Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 3,710 papers

EGF-reduced Wnt5a transcription induces epithelial-mesenchymal transition via Arf6-ERK signaling in gastric cancer cells.

  • Yujie Zhang‎ et al.
  • Oncotarget‎
  • 2015‎

Wnt5a, a ligand for activating the non-canonical Wnt signaling pathway, is commonly associated with Epithelial-to-mesenchymal transition (EMT) in cancer cell metastasis. Here, we show that downregulation of Wnt5a mRNA and protein by EGF is necessary for EGF-induced EMT in gastric cancer SGC-7901 cells. To further explore the mechanisms, we investigated the effect of EGF signaling on Wnt5a expression. EGF increased Arf6 and ERK activity, while blockade of Arf6 activation repressed ERK activity, up-regulated Wnt5a expression and repressed EMT in response to EGF. We also demonstrate that EGF inactivated Wnt5a transcription by direct recruitment of ERK to the Wnt5a promoter. On the other hand, inhibition of ERK phosphorylation resulted in decreased movement of ERK from the cytoplasm to the nucleus, following rescued Wnt5a mRNA and protein expression and favored an epithelial phenotype of SGC-7901 cells. In addition, we notice that kinase-dead, nuclear-localised ERK has inhibitory effect on Wnt5a transcription. Analysis of gastric cancer specimens revealed an inverse correlation between P-ERK and Wnt5a protein levels and an association between Wnt5a expression and better prognosis. These findings indicate that Wnt5a is a potential suppressor of EMT and identify a novel Arf6/ERK signaling pathway for EGF-regulated Wnt5a expression at transcriptional level of gastric cancer cells.


Involvement of glycolysis/gluconeogenesis and signaling regulatory pathways in Saccharomyces cerevisiae biofilms during fermentation.

  • Zhenjian Li‎ et al.
  • Frontiers in microbiology‎
  • 2015‎

Compared to free (free-living) cells, biofilm cells show increased resistance and stability to high-pressure fermentation conditions, although the reasons underlying these phenomena remain unclear. Here, we investigated biofilm formation with immobilized Saccharomyces cerevisiae cells grown on fiber surfaces during the process of ethanol fermentation. The development of biofilm colonies was visualized by fluorescent labeling and confocal microscopy. RNA from yeast cells at three different biofilm development periods was extracted and sequenced by high-throughput sequencing. We quantitated gene expression differences between biofilm cells and free cells and found that 2098, 1556, and 927 genes were significantly differentially expressed, respectively. We also validated the expression of previously reported genes and identified novel genes and pathways under the control of this system. Statistical analysis revealed that biofilm genes show significant gene expression changes principally in the initial period of biofilm formation compared to later periods. Carbohydrate metabolism, amino acid metabolism, signal transduction, and oxidoreductase activity were needed for biofilm formation. In contrast to previous findings, we observed some differential expression performances of FLO family genes, indicating that cell aggregation in our immobilized fermentation system was possibly independent of flocculation. Cyclic AMP-protein kinase A and mitogen-activated protein kinase pathways regulated signal transduction pathways during yeast biofilm formation. We found that carbohydrate metabolism, especially glycolysis/gluconeogenesis, played a key role in the development of S. cerevisiae biofilms. This work provides an important dataset for future studies aimed at gaining insight into the regulatory mechanisms of immobilized cells in biofilms, as well as for optimizing bioprocessing applications with S. cerevisiae.


Piperlongumine selectively kills hepatocellular carcinoma cells and preferentially inhibits their invasion via ROS-ER-MAPKs-CHOP.

  • Yong Chen‎ et al.
  • Oncotarget‎
  • 2015‎

Hepatocellular carcinomas (HCC) are highly malignant and aggressive tumors lack of effective therapeutic drugs. Piperlongumine (PL), a natural product isolated from longer pepper plants, is recently identified as a potent cytotoxic compound highly selective to cancer cells. Here, we reported that PL specifically suppressed HCC cell migration/invasion via endoplasmic reticulum (ER)-MAPKs-CHOP signaling pathway. PL selectively killed HCC cells but not normal hepatocytes with an IC50 of 10-20 µM while PL at much lower concentrations only suppressed HCC cell migration/invasion. PL selectively elevated reactive oxygen species (ROS) in HCC cells, which activated or up-regulated downstream PERK/Ire 1α/Grp78, p38/JNK/Erk and CHOP subsequently. Administration of antioxidants completely abolished PL's effects on cell death and migration/invasion. However, pharmacological inhibition of ER stress-responses or MAPKs signaling pathways with corresponding specific inhibitors only reversed PL's effect on cell migration/invasion but not on cell death. Consistently, knocking-down of CHOP by RNA interference only reversed PL-suppressed HCC cell migration. Finally, PL significantly suppressed HCC development and activated the ER-MAPKs-CHOP signaling pathway in HCC xenografts in vivo. Taken together, PL selectively killed HCC cells and preferentially inhibited HCC cell migration/invasion via ROS-ER-MAPKs-CHOP axis, suggesting a novel therapeutic strategy for the highly malignant and aggressive HCC clinically.


The association of ADORA2A and ADORA2B polymorphisms with the risk and severity of chronic heart failure: a case-control study of a northern Chinese population.

  • Ya-Jing Zhai‎ et al.
  • International journal of molecular sciences‎
  • 2015‎

The causes of chronic heart failure (CHF) and its progression are likely to be due to complex genetic factors. Adenosine receptors A2A and A2B (ADORA2A and ADORA2B, respectively) play an important role in cardio-protection. Therefore, polymorphisms in the genes encoding those receptors may affect the risk and severity of CHF. This study was a case-control comparative investigation of 300 northern Chinese Han CHF patients and 400 ethnicity-matched healthy controls. Four common single-nucleotide polymorphisms (SNPs) of ADORA2A (rs2236625, rs2236624, rs4822489, and rs5751876) and one SNP of ADORA2B (rs7208480) were genotyped and an association between SNPs and clinical outcomes was evaluated. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the association. The rs4822489 was significantly associated with the severity of CHF after adjustment for traditional cardiovascular risk factors (p = 0.040, OR = 1.912, 95% CI = 1.029-3.550). However, the five SNPs as well as the haplotypes were not found to be associated with CHF susceptibility. The findings of this study suggest that rs4822489 may contribute to the severity of CHF in the northern Chinese. However, further studies performed in larger populations and aimed at better defining the role of this gene are required.


SDF-1α/CXCR4 Axis Mediates The Migration of Mesenchymal Stem Cells to The Hypoxic-Ischemic Brain Lesion in A Rat Model.

  • Qin Yu‎ et al.
  • Cell journal‎
  • 2015‎

Transplantation of mesenchymal stem cells (MSCs) can promote functional recovery of the brain after hypoxic-ischemic brain damage (HIBD). However, the mechanism regulating MSC migration to a hypoxic-ischemic lesion is poorly understood. Interaction between stromal cell-derived factor-1α (SDF-1α) and its cognate receptor CXC chemokine receptor 4 (CXCR4) is crucial for homing and migration of multiple stem cell types. In this study, we investigate the potential role of SDF-1α/CXCR4 axis in mediating MSC migration in an HIBD model.


Efficacy and safety of the hypoxia-activated prodrug TH-302 in combination with gemcitabine and nab-paclitaxel in human tumor xenograft models of pancreatic cancer.

  • Jessica D Sun‎ et al.
  • Cancer biology & therapy‎
  • 2015‎

Tumors often contain hypoxic regions resistant to chemo- and radiotherapy. TH-302 (T) is an investigational hypoxia-activated prodrug that selectively releases the DNA cross-linker bromo-isophosphoramide mustard under hypoxic conditions. This study evaluated the efficacy and safety profile of combining T with gemcitabine (G) and nab-paclitaxel (nP) in human pancreatic ductal adenocarcinoma (PDAC) xenograft models in mice. Antitumor activity of the G + nP + T triplet was assessed and compared with T-alone or the G + nP doublet in the Hs766t, MIA PaCa-2, PANC-1, and BxPC-3 PDAC xenograft models. Efficacy was assessed by tumor growth kinetic analysis. Body weight, blood cell counts, blood chemistry, and the von Frey neuropathy assay were analyzed to evaluate safety profiles. Pharmacodynamic changes after the treatment were determined by immunohistochemistry of cell proliferation, DNA damage, apoptosis, hypoxia, and tumor stroma density. The G + nP + T triplet exhibited enhanced efficacy compared with T-alone or the G + nP doublet. Compared with vehicle (V), G + nP induced body weight loss, reduced neutrophil and lymphocyte counts, increased the levels of liver function parameters, and induced neurotoxicity. However, when T was added to G + nP, there was no statistically increased impairment compared to G + nP. The triplet significantly increased DNA damage, apoptosis, and tumor necrosis. Furthermore, the triplet further inhibited cell proliferation and reduced stroma density and intratumoral hypoxia. The triplet combination of G + nP + T exhibited superior efficacy but additive toxicity was not evident compared to the G + nP doublet in this study. This study provides a translational rationale for combining G, nP, and T in the clinical setting to assess efficacy and safety. A Phase I clinical trial of the triplet combination is currently underway (NCT02047500).


Genetic diversities of 20 novel autosomal STRs in Chinese Xibe ethnic group and its genetic relationships with neighboring populations.

  • Hao-Tian Meng‎ et al.
  • Gene‎
  • 2015‎

In the present study, we investigated the genetic polymorphisms of 20 novel STR loci and one previously studied locus in the Xibe ethnic group from China, as well as its genetic relationships with neighboring populations. Totally 226 unrelated healthy Xibe individuals were involved in the study. At least 5 alleles were observed for each locus, with the minimum and maximum allelic frequencies of 0.0022 and 0.5221, respectively. We obtained the lowest and highest observed heterozygosity and expected heterozygosity at locus D1S1627 and D19S433, respectively. The values of combined power of discrimination and probability of exclusion of all the 21 STR loci were 0.99999999999999999997310 and 0.999998650, respectively. Analyses of interpopulation differentiation, principal component analysis, genetic distance and phylogenetic tree revealed the relationships between Xibe group and its neighboring groups, showing that the studied Xibe group had a close genetic relationship with the Mongolian group. The present results indicated that these 21 STR loci had high genetic polymorphisms in the studied Xibe group, and were capable for the paternity testing and individual identification in forensic application.


A chitin-like component on sclerotic cells of Fonsecaea pedrosoi inhibits Dectin-1-mediated murine Th17 development by masking β-glucans.

  • Bilin Dong‎ et al.
  • PloS one‎
  • 2014‎

Fonsecaea pedrosoi (F. pedrosoi), a major agent of chromoblastomycosis, has been shown to be recognized primarily by C-type lectin receptors (CLRs) in a murine model of chromoblastomycosis. Specifically, the β-glucan receptor, Dectin-1, mediates Th17 development and consequent recruitment of neutrophils, and is evidenced to have the capacity to bind to saprophytic hyphae of F. pedrosoi in vitro. However, when embedded in tissue, most etiological agents of chromoblastomycosis including F. pedrosoi will transform into the sclerotic cells, which are linked to the greatest survival of melanized fungi in tissue. In this study, using immunocompetent and athymic (nu/nu) murine models infected subcutaneously or intraperitoneally with F. pedrosoi, we demonstrated that T lymphocytes play an active role in the resolution of localized footpad infection, and there existed a significantly decreased expression of Th17-defining transcription factor Rorγt and inefficient recruitment of neutrophils in chronically infected spleen where the inoculated mycelium of F. pedrosoi transformed into the sclerotic cells. We also found that Dectin-1-expressing histocytes and neutrophils participated in the enclosure of transformed sclerotic cells in the infectious foci. Furthermore, we induced the formation of sclerotic cells in vitro, and evidenced a significantly decreased binding capacity of human or murine-derived Dectin-1 to the induced sclerotic cells in comparison with the saprophytic mycelial forms. Our analysis of β-glucans-masking components revealed that it is a chitin-like component, but not the mannose moiety on the sclerotic cells, that interferes with the binding of β-glucans by human or murine Dectin-1. Notably, we demonstrated that although Dectin-1 contributed to the development of IL-17A-producing CD3+CD4+ murine splenocytes upon in vitro-stimulation by saprophytic F. pedrosoi, the masking effect of chitin components partly inhibited Dectin-1-mediated Th17 development upon in vitro-stimulation by induced sclerotic cells. Therefore, these findings extend our understanding of the chronicity of chromoblastomycosis.


Biodistribution and elimination study of fluorine-18 labeled Nε-carboxymethyl-lysine following intragastric and intravenous administration.

  • Hongzeng Xu‎ et al.
  • PloS one‎
  • 2013‎

N(ε)-carboxymethyl-lysine (CML) is a major advanced glycation end-product (AGEs) widely found in foods. The aim of our study was to evaluate how exogenous CML-peptide is dynamically absorbed from the gastrointestinal tract and eliminated by renal tubular secretion using microPET imaging.


Exploring the stability of long intergenic non-coding RNA in K562 cells by comparative studies of RNA-Seq datasets.

  • Lei Wang‎ et al.
  • Biology direct‎
  • 2014‎

The stability of long intergenic non-coding RNAs (lincRNAs) that possess tissue/cell-specific expression, might be closely related to their physiological functions. However, the mechanism associated with stability of lincRNA remains elusive. In this study, we try to study the stability of lincRNA in K562 cells, an important model cell, through comparing two K562 transcriptomes which are obtained from ENCODE Consortium and our sequenced RNA-Seq dataset (PH) respectively.


Chinese herbal medicine for aspirin resistance: a systematic review of randomized controlled trials.

  • Ai-Ju Liu‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2014‎

Aspirin resistance (AR) is a prevalent phenomenon and leads to significant clinical consequences, but the current evidence for effective interventional strategy is insufficient. The objective of this systematic review is thus to assess the efficacy and safety of Chinese herbal medicine (CHM) for AR. A systematical literature search was conducted in 6 databases until December 2012 to identify randomized controlled trials (RCTs) of CHM for AR. As a result, sixteen RCTs with a total of 1011 subjects were identified, suggesting that the interests of the medical profession and the public in the use of CHM for AR have grown considerably in the recent years. Tongxinluo capsule and Danshen-based prescriptions were the most frequently used herbal prescriptions, while danshen root, milkvetch root, Leech, and Rosewood were the most frequently used single herbs. Despite the apparent reported positive findings, it is premature to determine the efficacy and safety of CHM for the treatment of AR due to poor methodological quality and insufficient safety data. However, CHMs appeared to be well tolerated in all included studies. Thus, CHM as a promising candidate is worthy of improvement and development for further clinical AR trials. Large sample-size and well-designed rigorous RCTs are needed.


Long-term exposure to decabrominated diphenyl ether impairs CD8 T-cell function in adult mice.

  • Weihong Zeng‎ et al.
  • Cellular & molecular immunology‎
  • 2014‎

Polybrominated diphenyl ethers (PBDEs) are ubiquitous environmental pollutants that accumulate to high levels in human populations that are subject to occupational or regional industry exposure. PBDEs have been shown to affect human neuronal, endocrine and reproductive systems, but their effect on the immune system is not well understood. In this study, experimental adult mice were intragastrically administered 2,2',3,3',4,4',5,5',6,6'-decabromodiphenyl ether (BDE-209) at doses of 8, 80 or 800 mg/kg of body weight (bw) at 2-day intervals. Our results showed that continuous exposure to BDE-209 resulted in high levels of BDE-209 in the plasma that approached the levels found in people who work in professions with high risks of PDBE exposure. Reduced leukocytes, decreased cytokine (IFN-γ, IL-2 and TNF-α) production and lower CD8 T-cell proliferation were observed in the mice exposed to BDE-209. Additionally, mice with long-term BDE-209 exposure had lower numbers of antigen-specific CD8 T cells after immunization with recombinant Listeria monocytogenes expressing ovalbumin (rLm-OVA) and the OVA-specific CD8 T cells had reduced functionality. Taken together, our study demonstrates that continuous BDE-209 exposure causes adverse effects on the number and functionality of immune cells in adult mice.


Radioprotective and antioxidant effect of resveratrol in hippocampus by activating Sirt1.

  • Jianguo Li‎ et al.
  • International journal of molecular sciences‎
  • 2014‎

Reactive oxygen species can lead to functional alterations in lipids, proteins, and nucleic acids, and an accumulation of ROS (Reactive oxygen species) is considered to be one factor that contributes to neurodegenerative changes. An increase in ROS production occurs following irradiation. Neuronal tissue is susceptible to oxidative stress because of its high oxygen consumption and modest antioxidant defenses. As a polyphenolic compound, resveratrol is frequently used as an activator of Sirt1 (Sirtuin 1). The present study was designed to explore the radioprotective and antioxidant effect of resveratrol on Sirt1 expression and activity induced by radiation and to provide a new target for the development of radiation protection drugs. Our results demonstrate that resveratrol inhibits apoptosis induced by radiation via the activation of Sirt1. We demonstrated an increase in Sirt1 mRNA that was present on 21 days of resveratrol treatment following irradiation in a concentration-dependent manner. Such mRNA increase was accompanied by an increase of Sirt1 protein and activity. Resveratrol effectively antagonized oxidation induced by irradiation, supporting its cellular ROS-scavenging effect. These results provide evidence that the mitochondrial protection and the antioxidant effect of resveratrol contribute to metabolic activity. These data suggest that Sirt1 may play an important role to protect neurons from oxidative stress.


The stem cell adjuvant with Exendin-4 repairs the heart after myocardial infarction via STAT3 activation.

  • Jianfeng Liu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2014‎

The poor survival of cells in ischaemic myocardium is a major obstacle for stem cell therapy. Exendin-4 holds the potential of cardioprotective effect based on its pleiotropic activity. This study investigated whether Exendin-4 in conjunction with adipose-derived stem cells (ADSCs) could improve the stem cell survival and contribute to myocardial repairs after infarction. Myocardial infarction (MI) was induced by the left anterior descending artery ligation in adult male Sprague-Dawley rats. ADSCs carrying double-fusion reporter gene [firefly luciferase and monomeric red fluorescent protein (fluc-mRFP)] were quickly injected into border zone of MI in rats treated with or without Exendin-4. Exendin-4 enhanced the survival of transplanted ADSCs, as demonstrated by the longitudinal in vivo bioluminescence imaging. Moreover, ADSCs adjuvant with Exendin-4 decreased oxidative stress, apoptosis and fibrosis. They also improved myocardial viability and cardiac function and increased the differentiation rates of ADSCs into cardiomyocytes and vascular smooth muscle cells in vivo. Then, ADSCs were exposed to hydrogen peroxide/serum deprivation (H(2)O(2)/SD) to mimic the ischaemic environment in vitro. Results showed that Exendin-4 decreased the apoptosis and enhanced the paracrine effect of ADSCs. In addition, Exendin-4 activated signal transducers and activators of transcription 3 (STAT3) through the phosphorylation of Akt and ERK1/2. Furthermore, Exendin-4 increased the anti-apoptotic protein Bcl-2, but decreased the pro-apoptotic protein Bax of ADSCs. In conclusion, Exendin-4 could improve the survival and therapeutic efficacy of transplanted ADSCs through STAT3 activation via the phosphorylation of Akt and ERK1/2. This study suggests the potential application of Exendin-4 for stem cell-based heart regeneration.


Functional classification and mutation analysis of a synpolydactyly kindred.

  • Jianda Zhou‎ et al.
  • Experimental and therapeutic medicine‎
  • 2014‎

The aim of the present study was to analyze a congenital syndactyly/polydactyly kindred and propose a new functional classification method of clinical significance. The modes of inheritance and mutational mechanisms were also determined using genetic analyses. Hand and foot anatomy and functions were measured using photographic images, X-ray imaging and grip ability tests. Genetic analysis comprised the genotyping of polymorphic microsatellite markers at known polydactyly-associated loci and the sequencing of the candidate gene. A functional classification system was devised to divide the clinical features into three types, which included mild, moderate or severe deformity. The family was concluded to have syndactyly type II with autosomal dominant inheritance. The microsatellites, D2S2310 and D2S2314, at the 2q31-32 chromosome, which have previously been associated with synpolydactyly type I, were found to be associated with the disorder in the current family. A 27-bp insertion mutation was identified in the affected individuals in the HOXD13 gene at this locus. The insertion added a further nine alanine residues to the polyalanine stretch within the encoded protein. In conclusion, the functional classification method described in the present study may be used to guide surgical approaches to treatment. A family was identified in whom expansion of the polyalanine tract in the HOXD13 gene causes autosomal dominant hereditary synpolydactyly.


miR-382 inhibits osteosarcoma metastasis and relapse by targeting Y box-binding protein 1.

  • Meng Xu‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2015‎

Lung metastasis and relapse in osteosarcoma (OS) patients indicate poor prognosis. Here, we identified significantly decreased expression of miR-382 in highly metastatic OS cell lines and relapsed OS samples compared to their parental cell lines and primary OS samples, respectively. In addition, our clinical data showed that the miR-382 expression level was inversely associated with relapse and positively associated with metastasis-free survival in OS patients. The overexpression of miR-382 suppressed epithelial-mesenchymal transition (EMT) and metastasis. This overexpression also decreased the cancer stem cell (CSC) population and function in OS cells. In contrast, inhibition of miR-382 stimulated EMT and metastasis and increased CSC population in OS cells. In addition, our in vivo experiments showed that the overexpression of miR-382 inhibited CSC-induced tumor formation, and the combination of miR-382 with doxorubicin prevented disease relapse in OS patients. Furthermore, we demonstrated that miR-382 exerted its tumor-suppressing potential by directly targeting Y box-binding protein 1 (YB-1) in OS. Taken together, our findings suggest that miR-382 functions as a tumor suppressor function and that the overexpression of miR-382 is a novel strategy to inhibit tumor metastasis and prevent CSC-induced relapse in OS.


QTL analysis on rice grain appearance quality, as exemplifying the typical events of transgenic or backcrossing breeding.

  • Bao Yan‎ et al.
  • Breeding science‎
  • 2014‎

Rice grain shape and yield are usually controlled by multiple quantitative trait loci (QTL). This study used a set of F9-10 recombinant inbred lines (RILs) derived from a cross of Huahui 3 (Bt/Xa21) and Zhongguoxiangdao, and detected 27 QTLs on ten rice chromosomes. Among them, twelve QTLs responsive for grain shape/ or yield were mostly reproducibly detected and had not yet been reported before. Interestingly, the two known genes involved in the materials, with one insect-resistant Bt gene, and the other disease-resistant Xa21 gene, were found to closely link the QTLs responsive for grain shape and weight. The Bt fragment insertion was firstly mapped on the chromosome 10 in Huahui 3 and may disrupt grain-related QTLs resulting in weaker yield performance in transgenic plants. The introgression of Xa21 gene by backcrossing from donor material into receptor Minghui 63 may also contain a donor linkage drag which included minor-effect QTL alleles positively affecting grain shape and yield. The QTL analysis on rice grain appearance quality exemplified the typical events of transgenic or backcrossing breeding. The QTL findings in this study will in the future facilitate the gene isolation and breeding application for improvement of rice grain shape and yield.


Multiple alternative splicing and differential expression pattern of the glycogen synthase kinase-3β (GSK3β) gene in goat (Capra hircus).

  • Yuguo Hou‎ et al.
  • PloS one‎
  • 2014‎

Glycogen synthase kinase-3β (GSK3β) has been identified as a key protein kinase involved in several signaling pathways, such as Wnt, IGF-Ι and Hedgehog. However, knowledge regarding GSK3β in the goat is limited. In this study, we cloned and characterized the goat GSK3β gene. Six novel GSK3β transcripts were identified in different tissues and designated as GSK3β1, 2, 3, 4, 5 and 6. RT-PCR was used to further determine whether the six GSK3β transcripts existed in different goat tissues. Bioinformatics analysis revealed that the catalytic domain (S_TKc domain) is missing from GSK3β2 and GSK3β4. GSK3β3 and GSK3β6 do not contain the negative regulatory sites that are controlled by p38 MAPK. Furthermore, qRT-PCR and western blot analysis revealed that all the GSK3β transcripts were expressed at the highest level in the heart, whereas their expression levels in the liver, spleen, kidney, brain, longissimus dorsi muscle and uterus were different. These studies provide useful information for further research on the functions of GSK3β isoforms.


Endocytic pathways downregulate the L1-type cell adhesion molecule neuroglian to promote dendrite pruning in Drosophila.

  • Heng Zhang‎ et al.
  • Developmental cell‎
  • 2014‎

Pruning of unnecessary axons and/or dendrites is crucial for maturation of the nervous system. However, little is known about cell adhesion molecules (CAMs) that control neuronal pruning. In Drosophila, dendritic arborization neurons, ddaCs, selectively prune their larval dendrites. Here, we report that Rab5/ESCRT-mediated endocytic pathways are critical for dendrite pruning. Loss of Rab5 or ESCRT function leads to robust accumulation of the L1-type CAM Neuroglian (Nrg) on enlarged endosomes in ddaC neurons. Nrg is localized on endosomes in wild-type ddaC neurons and downregulated prior to dendrite pruning. Overexpression of Nrg alone is sufficient to inhibit dendrite pruning, whereas removal of Nrg causes precocious dendrite pruning. Epistasis experiments indicate that Rab5 and ESCRT restrain the inhibitory role of Nrg during dendrite pruning. Thus, this study demonstrates the cell-surface molecule that controls dendrite pruning and defines an important mechanism whereby sensory neurons, via endolysosomal pathway, downregulate the cell-surface molecule to trigger dendrite pruning.


Endurance capacity is not correlated with endothelial function in male university students.

  • Yan Wang‎ et al.
  • PloS one‎
  • 2014‎

Endurance capacity, assessed by 1000-meter (1000 m) run of male university students, is an indicator of cardiovascular fitness in Chinese students physical fitness surveillance. Although cardiovascular fitness is related to endothelial function closely in patients with cardiovascular diseases, it remains unclear whether endurance capacity correlates with endothelial function, especially with circulating endothelial microparticles (EMPs), a new sensitive marker of endothelial dysfunction in young students. The present study aimed to investigate the relationship between endurance capacity and endothelial function in male university students.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: