Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 108 papers

The perception of quinine taste intensity is associated with common genetic variants in a bitter receptor cluster on chromosome 12.

  • Danielle R Reed‎ et al.
  • Human molecular genetics‎
  • 2010‎

The perceived taste intensities of quinine HCl, caffeine, sucrose octaacetate (SOA) and propylthiouracil (PROP) solutions were examined in 1457 twins and their siblings. Previous heritability modeling of these bitter stimuli indicated a common genetic factor for quinine, caffeine and SOA (22-28%), as well as separate specific genetic factors for PROP (72%) and quinine (15%). To identify the genes involved, we performed a genome-wide association study with the same sample as the modeling analysis, genotyped for approximately 610,000 single-nucleotide polymorphisms (SNPs). For caffeine and SOA, no SNP association reached a genome-wide statistical criterion. For PROP, the peak association was within TAS2R38 (rs713598, A49P, P = 1.6 × 10(-104)), which accounted for 45.9% of the trait variance. For quinine, the peak association was centered in a region that contains bitter receptor as well as salivary protein genes and explained 5.8% of the trait variance (TAS2R19, rs10772420, R299C, P = 1.8 × 10(-15)). We confirmed this association in a replication sample of twins of similar ancestry (P = 0.00001). The specific genetic factor for the perceived intensity of PROP was identified as the gene previously implicated in this trait (TAS2R38). For quinine, one or more bitter receptor or salivary proline-rich protein genes on chromosome 12 have alleles which affect its perception but tight linkage among very similar genes precludes the identification of a single causal genetic variant.


Association between polygenic risk for tobacco or alcohol consumption and liability to licit and illicit substance use in young Australian adults.

  • Lun-Hsien Chang‎ et al.
  • Drug and alcohol dependence‎
  • 2019‎

Co-morbid substance use is very common. Despite a historical focus using genetic epidemiology to investigate comorbid substance use and misuse, few studies have examined substance-substance associations using polygenic risk score (PRS) methods.


Multi-site genetic analysis of diffusion images and voxelwise heritability analysis: a pilot project of the ENIGMA-DTI working group.

  • Neda Jahanshad‎ et al.
  • NeuroImage‎
  • 2013‎

The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Consortium was set up to analyze brain measures and genotypes from multiple sites across the world to improve the power to detect genetic variants that influence the brain. Diffusion tensor imaging (DTI) yields quantitative measures sensitive to brain development and degeneration, and some common genetic variants may be associated with white matter integrity or connectivity. DTI measures, such as the fractional anisotropy (FA) of water diffusion, may be useful for identifying genetic variants that influence brain microstructure. However, genome-wide association studies (GWAS) require large populations to obtain sufficient power to detect and replicate significant effects, motivating a multi-site consortium effort. As part of an ENIGMA-DTI working group, we analyzed high-resolution FA images from multiple imaging sites across North America, Australia, and Europe, to address the challenge of harmonizing imaging data collected at multiple sites. Four hundred images of healthy adults aged 18-85 from four sites were used to create a template and corresponding skeletonized FA image as a common reference space. Using twin and pedigree samples of different ethnicities, we used our common template to evaluate the heritability of tract-derived FA measures. We show that our template is reliable for integrating multiple datasets by combining results through meta-analysis and unifying the data through exploratory mega-analyses. Our results may help prioritize regions of the FA map that are consistently influenced by additive genetic factors for future genetic discovery studies. Protocols and templates are publicly available at (http://enigma.loni.ucla.edu/ongoing/dti-working-group/).


Unraveling the genetic etiology of adult antisocial behavior: a genome-wide association study.

  • Jorim J Tielbeek‎ et al.
  • PloS one‎
  • 2012‎

Crime poses a major burden for society. The heterogeneous nature of criminal behavior makes it difficult to unravel its causes. Relatively little research has been conducted on the genetic influences of criminal behavior. The few twin and adoption studies that have been undertaken suggest that about half of the variance in antisocial behavior can be explained by genetic factors. In order to identify the specific common genetic variants underlying this behavior, we conduct the first genome-wide association study (GWAS) on adult antisocial behavior. Our sample comprised a community sample of 4816 individuals who had completed a self-report questionnaire. No genetic polymorphisms reached genome-wide significance for association with adult antisocial behavior. In addition, none of the traditional candidate genes can be confirmed in our study. While not genome-wide significant, the gene with the strongest association (p-value = 8.7×10(-5)) was DYRK1A, a gene previously related to abnormal brain development and mental retardation. Future studies should use larger, more homogeneous samples to disentangle the etiology of antisocial behavior. Biosocial criminological research allows a more empirically grounded understanding of criminal behavior, which could ultimately inform and improve current treatment strategies.


Meta-analyses identify 13 loci associated with age at menopause and highlight DNA repair and immune pathways.

  • Lisette Stolk‎ et al.
  • Nature genetics‎
  • 2012‎

To newly identify loci for age at natural menopause, we carried out a meta-analysis of 22 genome-wide association studies (GWAS) in 38,968 women of European descent, with replication in up to 14,435 women. In addition to four known loci, we identified 13 loci newly associated with age at natural menopause (at P < 5 × 10(-8)). Candidate genes located at these newly associated loci include genes implicated in DNA repair (EXO1, HELQ, UIMC1, FAM175A, FANCI, TLK1, POLG and PRIM1) and immune function (IL11, NLRP11 and PRRC2A (also known as BAT2)). Gene-set enrichment pathway analyses using the full GWAS data set identified exoDNase, NF-κB signaling and mitochondrial dysfunction as biological processes related to timing of menopause.


Common variants at 12q14 and 12q24 are associated with hippocampal volume.

  • Joshua C Bis‎ et al.
  • Nature genetics‎
  • 2012‎

Aging is associated with reductions in hippocampal volume that are accelerated by Alzheimer's disease and vascular risk factors. Our genome-wide association study (GWAS) of dementia-free persons (n = 9,232) identified 46 SNPs at four loci with P values of <4.0 × 10(-7). In two additional samples (n = 2,318), associations were replicated at 12q14 within MSRB3-WIF1 (discovery and replication; rs17178006; P = 5.3 × 10(-11)) and at 12q24 near HRK-FBXW8 (rs7294919; P = 2.9 × 10(-11)). Remaining associations included one SNP at 2q24 within DPP4 (rs6741949; P = 2.9 × 10(-7)) and nine SNPs at 9p33 within ASTN2 (rs7852872; P = 1.0 × 10(-7)); along with the chromosome 12 associations, these loci were also associated with hippocampal volume (P < 0.05) in a third younger, more heterogeneous sample (n = 7,794). The SNP in ASTN2 also showed suggestive association with decline in cognition in a largely independent sample (n = 1,563). These associations implicate genes related to apoptosis (HRK), development (WIF1), oxidative stress (MSR3B), ubiquitination (FBXW8) and neuronal migration (ASTN2), as well as enzymes targeted by new diabetes medications (DPP4), indicating new genetic influences on hippocampal size and possibly the risk of cognitive decline and dementia.


Cohort profile: the Australian genetics of depression study.

  • Enda M Byrne‎ et al.
  • BMJ open‎
  • 2020‎

Depression is the most common psychiatric disorder and the largest contributor to global disability. The Australian Genetics of Depression study was established to recruit a large cohort of individuals who have been diagnosed with depression at some point in their lifetime. The purpose of establishing this cohort is to investigate genetic and environmental risk factors for depression and response to commonly prescribed antidepressants.


Altered structural brain asymmetry in autism spectrum disorder in a study of 54 datasets.

  • Merel C Postema‎ et al.
  • Nature communications‎
  • 2019‎

Altered structural brain asymmetry in autism spectrum disorder (ASD) has been reported. However, findings have been inconsistent, likely due to limited sample sizes. Here we investigated 1,774 individuals with ASD and 1,809 controls, from 54 independent data sets of the ENIGMA consortium. ASD was significantly associated with alterations of cortical thickness asymmetry in mostly medial frontal, orbitofrontal, cingulate and inferior temporal areas, and also with asymmetry of orbitofrontal surface area. These differences generally involved reduced asymmetry in individuals with ASD compared to controls. Furthermore, putamen volume asymmetry was significantly increased in ASD. The largest case-control effect size was Cohen's d = -0.13, for asymmetry of superior frontal cortical thickness. Most effects did not depend on age, sex, IQ, severity or medication use. Altered lateralized neurodevelopment may therefore be a feature of ASD, affecting widespread brain regions with diverse functions. Large-scale analysis was necessary to quantify subtle alterations of brain structural asymmetry in ASD.


Genetic variants associated with longitudinal changes in brain structure across the lifespan.

  • Rachel M Brouwer‎ et al.
  • Nature neuroscience‎
  • 2022‎

Human brain structure changes throughout the lifespan. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental and neurodegenerative diseases. In this study, we identified common genetic variants that affect rates of brain growth or atrophy in what is, to our knowledge, the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and aging.


Lifetime prevalence and correlates of perinatal depression in a case-cohort study of depression.

  • Jacqueline Kiewa‎ et al.
  • BMJ open‎
  • 2022‎

This study sought to evaluate the prevalence, timing of onset and duration of symptoms of depression in the perinatal period (PND) in women with depression, according to whether they had a history of depression prior to their first perinatal period. We further sought to identify biopsychosocial correlates of perinatal symptoms in women with depression.


Directional dominance on stature and cognition in diverse human populations.

  • Peter K Joshi‎ et al.
  • Nature‎
  • 2015‎

Homozygosity has long been associated with rare, often devastating, Mendelian disorders, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P < 1 × 10(-300), 2.1 × 10(-6), 2.5 × 10(-10) and 1.8 × 10(-10), respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months' less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.


Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex.

  • Tulio Guadalupe‎ et al.
  • Brain imaging and behavior‎
  • 2017‎

The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders.


Joint genetic analysis of hippocampal size in mouse and human identifies a novel gene linked to neurodegenerative disease.

  • David G Ashbrook‎ et al.
  • BMC genomics‎
  • 2014‎

Variation in hippocampal volume has been linked to significant differences in memory, behavior, and cognition among individuals. To identify genetic variants underlying such differences and associated disease phenotypes, multinational consortia such as ENIGMA have used large magnetic resonance imaging (MRI) data sets in human GWAS studies. In addition, mapping studies in mouse model systems have identified genetic variants for brain structure variation with great power. A key challenge is to understand how genetically based differences in brain structure lead to the propensity to develop specific neurological disorders.


Comorbid Chronic Pain and Depression: Shared Risk Factors and Differential Antidepressant Effectiveness.

  • William H Roughan‎ et al.
  • Frontiers in psychiatry‎
  • 2021‎

The bidirectional relationship between depression and chronic pain is well-recognized, but their clinical management remains challenging. Here we characterize the shared risk factors and outcomes for their comorbidity in the Australian Genetics of Depression cohort study (N = 13,839). Participants completed online questionnaires about chronic pain, psychiatric symptoms, comorbidities, treatment response and general health. Logistic regression models were used to examine the relationship between chronic pain and clinical and demographic factors. Cumulative linked logistic regressions assessed the effect of chronic pain on treatment response for 10 different antidepressants. Chronic pain was associated with an increased risk of depression (OR = 1.86 [1.37-2.54]), recent suicide attempt (OR = 1.88 [1.14-3.09]), higher use of tobacco (OR = 1.05 [1.02-1.09]) and misuse of painkillers (e.g., opioids; OR = 1.31 [1.06-1.62]). Participants with comorbid chronic pain and depression reported fewer functional benefits from antidepressant use and lower benefits from sertraline (OR = 0.75 [0.68-0.83]), escitalopram (OR = 0.75 [0.67-0.85]) and venlafaxine (OR = 0.78 [0.68-0.88]) when compared to participants without chronic pain. Furthermore, participants taking sertraline (OR = 0.45 [0.30-0.67]), escitalopram (OR = 0.45 [0.27-0.74]) and citalopram (OR = 0.32 [0.15-0.67]) specifically for chronic pain (among other indications) reported lower benefits compared to other participants taking these same medications but not for chronic pain. These findings reveal novel insights into the complex relationship between chronic pain and depression. Treatment response analyses indicate differential effectiveness between particular antidepressants and poorer functional outcomes for these comorbid conditions. Further examination is warranted in targeted interventional clinical trials, which also include neuroimaging genetics and pharmacogenomics protocols. This work will advance the delineation of disease risk indicators and novel aetiological pathways for therapeutic intervention in comorbid pain and depression as well as other psychiatric comorbidities.


A large-scale genome-wide association study meta-analysis of cannabis use disorder.

  • Emma C Johnson‎ et al.
  • The lancet. Psychiatry‎
  • 2020‎

Variation in liability to cannabis use disorder has a strong genetic component (estimated twin and family heritability about 50-70%) and is associated with negative outcomes, including increased risk of psychopathology. The aim of the study was to conduct a large genome-wide association study (GWAS) to identify novel genetic variants associated with cannabis use disorder.


The genetic architecture of sporadic and multiple consecutive miscarriage.

  • Triin Laisk‎ et al.
  • Nature communications‎
  • 2020‎

Miscarriage is a common, complex trait affecting ~15% of clinically confirmed pregnancies. Here we present the results of large-scale genetic association analyses with 69,054 cases from five different ancestries for sporadic miscarriage, 750 cases of European ancestry for multiple (≥3) consecutive miscarriage, and up to 359,469 female controls. We identify one genome-wide significant association (rs146350366, minor allele frequency (MAF) 1.2%, P = 3.2 × 10-8, odds ratio (OR) = 1.4) for sporadic miscarriage in our European ancestry meta-analysis and three genome-wide significant associations for multiple consecutive miscarriage (rs7859844, MAF = 6.4%, P = 1.3 × 10-8, OR = 1.7; rs143445068, MAF = 0.8%, P = 5.2 × 10-9, OR = 3.4; rs183453668, MAF = 0.5%, P = 2.8 × 10-8, OR = 3.8). We further investigate the genetic architecture of miscarriage with biobank-scale Mendelian randomization, heritability, and genetic correlation analyses. Our results show that miscarriage etiopathogenesis is partly driven by genetic variation potentially related to placental biology, and illustrate the utility of large-scale biobank data for understanding this pregnancy complication.


Large-scale genetic investigation reveals genetic liability to multiple complex traits influencing a higher risk of ADHD.

  • Luis M García-Marín‎ et al.
  • Scientific reports‎
  • 2021‎

Attention Deficit-Hyperactivity Disorder (ADHD) is a complex psychiatric and neurodevelopmental disorder that develops during childhood and spans into adulthood. ADHD's aetiology is complex, and evidence about its cause and risk factors is limited. We leveraged genetic data from genome-wide association studies (GWAS) and performed latent causal variable analyses using a hypothesis-free approach to infer causal associations between 1387 complex traits and ADHD. We identified 37 inferred potential causal associations with ADHD risk. Our results reveal that genetic variants associated with iron deficiency anemia (ICD10), obesity, type 2 diabetes, synovitis and tenosynovitis (ICD10), polyarthritis (ICD10), neck or shoulder pain, and substance use in adults display partial genetic causality on ADHD risk in children. Genetic variants associated with ADHD have a partial genetic causality increasing the risk for chronic obstructive pulmonary disease and carpal tunnel syndrome. Protective factors for ADHD risk included genetic variants associated with the likelihood of participating in socially supportive and interactive activities. Our results show that genetic liability to multiple complex traits influences a higher risk for ADHD, highlighting the potential role of cardiometabolic phenotypes and physical pain in ADHD's aetiology. These findings have the potential to inform future clinical studies and development of interventions.


Perinatal depression is associated with a higher polygenic risk for major depressive disorder than non-perinatal depression.

  • Jacqueline Kiewa‎ et al.
  • Depression and anxiety‎
  • 2022‎

Distinctions between major depressive disorder (MDD) and perinatal depression (PND) reflect varying views of PND, from a unique etiological subtype of MDD to an MDD episode that happens to coincide with childbirth. This case-control study investigated genetic differences between PND and MDD outside the perinatal period (non-perinatal depression or NPD).


Subtly altered topological asymmetry of brain structural covariance networks in autism spectrum disorder across 43 datasets from the ENIGMA consortium.

  • Zhiqiang Sha‎ et al.
  • Molecular psychiatry‎
  • 2022‎

Small average differences in the left-right asymmetry of cerebral cortical thickness have been reported in individuals with autism spectrum disorder (ASD) compared to typically developing controls, affecting widespread cortical regions. The possible impacts of these regional alterations in terms of structural network effects have not previously been characterized. Inter-regional morphological covariance analysis can capture network connectivity between different cortical areas at the macroscale level. Here, we used cortical thickness data from 1455 individuals with ASD and 1560 controls, across 43 independent datasets of the ENIGMA consortium's ASD Working Group, to assess hemispheric asymmetries of intra-individual structural covariance networks, using graph theory-based topological metrics. Compared with typical features of small-world architecture in controls, the ASD sample showed significantly altered average asymmetry of networks involving the fusiform, rostral middle frontal, and medial orbitofrontal cortex, involving higher randomization of the corresponding right-hemispheric networks in ASD. A network involving the superior frontal cortex showed decreased right-hemisphere randomization. Based on comparisons with meta-analyzed functional neuroimaging data, the altered connectivity asymmetry particularly affected networks that subserve executive functions, language-related and sensorimotor processes. These findings provide a network-level characterization of altered left-right brain asymmetry in ASD, based on a large combined sample. Altered asymmetrical brain development in ASD may be partly propagated among spatially distant regions through structural connectivity.


Limb development genes underlie variation in human fingerprint patterns.

  • Jinxi Li‎ et al.
  • Cell‎
  • 2022‎

Fingerprints are of long-standing practical and cultural interest, but little is known about the mechanisms that underlie their variation. Using genome-wide scans in Han Chinese cohorts, we identified 18 loci associated with fingerprint type across the digits, including a genetic basis for the long-recognized "pattern-block" correlations among the middle three digits. In particular, we identified a variant near EVI1 that alters regulatory activity and established a role for EVI1 in dermatoglyph patterning in mice. Dynamic EVI1 expression during human development supports its role in shaping the limbs and digits, rather than influencing skin patterning directly. Trans-ethnic meta-analysis identified 43 fingerprint-associated loci, with nearby genes being strongly enriched for general limb development pathways. We also found that fingerprint patterns were genetically correlated with hand proportions. Taken together, these findings support the key role of limb development genes in influencing the outcome of fingerprint patterning.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: