Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 26 papers out of 26 papers

Discovery, development, and clinical proof of mechanism of LY3463251, a long-acting GDF15 receptor agonist.

  • Olivier Benichou‎ et al.
  • Cell metabolism‎
  • 2023‎

GDF15 and its receptor GFRAL/RET form a non-homeostatic system that regulates food intake and body weight in preclinical species. Here, we describe a GDF15 analog, LY3463251, a potent agonist at the GFRAL/RET receptor with prolonged pharmacokinetics. In rodents and obese non-human primates, LY3463251 decreased food intake and body weight with no signs of malaise or emesis. In a first-in-human study in healthy participants, single subcutaneous LY3463251 injections showed a safety and pharmacokinetic profile supporting further clinical development with dose-dependent nausea and emesis in a subset of individuals. A subsequent 12-week multiple ascending dose study in overweight and obese participants showed that LY3463251 induced significant decreases in food intake and appetite scores associated with modest body weight reduction independent of nausea and emesis (clinicaltrials.gov: NCT03764774). These observations demonstrate that agonism of the GFRAL/RET system can modulate energy balance in humans, though the decrease in body weight is surprisingly modest, suggesting challenges in leveraging the GDF15 system for clinical weight-loss applications.


LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: From discovery to clinical proof of concept.

  • Tamer Coskun‎ et al.
  • Molecular metabolism‎
  • 2018‎

A novel dual GIP and GLP-1 receptor agonist, LY3298176, was developed to determine whether the metabolic action of GIP adds to the established clinical benefits of selective GLP-1 receptor agonists in type 2 diabetes mellitus (T2DM).


Novel Small Molecule Agonist of TGR5 Possesses Anti-Diabetic Effects but Causes Gallbladder Filling in Mice.

  • Daniel A Briere‎ et al.
  • PloS one‎
  • 2015‎

Activation of TGR5 via bile acids or bile acid analogs leads to the release of glucagon-like peptide-1 (GLP-1) from intestine, increases energy expenditure in brown adipose tissue, and increases gallbladder filling with bile. Here, we present compound 18, a non-bile acid agonist of TGR5 that demonstrates robust GLP-1 secretion in a mouse enteroendocrine cell line yet weak GLP-1 secretion in a human enteroendocrine cell line. Acute administration of compound 18 to mice increased GLP-1 and peptide YY (PYY) secretion, leading to a lowering of the glucose excursion in an oral glucose tolerance test (OGTT), while chronic administration led to weight loss. In addition, compound 18 showed a dose-dependent increase in gallbladder filling. Lastly, compound 18 failed to show similar pharmacological effects on GLP-1, PYY, and gallbladder filling in Tgr5 knockout mice. Together, these results demonstrate that compound 18 is a mouse-selective TGR5 agonist that induces GLP-1 and PYY secretion, and lowers the glucose excursion in an OGTT, but only at doses that simultaneously induce gallbladder filling. Overall, these data highlight the benefits and potential risks of using TGR5 agonists to treat diabetes and metabolic diseases.


A novel humanized GLP-1 receptor model enables both affinity purification and Cre-LoxP deletion of the receptor.

  • Lucy S Jun‎ et al.
  • PloS one‎
  • 2014‎

Class B G protein-coupled receptors (GPCRs) are important regulators of endocrine physiology, and peptide-based therapeutics targeting some of these receptors have proven effective at treating disorders such as hypercalcemia, osteoporosis, and type 2 diabetes mellitus (T2DM). As next generation efforts attempt to develop novel non-peptide, orally available molecules for these GPCRs, new animal models expressing human receptor orthologs may be required because small molecule ligands make fewer receptor contacts, and thus, the impact of amino acid differences across species may be substantially greater. The objective of this report was to generate and characterize a new mouse model of the human glucagon-like peptide-1 receptor (hGLP-1R), a class B GPCR for which established peptide therapeutics exist for the treatment of T2DM. hGLP-1R knock-in mice express the receptor from the murine Glp-1r locus. Glucose tolerance tests and gastric emptying studies show hGLP-1R mice and their wild-type littermates display similar physiological responses for glucose metabolism, insulin secretion, and gastric transit, and treatment with the GLP-1R agonist, exendin-4, elicits similar responses in both groups. Further, ex vivo assays show insulin secretion from humanized islets is glucose-dependent and enhanced by GLP-1R agonists. To enable additional utility, the targeting construct of the knock-in line was engineered to contain both flanking LoxP sites and a C-terminal FLAG epitope. Anti-FLAG affinity purification shows strong expression of hGLP-1R in islets, lung, and stomach. We crossed the hGLP-1R line with Rosa26Cre mice and generated global Glp-1r-/- animals. Immunohistochemistry of pancreas from humanized and knock-out mice identified a human GLP-1R-specific antibody that detects the GLP-1R in human pancreas as well as in the pancreas of hGLP-1r knock-in mice. This new hGLP-1R model will allow tissue-specific deletion of the GLP-1R, purification of potential GLP-1R partner proteins, and testing of novel therapeutic agents targeting the hGLP-1R.


The anti-obesity effect of FGF19 does not require UCP1-dependent thermogenesis.

  • Patrick J Antonellis‎ et al.
  • Molecular metabolism‎
  • 2019‎

Fibroblast growth factor 19 (FGF19) is a postprandial hormone which plays diverse roles in the regulation of bile acid, glucose, and lipid metabolism. Administration of FGF19 to obese/diabetic mice lowers body weight, improves insulin sensitivity, and enhances glycemic control. The primary target organ of FGF19 is the liver, where it regulates bile acid homeostasis in response to nutrient absorption. In contrast, the broader pharmacologic actions of FGF19 are proposed to be driven, in part, by the recruitment of the thermogenic protein uncoupling protein 1 (UCP1) in white and brown adipose tissue. However, the precise contribution of UCP1-dependent thermogenesis to the therapeutic actions of FGF19 has not been critically evaluated.


A simplified procedure to trace triglyceride-rich lipoprotein metabolism in vivo.

  • Zhixiong Ying‎ et al.
  • Physiological reports‎
  • 2021‎

Glycerol tri[3 H]oleate and [14 C]cholesteryl oleate double-labeled triglyceride-rich lipoprotein (TRL)-like particles are a well-established tool to trace the effect of lipid-modulating interventions on TRL metabolism. The routine generation of these particles involves sonication of a lipid mixture and subsequent fractionation of resulting particles into populations of different average size through density gradient ultracentrifugation. Here, we describe a simplified and more time-efficient procedure for preparing TRL-like particles without the need of fractionation. The simplified procedure shortened the preparation of particles from over 4 h to less than 2 h and generated particles with a higher yield, although with a smaller average size and more heterogeneous size distribution. In C57Bl/6J mice housed at thermoneutrality (30°C), the two preparations showed highly comparable plasma clearance and organ distribution of glycerol tri[3 H]oleate-derived [3 H]oleate and [14 C]cholesteryl oleate, as measures of lipolysis and core remnant uptake, respectively. Upon a cold challenge (14°C), plasma clearance was accelerated due to enhanced uptake of glycerol tri[3 H]oleate-derived [3 H]oleate by brown adipose tissue. The simplified procedure resulted in a modestly increased particle uptake by the spleen, while uptake by other organs was comparable between the two preparations. In conclusion, the simplified procedure accelerates the preparation of TRL-like particles for tracing in vivo TRL metabolism. We anticipate that this time-efficient procedure will be useful for incorporation of PET-traceable lipids to obtain more insight into human lipoprotein metabolism.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: