effects on human glioblastoma cells.

  • Majid Momeny‎ et al.
  • Scientific reports‎
  • 2017‎

Glioblastoma (GBM) remains one of the most fatal human malignancies due to its high angiogenic and infiltrative capacities. Even with optimal therapy including surgery, radiotherapy and temozolomide, it is essentially incurable. GBM is among the most neovascularised neoplasms and its malignant progression associates with striking neovascularisation, evidenced by vasoproliferation and endothelial cell hyperplasia. Targeting the pro-angiogenic pathways is therefore a promising anti-glioma strategy. Here we show that tivozanib, a pan-inhibitor of vascular endothelial growth factor (VEGF) receptors, inhibited proliferation of GBM cells through a G2/M cell cycle arrest via inhibition of polo-like kinase 1 (PLK1) signalling pathway and down-modulation of Aurora kinases A and B, cyclin B1 and CDC25C. Moreover, tivozanib decreased adhesive potential of these cells through reduction of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Tivozanib diminished GBM cell invasion through impairing the proteolytic cascade of cathepsin B/urokinase-type plasminogen activator (uPA)/matrix metalloproteinase-2 (MMP-2). Combination of tivozanib with EGFR small molecule inhibitor gefitinib synergistically increased sensitivity to gefitinib. Altogether, these findings suggest that VEGFR blockade by tivozanib has potential anti-glioma effects in vitro. Further in vivo studies are warranted to explore the anti-tumour activity of tivozanib in combinatorial approaches in GBM.


The expression of AURKA is androgen regulated in castration-resistant prostate cancer.

  • Kati Kivinummi‎ et al.
  • Scientific reports‎
  • 2017‎

Although second generation endocrine therapies have significantly improved survival, castration-resistant prostate cancer (CRPC) cells are eventually able to escape available hormonal treatments due to reactivation of androgen receptor (AR) signaling. Identification of novel, non-classical and druggable AR-target genes may provide new approaches to treat CRPC. Our previous analyses suggested that Aurora kinase A (AURKA) is regulated by androgens in prostate cancer cells that express high levels of AR. Here, we provide further evidence that AURKA is significantly overexpressed in AR-positive CRPC samples carrying amplification of AR gene and/or expressing AR in high levels. We also demonstrate androgen-induced AR binding in the intronic region of AURKA. The expression of AURKA is increased upon androgen stimulation in LNCaP-ARhi cells that express high levels of AR. The growth of the cells was also significantly inhibited by an AURKA specific inhibitor, alisertib (MLN8237). Together, these findings suggest that the expression of AURKA is regulated by androgen in prostate cancer cells that highly express AR, emphasizing its potential as a therapeutic target in patients with CRPC.


AurkA controls self-renewal of breast cancer-initiating cells promoting wnt3a stabilization through suppression of miR-128.

  • V Eterno‎ et al.
  • Scientific reports‎
  • 2016‎

AurkA overexpression was previously found in breast cancer and associated to its ability in controlling chromosome segregation during mitosis, however whether it may affect breast cancer cells, endorsed with stem properties (BCICs), is still unclear. Surprisingly, a strong correlation between AurkA expression and β-catenin localization in breast cancer tissues suggested a link between AurkA and Wnt signaling. In our study, AurkA knock-down reduced wnt3a mRNA and suppressed metastatic signature of MDA-MB-231 cells. As a consequence, the amount of BCICs and their migratory capability dramatically decreased. Conversely, wnt3a mRNA stabilization and increased CD44(+)/CD24(low/-) subpopulation was found in AurkA-overexpressing MCF7 cells. In vivo, AurkA-overexpressing primary breast cancer cells showed higher tumorigenic properties. Interestingly, we found that AurkA suppressed the expression of miR-128, inhibitor of wnt3a mRNA stabilization. Namely, miR-128 suppression realized after AurkA binding to Snail. Remarkably, a strong correlation between AurkA and miR-128 expression in breast cancer tissues confirmed our findings. This study provides novel insights into an undisclosed role for the kinase AurkA in self-renewal and migration of BCICs affecting response to cancer therapies, metastatic spread and recurrence. In addition, it suggests a new therapeutic strategy taking advantage of miR-128 to suppress AurkA-Wnt3a signaling.


Calreticulin and JAK2V617F driver mutations induce distinct mitotic defects in myeloproliferative neoplasms.

  • Kristin Holl‎ et al.
  • Scientific reports‎
  • 2024‎

Myeloproliferative neoplasms (MPNs) encompass a diverse group of hematologic disorders driven by mutations in JAK2, CALR, or MPL. The prevailing working model explaining how these driver mutations induce different disease phenotypes is based on the decisive influence of the cellular microenvironment and the acquisition of additional mutations. Here, we report increased levels of chromatin segregation errors in hematopoietic cells stably expressing CALRdel52 or JAK2V617F mutations. Our investigations employing murine 32DMPL and human erythroleukemic TF-1MPL cells demonstrate a link between CALRdel52 or JAK2V617F expression and a compromised spindle assembly checkpoint (SAC), a phenomenon contributing to error-prone mitosis. This defective SAC is associated with imbalances in the recruitment of SAC factors to mitotic kinetochores upon CALRdel52 or JAK2V617F expression. We show that JAK2 mutant CD34 + MPN patient-derived cells exhibit reduced expression of the master mitotic regulators PLK1, aurora kinase B, and PP2A catalytic subunit. Furthermore, the expression profile of mitotic regulators in CD34 + patient-derived cells allows to faithfully distinguish patients from healthy controls, as well as to differentiate primary and secondary myelofibrosis from essential thrombocythemia and polycythemia vera. Altogether, our data suggest alterations in mitotic regulation as a potential driver in the pathogenesis in MPN.


Suppression of cell division-associated genes by Helicobacter pylori attenuates proliferation of RAW264.7 monocytic macrophage cells.

  • Grace Min Yi Tan‎ et al.
  • Scientific reports‎
  • 2015‎

Helicobacter pylori at multiplicity of infection (MOI ≥ 50) have been shown to cause apoptosis in RAW264.7 monocytic macrophage cells. Because chronic gastric infection by H. pylori results in the persistence of macrophages in the host's gut, it is likely that H. pylori is present at low to moderate, rather than high numbers in the infected host. At present, the effect of low-MOI H. pylori infection on macrophage has not been fully elucidated. In this study, we investigated the genome-wide transcriptional regulation of H. pylori-infected RAW264.7 cells at MOI 1, 5 and 10 in the absence of cellular apoptosis. Microarray data revealed up- and down-regulation of 1341 and 1591 genes, respectively. The expression of genes encoding for DNA replication and cell cycle-associated molecules, including Aurora-B kinase (AurkB) were down-regulated. Immunoblot analysis verified the decreased expression of AurkB and downstream phosphorylation of Cdk1 caused by H. pylori infection. Consistently, we observed that H. pylori infection inhibited cell proliferation and progression through the G1/S and G2/M checkpoints. In summary, we suggest that H. pylori disrupts expression of cell cycle-associated genes, thereby impeding proliferation of RAW264.7 cells, and such disruption may be an immunoevasive strategy utilized by H. pylori.


Fbxo41 Promotes Disassembly of Neuronal Primary Cilia.

  • Cillian R King‎ et al.
  • Scientific reports‎
  • 2019‎

Neuronal primary cilia are signaling organelles with crucial roles in brain development and disease. Cilia structure is decisive for their signaling capacities but the mechanisms regulating it are poorly understood. We identify Fbxo41 as a novel Skp1/Cullin1/F-box (SCF) E3-ligase complex subunit that targets to neuronal centrioles where its accumulation promotes disassembly of primary cilia, and affects sonic hedgehog signaling, a canonical ciliary pathway. Fbxo41 targeting to centrioles requires its Coiled-coil and F-box domains. Levels of Fbxo41 at the centrioles inversely correlate with neuronal cilia length, and mutations that disrupt Fbxo41 targeting or assembly into SCF-complexes also disturb its function in cilia disassembly and signaling. Fbxo41 dependent cilia disassembly in mitotic and post-mitotic cells requires rearrangements of the actin-cytoskeleton, but requires Aurora A kinase activation only in mitotic cells, highlighting important mechanistical differences controlling cilia size between mitotic and post-mitotic cells. Phorbol esters induce recruitment of overexpressed Fbxo41 to centrioles and cilia disassembly in neurons, but disassembly can also occur in absence of Fbxo41. We propose that Fbxo41 targeting to centrosomes regulates neuronal cilia structure and signaling capacity in addition to Fbxo41-independent pathways controlling cilia size.


Patient-Derived Cells to Guide Targeted Therapy for Advanced Lung Adenocarcinoma.

  • Seok-Young Kim‎ et al.
  • Scientific reports‎
  • 2019‎

Adequate preclinical model and model establishment procedure are required to accelerate translational research in lung cancer. We streamlined a protocol for establishing patient-derived cells (PDC) and identified effective targeted therapies and novel resistance mechanisms using PDCs. We generated 23 PDCs from 96 malignant effusions of 77 patients with advanced lung adenocarcinoma. Clinical and experimental factors were reviewed to identify determinants for PDC establishment. PDCs were characterized by driver mutations and in vitro sensitivity to targeted therapies. Seven PDCs were analyzed by whole-exome sequencing. PDCs were established at a success rate of 24.0%. Utilizing cytological diagnosis and tumor colony formation can improve the success rate upto 48.8%. In vitro response to a tyrosine kinase inhibitor (TKI) in PDC reflected patient treatment response and contributed to identifying effective therapies. Combination of dabrafenib and trametinib was potent against a rare BRAF K601E mutation. Afatinib was the most potent EGFR-TKI against uncommon EGFR mutations including L861Q, G719C/S768I, and D770_N771insG. Aurora kinase A (AURKA) was identified as a novel resistance mechanism to olmutinib, a mutant-selective, third-generation EGFR-TKI, and inhibition of AURKA overcame the resistance. We presented an efficient protocol for establishing PDCs. PDCs empowered precision medicine with promising translational values.


Domain-specific interactions between MLN8237 and human serum albumin estimated by STD and WaterLOGSY NMR, ITC, spectroscopic, and docking techniques.

  • Hongqin Yang‎ et al.
  • Scientific reports‎
  • 2017‎

Alisertib (MLN8237) is an orally administered inhibitor of Aurora A kinase. This small-molecule inhibitor is under clinical or pre-clinical phase for the treatment of advanced malignancies. The present study provides a detailed characterization of the interaction of MLN8237 with a drug transport protein called human serum albumin (HSA). STD and WaterLOGSY nuclear magnetic resonance (NMR)-binding studies were conducted first to confirm the binding of MLN8237 to HSA. In the ligand orientation assay, the binding sites of MLN8237 were validated through two site-specific spy molecules (warfarin sodium and ibuprofen, which are two known site-selective probes) by using STD and WaterLOGSY NMR competition techniques. These competition experiments demonstrate that both spy molecules do not compete with MLN8237 for the specific binding site. The AutoDock-based blind docking study recognizes the hydrophobic subdomain IB of the protein as the probable binding site for MLN8237. Thermodynamic investigations by isothermal titration calorimetry (ITC) reveal that the non-covalent interaction between MLN8237 and HSA (binding constant was approximately 105 M-1) is driven mainly by favorable entropy and unfavorable enthalpy. In addition, synchronous fluorescence, circular dichroism (CD), and 3D fluorescence spectroscopy suggest that MLN8237 may induce conformational changes in HSA.


Epigenetic regulation of AURKA by miR-4715-3p in upper gastrointestinal cancers.

  • Ahmed Gomaa‎ et al.
  • Scientific reports‎
  • 2019‎

Aurora kinase A (AURKA) is frequently overexpressed in several cancers. miRNA sequencing and bioinformatics analysis indicated significant downregulation of miR-4715-3p. We found that miR-4715-3p has putative binding sites on the 3UTR region of AURKA. Upper gastrointestinal adenocarcinoma (UGC) tissue samples and cell models demonstrated significant overexpression of AURKA with downregulation of miR-4715-3p. Luciferase reporter assays confirmed binding of miR-4715-3p on the 3UTR region of AURKA. miR-4715-3p mediated a reduction in AURKA levels leading to G2/M delay, chromosomal polyploidy, and cell death. We also detected a remarkable decrease in GPX4, an inhibitor of ferroptosis, with an increase in cleaved PARP and caspase-3. Inhibition of AURKA using siRNA produced similar results, suggesting a possible link between AURKA and GPX4. Analysis of UGC samples and cell models demonstrated increased methylation levels of several CpG nucleotides upstream of miR-4715-3p. 5-Aza-2'-deoxycytidine induced demethylation of several CpG nucleotides, restoring miR-4715-3p expression, leading to downregulation of AURKA. In conclusion, our data identified a novel epigenetic mechanism mediating silencing of miR-4715-3p and induction of AURKA in UGCs. Inhibition of AURKA or reconstitution of miR-4715-3p inhibited GPX4 and induced cell death, suggesting a link between AURKA and ferroptosis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: