Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 25 papers out of 25 papers

Redox-sensitive iodinated polymersomes carrying histone deacetylase inhibitor as a dual-functional nano-radiosensitizer for enhanced radiotherapy of breast cancer.

  • Zhehong Zhu‎ et al.
  • Drug delivery‎
  • 2021‎

Radiotherapy (RT) is a frequently used means in clinical tumor treatment. The outcome of RT varies, however, to a great extent, due to RT resistance or intolerable dose, which might be resolved by the development of radio-sensitizing strategies. Here, we report redox-sensitive iodinated polymersomes (RIP) carrying histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA, vorinostat), as a new dual-functional nano-radiosensitizer for breast cancer radiotherapy. SAHA-loaded RIP (RIP-SAHA) with a size of about 101 nm exhibited good colloidal stability while the reduction-activated release of SAHA, giving rise to better antitumor effect to 4T1 breast carcinoma cells than free SAHA. Accordingly, RIP-SAHA combined with a 4 Gy dose of X-ray radiation led to significantly enhanced suppression of 4T1 cells compared with SAHA combined 4 Gy of X-ray radiation, as a result of enhanced DNA damage and impeded DNA damage repair. The pharmacokinetics and biodistribution studies by single-photon emission computed tomography (SPECT) with 125I-labeled SAHA (125I-SAHA) showed a 17.3-fold longer circulation and 237.7-fold better tumor accumulation of RIP-SAHA over SAHA. The systemic administration of RIP-SAHA greatly sensitized radiotherapy of subcutaneous 4T1 breast tumors and brought about significant inhibition of tumor growth, without causing damages to major organs, compared with radiotherapy alone. RIP not only enhanced SAHA delivery but also acted as a radiosensitizer. RIP-SAHA emerges as a smart dual-functional nano-radiosensitizer to effectively enhance tumor radiotherapy.


Enhanced chemotherapeutic efficacy of the low-dose doxorubicin in breast cancer via nanoparticle delivery system crosslinked hyaluronic acid.

  • Qin Wang‎ et al.
  • Drug delivery‎
  • 2019‎

Despite the development of treatment options in breast cancer, many patients die of recurrence and metastasis. Owing to enhanced permeability and retention in solid tumor tissue, nanoparticle (NP) delivery systems have been emerged as novel strategy in cancer chemotherapy. As extracellular matrix, glycosaminoglycan hyaluronan (HA) could bind its surface receptor adhesion molecule CD44 which is strongly expressed on breast cancer. We have previously reported a doxorubicin (DOX)-loaded HA-Lys-LA X-NPs (X-NP-DOX) NP delivery system for breast cancer treatment. In this study, we further investigated the antitumor effect of X-NP-DOX NP delivery system using low-dose DOX in both in vitro and in vivo systems. We demonstrated that low-dose X-NP-DOX possessed the ability for inhibiting MCF-7 breast cancer cell growth, invasion, and migration, and inducing apoptosis in vitro. In in vivo experiments, injection of low-dose X-NP-DOX into tumor-bearing mouse resulted in significant reduction of tumor size. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining further revealed that low-dose X-NP-DOX induced higher percentage of apoptotic cells compared with free DOX or saline. Furthermore, our study demonstrated that low-dose X-NP-DOX inhibited Notch1 and Ras/MAPK pathways, decreased cancer stem cell population, and reduced tumorigenesis compared to free DOX in both in vitro and in vivo settings. Owing to its enhanced efficacy and higher targetability compared to free DOX, low-dose DOX delivered by NP system may be a promising novel strategy for breast cancer treatment.


Across-cancer specific immune responses induced by nanovaccines or microvaccines to prevent different cancers and cancer metastasis.

  • Lu Diao‎ et al.
  • iScience‎
  • 2022‎

Metastatic cancers and recurrent cancers are diverse, different from primary cancers, and organ-dependent. However, how strong are across-cancer immune responses among different types of cancers remain unclear. Herein, vaccines-encapsulated-whole-components-of-tumor-tissue (VEWCOTT) were applied to demonstrate the across-cancer immune responses, thanks to inducing pan-clones T-cell immune responses. Either lung-cancer-tissue- or melanoma-tissue-based VEWCOTT simultaneously prevented melanoma, lung cancer, hepatoma, and metastatic cancer, which showed that strong across-cancer immune responses were induced. Both nanovaccines and microvaccines showed potent across-cancer prevention efficacy. VEWCOTT induced tumor-specific T cells in peripheral immune organs and major organs, and adjusted the immune-microenvironment of cancer-colonized organs. In addition, the allograft of T cells from VEWCOTT immunized mice to allogeneic naive mice efficiently prevent various cancers. Many neoantigens are shared by melanoma cells and lung cancer cells. Across-cancer immune responses exist among different types of cancers, and thus VEWCOTT has the advantage of simultaneously preventing cancer metastasis and cancers in different organs.


Timing underpins the benefits associated with injectable collagen biomaterial therapy for the treatment of myocardial infarction.

  • Nick J R Blackburn‎ et al.
  • Biomaterials‎
  • 2015‎

Injectable hydrogel biomaterials are promising therapies to promote repair and regeneration post-myocardial infarction (MI). However, the timing of delivery and the mechanisms through which biomaterial treatments confer their benefits are translational issues that remain to be addressed. We assessed the efficacy of an injectable collagen matrix at 3 different delivery time points post-MI. Infarcted mice received the matrix or control (saline) treatment at 3 h, 1 week or 2 weeks after MI. The earlier treatment delivery better prevented negative ventricular remodeling and long-term deterioration of cardiac function (up to 3 months), whereas waiting longer to administer the matrix (1 and 2 weeks post-MI) reduced the therapeutic effects. Collagen matrix delivery did not stimulate an inflammatory response acutely and favorably modulated inflammation in the myocardium long-term. We found that the matrix interacts with the host tissue to alter the myocardial cytokine profile, promote angiogenesis, and reduce fibrosis and cell death. This work highlights that the timing of delivery can significantly affect the ability of an injectable hydrogel to protect the post-MI environment, which will be an important consideration in the clinical translation of cardiac biomaterial therapy.


Dithiolane-Crosslinked Poly(ε-caprolactone)-Based Micelles: Impact of Monomer Sequence, Nature of Monomer, and Reducing Agent on the Dynamic Crosslinking Properties.

  • Yanna Liu‎ et al.
  • Macromolecules‎
  • 2020‎

Dithiolanes are used to obtain dynamic and reversible crosslinks between polymer chains. Copolymers of two different dithiolane-containing cyclic carbonate monomers and ε-caprolactone (CL) were synthesized by ring-opening polymerization using a methoxy-poly(ethylene glycol) (mPEG) initiator and different catalysts (diphenyl phosphate (DPP), methanesulfonic acid (MSA), 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), or Sn(Oct)2). Each catalyst required a different temperature, which had a pronounced influence on the reactivity ratio of the monomers and occurrence of transesterification reactions and, therefore, the monomer sequence. Self-crosslinkable copolymers were obtained when the dithiolane units were connected closely to the polymer backbone, whereas the presence of a linker unit between the dithiolane and the backbone prevented self-crosslinking. The former amphiphilic PEGylated block copolymers formed micelles by nanoprecipitation in the aqueous environment and crosslinked spontaneously by disulfide exchange during subsequent dialysis. These dithiolane-crosslinked micelles showed reduction-responsive dissociation in the presence of 10 mM glutathione, making them promising drug delivery systems for the intracellularly triggered cargo release.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: