Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 30 papers out of 30 papers

CSNK2B modulates IRF1 binding to functional DNA elements and promotes basal and agonist-induced antiviral signaling.

  • Moe Matsumoto‎ et al.
  • Nucleic acids research‎
  • 2023‎

Interferon regulatory factor 1 (IRF1) is a critical component of cell-intrinsic innate immunity that regulates both constitutive and induced antiviral defenses. Due to its short half-life, IRF1 function is generally considered to be regulated by its synthesis. However, how IRF1 activity is controlled post-translationally has remained poorly characterized. Here, we employed a proteomics approach to identify proteins interacting with IRF1, and found that CSNK2B, a regulatory subunit of casein kinase 2, interacts directly with IRF1 and constitutively modulates its transcriptional activity. Genome-wide CUT&RUN analysis of IRF1 binding loci revealed that CSNK2B acts generally to enhance the binding of IRF1 to chromatin, thereby enhancing transcription of key antiviral genes, such as PLAAT4 (also known as RARRES3/RIG1/TIG3). On the other hand, depleting CSNK2B triggered abnormal accumulation of IRF1 at AFAP1 loci, thereby down-regulating transcription of AFAP1, revealing contrary effects of CSNK2B on IRF1 binding at different loci. AFAP1 encodes an actin crosslinking factor that mediates Src activation. Importantly, CSNK2B was also found to mediate phosphorylation-dependent activation of AFAP1-Src signaling and exert suppressive effects against flaviviruses, including dengue virus. These findings reveal a previously unappreciated mode of IRF1 regulation and identify important effector genes mediating multiple cellular functions governed by CSNK2B and IRF1.


Tyraminergic and Octopaminergic Modulation of Defensive Behavior in Termite Soldier.

  • Yuki Ishikawa‎ et al.
  • PloS one‎
  • 2016‎

In termites, i.e. a major group of eusocial insects, the soldier caste exhibits specific morphological characteristics and extremely high aggression against predators. Although the genomic background is identical to the other non-aggressive castes, they acquire the soldier-specific behavioral character during the course of caste differentiation. The high aggressiveness and defensive behavior is essential for colony survival, but the neurophysiological bases are completely unknown. In the present study, using the damp-wood termite Hodotermopsis sjostedti, we focused on two biogenic amines, octopamine (OA) and tyramine (TA), as candidate neuromodulators for the defensive behavior in soldiers. High-performance liquid chromatographic analysis revealed that TA levels in the brain and suboesophageal ganglion (SOG) and the OA level in brain were increased in soldiers than in pseudergates (worker caste). Immunohistochemical analysis revealed that TA/OA neurons that innervate specific areas, including the mandibular muscles, antennal nerve, central complex, suboesophageal ganglion, and thoracic and/or abdominal ganglia, were enlarged in a soldier-specific manner. Together with the results that pharmacological application of TA promoted the defensive behavior in pseudergates, these findings suggest that the increased TA/OA levels induce the higher aggressiveness and defensive behavior in termite soldiers. The projection targets of these soldier-specific enlarged TA/OA neurons may have important roles in the higher aggressiveness and defensive behavior of the termite soldiers, inducing the neuronal transition that accompanies external morphological changes.


Gene up-regulation in response to predator kairomones in the water flea, Daphnia pulex.

  • Hitoshi Miyakawa‎ et al.
  • BMC developmental biology‎
  • 2010‎

Numerous cases of predator-induced polyphenisms, in which alternate phenotypes are produced in response to extrinsic stimuli, have been reported in aquatic taxa to date. The genus Daphnia (Branchiopoda, Cladocera) provides a model experimental system for the study of the developmental mechanisms and evolutionary processes associated with predator-induced polyphenisms. In D. pulex, juveniles form neckteeth in response to predatory kairomones released by Chaoborus larvae (Insecta, Diptera).


Linear chain aldehydes evoke calcium responses in B16 melanoma cells.

  • Yuki Ishikawa‎ et al.
  • EXCLI journal‎
  • 2011‎

Oxidative stress is involved in various physiological impairing stages, such as aging, diabetes, atherosclerosis, cirrhosis, and neurological disorders. Recent research indicates that aldehyde compounds derived from oxidized lipids increase in cancer patients compared to healthy individuals. Among of them, hexanal, a six-carbon liner chain aldehyde, is commonly found in cancer patients. Lipid oxidation products including aldehydes are in general chemically unstable and react with biological molecules such as proteins. The purpose of this study is to investigate effects of lipid-derived aldehydes and the related compounds on intracellular Ca2+ responses in B16 melanoma cells. Hexanal-induced [Ca2+]i elevation is observed in B16 cells in a dose dependent manner, but [Ca2+]i changes were observed neither in 3T3-L1 cells nor Caco-2 cells. Propanal, a chain length analogue of hexanal, elicited no change in [Ca2+]i, but nonanal initiated [Ca2+]i increases. Analogue compounds of hexanal failed to induce [Ca2+]i elevation. Furthermore, unsaturated aldehydes known as TRPA1 channel agonists also failed to alter [Ca2+]i levels in B16 melanoma cells. Pharmacological spectra using inhibitors against intracellular Ca2+ signaling suggest that hexanal-induced [Ca2+]i responses in B16 cells might be involved in TRP channels other than TRPA1. Our results suggest that saturated aliphatic chain aldehydes would be novel compounds for initiating [Ca2+]i increases through very strict recognitions of chain saturation, aldehydic base structures, and chain lengths in B16 melanoma cells. B16 cells would have sensing mechanisms for oxidative status and/or metabolic activities in their growth environment.


High-resolution promoter map of human limbal epithelial cells cultured with keratinocyte growth factor and rho kinase inhibitor.

  • Masahito Yoshihara‎ et al.
  • Scientific reports‎
  • 2017‎

An in vitro model of corneal epithelial cells (CECs) has been developed to study and treat corneal disorders. Nevertheless, conventional CEC culture supplemented with epidermal growth factor (EGF) results in a loss of CEC characteristics. It has recently been reported that limbal epithelial cells (LECs) cultured with keratinocyte growth factor (KGF) and the rho kinase inhibitor Y-27632 could maintain the expression of several CEC-specific markers. However, the molecular mechanism underlying the effect of culture media on LECs remains to be elucidated. To elucidate this mechanism, we performed comprehensive gene expression analysis of human LECs cultured with EGF or KGF/Y-27632, by cap analysis of gene expression (CAGE). Here, we found that LECs cultured with KGF and Y-27632 presented a gene expression profile highly similar to that of CECs in vivo. In contrast, LECs cultured with EGF lost the characteristic CEC gene expression profile. We further discovered that CEC-specific PAX6 promoters are highly activated in LECs cultured with KGF and Y-27632. Our results provide strong evidence that LECs cultured with KGF and Y-27632 would be an improved in vitro model in the context of gene expression. These findings will accelerate basic studies of CECs and clinical applications in regenerative medicine.


Anatomic and Physiologic Heterogeneity of Subgroup-A Auditory Sensory Neurons in Fruit Flies.

  • Yuki Ishikawa‎ et al.
  • Frontiers in neural circuits‎
  • 2017‎

The antennal ear of the fruit fly detects acoustic signals in intraspecific communication, such as the courtship song and agonistic sounds. Among the five subgroups of mechanosensory neurons in the fly ear, subgroup-A neurons respond maximally to vibrations over a wide frequency range between 100 and 1,200 Hz. The functional organization of the neural circuit comprised of subgroup-A neurons, however, remains largely unknown. In the present study, we used 11 GAL4 strains that selectively label subgroup-A neurons and explored the diversity of subgroup-A neurons by combining single-cell anatomic analysis and Ca2+ imaging. Our findings indicate that the subgroup-A neurons that project into various combinations of subareas in the brain are more anatomically diverse than previously described. Subgroup-A neurons were also physiologically diverse, and some types were tuned to a narrow frequency range, suggesting that the response of subgroup-A neurons to sounds of a wide frequency range is due to the existence of several types of subgroup-A neurons. Further, we found that an auditory behavioral response to the courtship song of flies was attenuated when most subgroup-A neurons were silenced. Together, these findings characterize the heterogeneous functional organization of subgroup-A neurons, which might facilitate species-specific acoustic signal detection.


Anti-nuclear antibody development is associated with poor treatment response to biological disease-modifying anti-rheumatic drugs in patients with rheumatoid arthritis.

  • Yuki Ishikawa‎ et al.
  • Seminars in arthritis and rheumatism‎
  • 2019‎

It has been well known that TNF-α inhibitor (TNFi) treatment for patients with rheumatoid arthritis (RA) is associated with anti-nuclear antibody (ANA) development. We previously reported that ANA development was associated with poor outcomes of infliximab (IFX) treatment (1). However, no replication studies have been reported to date. In addition, whether the findings are true to general biological disease-modifying anti-rheumatic drugs (bDMARDs) is uncertain.


The effect of 1% glucose loading on metabolism in the elderly patients during remifentanil-induced anesthesia: a randomized controlled trial.

  • Kohei Fukuta‎ et al.
  • BMC anesthesiology‎
  • 2020‎

Previous studies showed that remifentanil-induced anesthesia can inhibit surgical stress response in non-diabetic adult patients and that low-dose glucose loading during anesthesia may attenuate fat catabolism. However, little is known about the influence of glucose loading on metabolism in elderly patients, whose condition may be influenced by decreased basal metabolism and increased insulin resistance. We hypothesized that, in elderly patients, intraoperative low glucose infusion may attenuate the catabolism of fat without causing harmful hyperglycemia during remifentanil-induced anesthesia.


Wiring patterns from auditory sensory neurons to the escape and song-relay pathways in fruit flies.

  • Hyunsoo Kim‎ et al.
  • The Journal of comparative neurology‎
  • 2020‎

Many animals rely on acoustic cues to decide what action to take next. Unraveling the wiring patterns of the auditory neural pathways is prerequisite for understanding such information processing. Here, we reconstructed the first step of the auditory neural pathway in the fruit fly brain, from primary to secondary auditory neurons, at the resolution of transmission electron microscopy. By tracing axons of two major subgroups of auditory sensory neurons in fruit flies, low-frequency tuned Johnston's organ (JO)-B neurons and high-frequency tuned JO-A neurons, we observed extensive connections from JO-B neurons to the main second-order neurons in both the song-relay and escape pathways. In contrast, JO-A neurons connected strongly to a neuron in the escape pathway. Our findings suggest that heterogeneous JO neuronal populations could be recruited to modify escape behavior whereas only specific JO neurons contribute to courtship behavior. We also found that all JO neurons have postsynaptic sites at their axons. Presynaptic modulation at the output sites of JO neurons could affect information processing of the auditory neural pathway in flies.


Evolutionary conservation and diversification of auditory neural circuits that process courtship songs in Drosophila.

  • Takuro S Ohashi‎ et al.
  • Scientific reports‎
  • 2023‎

Acoustic communication signals diversify even on short evolutionary time scales. To understand how the auditory system underlying acoustic communication could evolve, we conducted a systematic comparison of the early stages of the auditory neural circuit involved in song information processing between closely-related fruit-fly species. Male Drosophila melanogaster and D. simulans produce different sound signals during mating rituals, known as courtship songs. Female flies from these species selectively increase their receptivity when they hear songs with conspecific temporal patterns. Here, we firstly confirmed interspecific differences in temporal pattern preferences; D. simulans preferred pulse songs with longer intervals than D. melanogaster. Primary and secondary song-relay neurons, JO neurons and AMMC-B1 neurons, shared similar morphology and neurotransmitters between species. The temporal pattern preferences of AMMC-B1 neurons were also relatively similar between species, with slight but significant differences in their band-pass properties. Although the shift direction of the response property matched that of the behavior, these differences are not large enough to explain behavioral differences in song preferences. This study enhances our understanding of the conservation and diversification of the architecture of the early-stage neural circuit which processes acoustic communication signals.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: