Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 30 papers out of 30 papers

Ependymomas in infancy: underlying genetic alterations, histological features, and clinical outcome.

  • Stephanie T Jünger‎ et al.
  • Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery‎
  • 2020‎

Young age is an adverse prognostic factor in children with ependymomas. Treatment of these infants is challenging since beneficial therapeutic options are limited. As ependymomas are considered a biologically heterogeneous group, we aimed to characterize infant ependymomas with regard to their histological and genetic features.


Molecular characteristics and improved survival prediction in a cohort of 2023 ependymomas.

  • Lara C Pohl‎ et al.
  • Acta neuropathologica‎
  • 2024‎

The diagnosis of ependymoma has moved from a purely histopathological review with limited prognostic value to an integrated diagnosis, relying heavily on molecular information. However, as the integrated approach is still novel and some molecular ependymoma subtypes are quite rare, few studies have correlated integrated pathology and clinical outcome, often focusing on small series of single molecular types. We collected data from 2023 ependymomas as classified by DNA methylation profiling, consisting of 1736 previously published and 287 unpublished methylation profiles. Methylation data and clinical information were correlated, and an integrated model was developed to predict progression-free survival. Patients with EPN-PFA, EPN-ZFTA, and EPN-MYCN tumors showed the worst outcome with 10-year overall survival rates of 56%, 62%, and 32%, respectively. EPN-PFA harbored chromosome 1q gains and/or 6q losses as markers for worse survival. In supratentorial EPN-ZFTA, a combined loss of CDKN2A and B indicated worse survival, whereas a single loss did not. Twelve out of 200 EPN-ZFTA (6%) were located in the posterior fossa, and these tumors relapsed or progressed even earlier than supratentorial tumors with a combined loss of CDKN2A/B. Patients with MPE and PF-SE, generally regarded as non-aggressive tumors, only had a 10-year progression-free survival of 59% and 65%, respectively. For the prediction of the 5-year progression-free survival, Kaplan-Meier estimators based on the molecular subtype, a Support Vector Machine based on methylation, and an integrated model based on clinical factors, CNV data, and predicted methylation scores achieved balanced accuracies of 66%, 68%, and 73%, respectively. Excluding samples with low prediction scores resulted in balanced accuracies of over 80%. In sum, our large-scale analysis of ependymomas provides robust information about molecular features and their clinical meaning. Our data are particularly relevant for rare and hardly explored tumor subtypes and seemingly benign variants that display higher recurrence rates than previously believed.


WNT activation by lithium abrogates TP53 mutation associated radiation resistance in medulloblastoma.

  • Nataliya Zhukova‎ et al.
  • Acta neuropathologica communications‎
  • 2014‎

TP53 mutations confer subgroup specific poor survival for children with medulloblastoma. We hypothesized that WNT activation which is associated with improved survival for such children abrogates TP53 related radioresistance and can be used to sensitize TP53 mutant tumors for radiation. We examined the subgroup-specific role of TP53 mutations in a cohort of 314 patients treated with radiation. TP53 wild-type or mutant human medulloblastoma cell-lines and normal neural stem cells were used to test radioresistance of TP53 mutations and the radiosensitizing effect of WNT activation on tumors and the developing brain. Children with WNT/TP53 mutant medulloblastoma had higher 5-year survival than those with SHH/TP53 mutant tumours (100% and 36.6%±8.7%, respectively (p<0.001)). Introduction of TP53 mutation into medulloblastoma cells induced radioresistance (survival fractions at 2Gy (SF2) of 89%±2% vs. 57.4%±1.8% (p<0.01)). In contrast, β-catenin mutation sensitized TP53 mutant cells to radiation (p<0.05). Lithium, an activator of the WNT pathway, sensitized TP53 mutant medulloblastoma to radiation (SF2 of 43.5%±1.5% in lithium treated cells vs. 56.6±3% (p<0.01)) accompanied by increased number of γH2AX foci. Normal neural stem cells were protected from lithium induced radiation damage (SF2 of 33%±8% for lithium treated cells vs. 27%±3% for untreated controls (p=0.05). Poor survival of patients with TP53 mutant medulloblastoma may be related to radiation resistance. Since constitutive activation of the WNT pathway by lithium sensitizes TP53 mutant medulloblastoma cells and protect normal neural stem cells from radiation, this oral drug may represent an attractive novel therapy for high-risk medulloblastomas.


New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs.

  • Dominik Sturm‎ et al.
  • Cell‎
  • 2016‎

Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors. From the remaining fraction of CNS-PNETs, we identify four new CNS tumor entities, each associated with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1)," and "CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)," will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by poorly differentiated CNS tumors.


Treatment of children under 4 years of age with medulloblastoma and ependymoma in the HIT2000/HIT-REZ 2005 trials: Neuropsychological outcome 5 years after treatment.

  • Holger Ottensmeier‎ et al.
  • PloS one‎
  • 2020‎

Young children with brain tumours are at high risk of developing treatment-related sequelae. We aimed to assess neuropsychological outcomes 5 years after treatment. This cross-sectional study included children under 4 years of age with medulloblastoma (MB) or ependymoma (EP) enrolled in the German brain tumour trials HIT2000 and HIT-REZ2005. Testing was performed using the validated Wuerzburg Intelligence Diagnostics (WUEP-D), which includes Kaufman-Assessment-Battery, Coloured Progressive Matrices, Visual-Motor Integration, finger tapping "Speed", and the Continuous Performance Test. Of 104 patients in 47 centres, 72 were eligible for analyses. We assessed whether IQ was impacted by disease extent, disease location, patient age, gender, age at surgery, and treatment (chemotherapy with our without craniospinal irradiation [CSI] or local radiotherapy [LRT]). Median age at surgery was 2.3 years. Testing was performed at a median of 4.9 years after surgery. Patients with infratentorial EPs (treated with LRT) scored highest in fluid intelligence (CPM 100.9±16.9, mean±SD); second best scores were achieved by patients with MB without metastasis treated with chemotherapy alone (CPM 93.9±13.2), followed by patients with supratentorial EPs treated with LRT. In contrast, lowest scores were achieved by patients that received chemotherapy and CSI, which included children with metastasised MB and those with relapsed MB M0 (CPM 71.7±8.0 and 73.2±21.8, respectively). Fine motor skills were reduced in all groups. Multivariable analysis revealed that type of treatment had an impact on IQ, but essentially not age at surgery, time since surgery or gender. Our results confirm previous reports on the detrimental effects of CSI in a larger cohort of children. Comparable IQ scores in children with MB treated only with chemotherapy and in children with EP suggest that this treatment strategy represents an attractive option for children who have a high chance to avoid application of CSI. Longitudinal follow-up examinations are warranted to assess long-term neuropsychological outcomes.


Germline GPR161 Mutations Predispose to Pediatric Medulloblastoma.

  • Matthias Begemann‎ et al.
  • Journal of clinical oncology : official journal of the American Society of Clinical Oncology‎
  • 2020‎

The identification of a heritable tumor predisposition often leads to changes in management and increased surveillance of individuals who are at risk; however, for many rare entities, our knowledge of heritable predisposition is incomplete.


Fear of progression in parents of childhood cancer survivors: prevalence and associated factors.

  • Mona L Peikert‎ et al.
  • Journal of cancer survivorship : research and practice‎
  • 2022‎

Recent research demonstrated that fear of progression (FoP) is a major burden for adult cancer survivors. However, knowledge on FoP in parents of childhood cancer survivors is scarce. This study aimed to determine the proportion of parents who show dysfunctional levels of FoP, to investigate gender differences, and to examine factors associated with FoP in mothers and fathers.


Group-specific cellular metabolism in Medulloblastoma.

  • Viktoria L E Funke‎ et al.
  • Journal of translational medicine‎
  • 2023‎

Cancer metabolism influences multiple aspects of tumorigenesis and causes diversity across malignancies. Although comprehensive research has extended our knowledge of molecular subgroups in medulloblastoma (MB), discrete analysis of metabolic heterogeneity is currently lacking. This study seeks to improve our understanding of metabolic phenotypes in MB and their impact on patients' outcomes.


Intraventricular SHH inhibition proves efficient in SHH medulloblastoma mouse model and prevents systemic side effects.

  • Catena Kresbach‎ et al.
  • Neuro-oncology‎
  • 2023‎

Medulloblastoma (MB) is the most common malignant brain tumor in children and requires intensive multimodal therapy. Long-term survival is still dissatisfying and, most importantly, survivors frequently suffer from severe treatment-associated morbidities. The sonic hedgehog pathway (SHH) in SHH MB provides a promising target for specific therapeutic agents. The small molecule Vismodegib allosterically inhibits SMO, the main upstream activator of SHH. Vismodegib has proven effective in the treatment of MB in mice and in clinical studies. However, due to irreversible premature epiphyseal growth plate fusions after systemic application to infant mice and children, its implementation to pediatric patients has been limited. Intraventricular Vismodegib application might provide a promising novel treatment strategy for pediatric medulloblastoma patients.


Mouse models of pediatric high-grade gliomas with MYCN amplification reveal intratumoral heterogeneity and lineage signatures.

  • Melanie Schoof‎ et al.
  • Nature communications‎
  • 2023‎

Pediatric high-grade gliomas of the subclass MYCN (HGG-MYCN) are highly aggressive tumors frequently carrying MYCN amplifications, TP53 mutations, or both alterations. Due to their rarity, such tumors have only recently been identified as a distinct entity, and biological as well as clinical characteristics have not been addressed specifically. To gain insights into tumorigenesis and molecular profiles of these tumors, and to ultimately suggest alternative treatment options, we generated a genetically engineered mouse model by breeding hGFAP-cre::Trp53Fl/Fl::lsl-MYCN mice. All mice developed aggressive forebrain tumors early in their lifetime that mimic human HGG-MYCN regarding histology, DNA methylation, and gene expression. Single-cell RNA sequencing revealed a high intratumoral heterogeneity with neuronal and oligodendroglial lineage signatures. High-throughput drug screening using both mouse and human tumor cells finally indicated high efficacy of Doxorubicin, Irinotecan, and Etoposide as possible therapy options that children with HGG-MYCN might benefit from.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: