Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 84 papers

MiR-494-3p Upregulation Exacerbates Cerebral Ischemia Injury by Targeting Bhlhe40.

  • Lingjiang Sun‎ et al.
  • Yonsei medical journal‎
  • 2022‎

Cerebral ischemia is related to insufficient blood supply and is characterized by abnormal reactive oxygen species (ROS) production and cell apoptosis. Previous studies have revealed a key role for basic helix-loop-helix family member e40 (Bhlhe40) in oxidative stress and cell apoptosis. This study aimed to investigate the roles of miR-494-3p in cerebral ischemia/reperfusion (I/R) injury.


Programmable Attenuation of Antigenic Sensitivity for a Nanobody-Based EGFR Chimeric Antigen Receptor Through Hinge Domain Truncation.

  • Scott McComb‎ et al.
  • Frontiers in immunology‎
  • 2022‎

Epidermal growth factor family receptor (EGFR) is commonly overexpressed in many solid tumors and an attractive target for chimeric antigen receptor (CAR)-T therapy, but as EGFR is also expressed at lower levels in healthy tissues a therapeutic strategy must balance antigenic responsiveness against the risk of on-target off-tumor toxicity. Herein, we identify several camelid single-domain antibodies (also known as nanobodies) that are effective EGFR targeting moieties for CARs (EGFR-sdCARs) with very strong reactivity to EGFR-high and EGFR-low target cells. As a strategy to attenuate their potent antigenic sensitivity, we performed progressive truncation of the human CD8 hinge commonly used as a spacer domain in many CAR constructs. Single amino acid hinge-domain truncation progressively decreased both EGFR-sdCAR-Jurkat cell binding to EGFR-expressing targets and expression of the CD69 activation marker. Attenuated signaling in hinge-truncated EGFR-sdCAR constructs increased selectivity for antigen-dense EGFR-overexpressing cells over an EGFR-low tumor cell line or healthy donor derived EGFR-positive fibroblasts. We also provide evidence that epitope location is critical for determining hinge-domain requirement for CARs, as hinge truncation similarly decreased antigenic sensitivity of a membrane-proximal epitope targeting HER2-CAR but not a membrane-distal EGFRvIII-specific CAR. Hinge-modified EGFR-sdCAR cells showed clear functional attenuation in Jurkat-CAR-T cells and primary human CAR-T cells from multiple donors in vitro and in vivo. Overall, these results indicate that hinge length tuning provides a programmable strategy for throttling antigenic sensitivity in CARs targeting membrane-proximal epitopes, and could be employed for CAR-optimization and improved tumor selectivity.


Hybrid Membrane-Derived Nanoparticles for Isoliquiritin Enhanced Glioma Therapy.

  • Wenwan Shi‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2022‎

Due to the obstruction and heterogeneity of the blood-brain barrier, the clinical treatment of glioma has been extremely difficult. Isoliquiritigenin (ISL) exhibits antitumor effects, but its low solubility and bioavailability limit its application potential. Herein, we established a nanoscale hybrid membrane-derived system composed of erythrocytes and tumor cells. By encapsulating ISL in hybrid membrane nanoparticles, ISL is expected to be enhanced for the targeting and long-circulation in gliomas therapy. We fused erythrocytes with human glioma cells U251 and extracted the fusion membrane via hypotension, termed as hybrid membrane (HM). HM-camouflaged ISL nanoparticles (ISL@HM NPs) were prepared and featured with FT-IR, SEM, TEM, and DLS particle analysis. As the results concluded, the ISL active pharmaceutical ingredients (APIs) were successfully encapsulated with HM membranes, and the NPs loading efficiency was 38.9 ± 2.99% under maximum entrapment efficiency. By comparing the IC50 of free ISL and NPs, we verified that the solubility and antitumor effect of NPs was markedly enhanced. We also investigated the mechanism of the antitumor effect of ISL@HM NPs, which revealed a marked inhibition of tumor cell proliferation and promotion of senescence and apoptosis of tumor cells of the formulation. In addition, the FSC and WB results examined the effects of different concentrations of ISL@HM NPs on tumor cell disruption and apoptotic protein expression. Finally, it can be concluded that hybridized membrane-derived nanoparticles could prominently increase the solubility of insoluble materials (as ISL), and also enhance its targeting and antitumor effect.


Adipose-derived stem cell exosomes promote tumor characterization and immunosuppressive microenvironment in breast cancer.

  • Qin Zhu‎ et al.
  • Cancer immunology, immunotherapy : CII‎
  • 2024‎

Adipose-derived stem cells (ASC) or autologous fat transplantation could be used to ameliorate breast cancer postoperative deformities. This study aims to explore the action of ASC and ASC-exosomes (ASC-exos) in breast cancer characterization and tumor microenvironment immunity, which provided a new method into the application of ASC-exos. ASC were extracted from human adipose tissue for the isolation and verification of ASC-exos. ASC-exos were co-cultured with CD4+T cells, CD14+ monocytes and MCF-7 cells, respectively. The tumor formation of nude mice was also constructed. Cell characterization was determined by CCK8, scratch assay, and Transwell. Hematoxylin-eosin (HE), immunohistochemistry (IHC) and immunofluorescence (IF) staining were used to observe the histopathology and protein expression. CD4+T cell and CD14+ monocytes differentiation was detected by flow cytometry. Western blot, qRT-PCR and RNAseq were used to detect the action of ASC-exos on gene and protein expression. CD4+T cells could take up ASC-exos. ASC-exos inhibited Th1 and Th17 differentiation and promoted Treg differentiation of CD4+T cells. ASC-exos inhibited M1 differentiation and promoted M2 differentiation of CD14+ monocytes. ASC-exos promoted the migration, proliferation, and invasion, while inhibited apoptosis of MCF-7 cells. ASC-exos promoted the tumor formation of breast cancer. The effect of ASC-exos on tumor microenvironment immunity was in accordance with the above in vitro results. TOX, CD4 and LYZ1 genes were upregulated, while Mettl7b and Serpinb2 genes were downregulated in ASC-exos group. Human T-cell leukemia virus 1 infection pathway was significantly enriched in ASC-exos. Thus, ASC-exos promoted breast cancer characterization and tumor microenvironment immunosuppression by regulating macrophage and T cell differentiation.


Comprehensive analysis and experimental verification of the mechanism of action of T cell-mediated tumor-killing related genes in Colon adenocarcinoma.

  • Jing Chen‎ et al.
  • Translational oncology‎
  • 2024‎

Colorectal cancer (CRC) is a prevalent malignancy of the digestive tract. A new prognostic scoring model for colon adenocarcinoma (COAD) is developed in this study based on the genes involved in tumor cell-mediated killing of T cells (GSTTKs), accurately stratifying COAD patients, thus improving the current status of personalized treatment.


NOP2/Sun RNA methyltransferase 2 promotes tumor progression via its interacting partner RPL6 in gallbladder carcinoma.

  • Yuan Gao‎ et al.
  • Cancer science‎
  • 2019‎

NOP2/Sun domain family, member 2 (NSUN2) is a nuclear RNA methyl-transferase catalyzing 5-methylcytosine formation. Evidence shows that NSUN2 is correlated with cell unlimited proliferation. However, its functional role in gallbladder carcinoma (GBC), which is the most common biliary tract malignancy and has a poor prognosis, remains to be determined. Here we found that NSUN2 was highly expressed in GBC tissues as well as cell lines. NSUN2 silencing repressed GBC cell proliferation and tumorigenesis both in vitro and in vivo. Conversely, upregulation of NSUN2 enhanced GBC cell growth and colony formation. We further discovered that RPL6 was a closely interacting partner with NSUN2. Silencing RPL6 resulted in insufficient NSUN2 translational level and accumulative NSUN2 transcriptional level. Exogenous expression of NSUN2 partially rescued the effect of RPL6 in gallbladder cancer progression. Taken together, our data provided novel mechanic insights into the function of NSUN2 in GBC, thus pointing to NSUN2 as a potential and effective therapeutic approach to GBC treatment.


Epidemiological and Virological Characterizations of the 2014 Dengue Outbreak in Guangzhou, China.

  • Hui Zhao‎ et al.
  • PloS one‎
  • 2016‎

Dengue used to be recognized as an imported and sporadic disease in China. Since June 2014, an unexpected large dengue outbreak has attacked Guangzhou, China, resulting in more than 40,000 cases. Among the 1,942 laboratory-confirmed hospitalized dengue cases, 121 were diagnosed as severe dengue according to the 2009 WHO guideline, and 2 patients finally died. Laboratory diagnosis and virus isolation demonstrated that the majority (96%) cases were caused by dengue virus serotype 1 (DENV-1), and the others by serotype 2 (DENV-2). 14 DENV strains were isolated from the sera of acute-phase dengue patients during this outbreak, and the complete envelope (E) gene of 12 DENV-1 strains and two DENV-2 strains were determined using RT-PCR assay. Phylogenetic analysis based on the E gene revealed the DENV-1 strains isolated during the outbreak belonged to genotype I and V, respectively. These isolates formed three clades. DENV-2 isolates were assigned to the same clade belonging to genotype cosmopolitan. These strains isolated in 2014 were closely related to the isolates obtained from the same province, Guangdong, in 2013. No amino acid mutations known to increase virulence were identified throughout the E protein of isolates in 2014. These results indicate that dengue is turning into endemic in Guangdong, China, and extensive seroepidemiological investigation and mosquito control measures are critically needed in the future.


Estrogen and high-fat diet induced alterations in C57BL/6 mice endometrial transcriptome profile.

  • Yali Cheng‎ et al.
  • Endocrine connections‎
  • 2018‎

Unopposed estrogen stimulation and insulin resistance are known to play important roles in endometrial cancer (EC), but the interaction between these two factors and how they contribute to endometrial lesions are not completely elucidated. To investigate the endometrial transcriptome profile and the associated molecular pathway alterations, we established an ovariectomized C57BL/6 mouse model treated with subcutaneous implantation of 17-β estradiol (E2) pellet and/or high-fat diet (HFD) for 12 weeks to mimic sustained estrogen stimulation and insulin resistance. Histomorphologically, we found that both E2 and E2 + HFD groups showed markedly enlarged uterus and increased number of endometrial glands. The endometrium samples were collected for microarray assay. GO and KEGG analysis showed that genes regulated by E2 and/or HFD are mainly responsible for immune response, inflammatory response and metabolic pathways. Further IPA analysis demonstrated that the acute phase response signaling, NF-κB signaling, leukocyte extravasation signaling, PPAR signaling and LXR/RXR activation pathways are mainly involved in the pathways above. In addition, the genes modulated reciprocally by E2 and/or HFD were also analyzed, and their crosstalk mainly focuses on enhancing one another's activity. The combination analysis of microarray data and TCGA database provided potential diagnostic or therapeutic targets for EC. Further validation was performed in mice endometrium and human EC cell lines. In conclusion, this study unraveled the endometrial transcriptome profile alterations affected by E2 and/or HFD that may disturb endometrial homeostasis and contribute to the development of endometrial hyperplasia.


Protein acetylation derepresses Serotonin Synthesis to potentiate Pancreatic Beta-Cell Function through HDAC1-PKA-Tph1 signaling.

  • Yuqing Zhang‎ et al.
  • Theranostics‎
  • 2020‎

Rationale: Protein acetylation is tightly linked to transcriptional control and energy metabolism. However, the role of protein acetylation in islet function remains enigmatic. This study aims to determine how protein acetylation controls β-cell function and explore the underlying mechanism. Methods: The gene-expression profiles were analyzed for rat islets in response to two histone deacetylase (HDAC) inhibitors. Insulin secretion, tryptophan hydroxylase 1 (Tph1) expression, and serotonin synthesis of rat islets were detected after HDAC inhibitor treatment both in vivo and ex vivo. β-cell-specific Tph1-overexpressing transgenic rats and β-cell-specific Tph1 knockout mice were constructed to evaluate the role of Tph1 in β-cell function. The deacetylation of PKA in β-cells by HDAC1 was investigated by adenoviral infection, immunoprecipitation, and western blot. Results: Inhibition of HDACs greatly potentiated pancreatic β-cell function and reprogrammed transcriptional landscape of islets. Among the commonly up-regulated genes by two pan-HDAC inhibitors, Tph1 displayed the most prominent change. Specifically, inhibition of HDAC1 and HDAC3 by MS-275 strongly promoted Tph1 expression and endogenous serotonin synthesis in rat islets, concomitantly with enhanced insulin secretory capacity in vivo and ex vivo. β-cell-specific Tph1-overexpressing transgenic rats exhibited improved glucose tolerance and amplified glucose-stimulated insulin secretion. On the contrary, β-cell-specific Tph1 knockout mice displayed glucose intolerance and impaired insulin secretion with aging. Moreover, depletion of Tph1 in β-cells abrogated MS-275-induced insulin hypersecretion. Overexpression of HDAC1, not HDAC3, inhibited Tph1 transcriptional activity and decreased MS-275-stimulated Tph1 expression. Mechanistically, HDAC1 deacetylated PKA catalytic subunit and decreased its activity, resulting in Tph1 transcriptional repression. The acetylation mimetic K62Q mutant of PKA increased its catalytic activity. HDAC1 inhibition exerted a synergistic effect with cAMP/PKA signal on Tph1 expression. Conclusions: The present findings highlight a novel role of HDAC1-PKA-Tph1 signaling in governing β-cell functional compensation by derepressing serotonin synthesis.


microRNA-144 functions as a diagnostic and prognostic marker for retinoblastoma.

  • Qian Zheng‎ et al.
  • Clinics (Sao Paulo, Brazil)‎
  • 2020‎

Retinoblastoma (RB) is a highly malignant eye tumor with a low survival rate and a high metastatic rate. The current work was designed to investigate the potential roles of microRNA-144 (miR-144) in the diagnosis and prognosis of RB.


Calycosin-7-O-β-D-glucoside attenuates palmitate-induced lipid accumulation in hepatocytes through AMPK activation.

  • Wan Xu‎ et al.
  • European journal of pharmacology‎
  • 2022‎

Calycosin-7-O-β-D-glucoside (CG) is the major component of Astragali Radix (AR), a traditional Chinese drug. As reported, CG could attenuate cerebral ischemia/reperfusion injury, protect blood-brain barrier integrity, and ameliorate myocardial infarction. To date, whether CG has a protective effect on metabolic diseases remains to be elucidated. In the present study, CG could attenuate palmitate-induced lipid accumulation in hepatocytes in a dose-dependent manner, with down-regulation of lipogenesis related genes expression and up-regulation of lipids β-oxidation related genes expression. CG could decrease the triglyceride (TG) content from 0.30 mmol/g protein to 0.21 mmol/g protein and reduce the total cholesterol (TC) content from 0.39 mmol/g protein to 0.26 mmol/g protein. Moreover, CG stimulated the phosphorylation of AMP-activated protein kinase (AMPK), and the protective effect of CG on hepatocytes was partially reversed both by the inhibitor of AMPK signaling pathway and overexpression of AMPK-DN. Our findings revealed that CG could ameliorate palmitate-induced lipids accumulation in hepatocytes via AMPK activation and it may be a promising therapeutic medicine for hepatic steatosis.


Allisartan isoproxil attenuates oxidative stress and inflammation through the SIRT1/Nrf2/NF‑κB signalling pathway in diabetic cardiomyopathy rats.

  • Qinyang Jin‎ et al.
  • Molecular medicine reports‎
  • 2021‎

Allisartan isoproxil is a new nonpeptide angiotensin II receptor blocker (ARB) precursor drug that is used to treat hypertension and reduce the risk of heart disease. The present study explored the effects of allisartan isoproxil on diabetic cardiomyopathy (DCM) and revealed the roles of hyperglycaemia‑induced oxidative stress and inflammation. A rat DCM model was established by high‑fat diet feeding in combination with intraperitoneal injection of streptozocin. Echocardiographs showed that diabetic rats exhibited significantly decreased cardiac function. Troponin T (cTnT) and B‑type natriuretic peptide (BNP) were significantly increased in DCM rats as obtained by ELISA. Allisartan isoproxil significantly improved the EF% and E'/A' ratio. Histopathologic staining showed that allisartan isoproxil prevented histological alterations, attenuated the accumulation of collagen, and ameliorated cTnT and BNP levels. Western blot and immunohistochemical results indicated that the expression levels of silent information regulator 2 homologue 1 (SIRT1) and nuclear factor erythroid 2‑related factor 2 (Nrf2) were decreased in the hearts of diabetic rats, and antioxidant defences were also decreased. In addition, allisartan isoproxil decreased the expression of NF‑κB p65 and the inflammatory cytokines TNF‑α and IL‑1β which were determined by reverse transcription‑quantitative PCR in the diabetic heart. Western blotting and TUNEL staining results also showed that cardiac Bax and cleaved caspase‑3 and the number of apoptotic myocardial cells were increased in the diabetic heart and decreased following treatment with allisartan isoproxil. In conclusion, the present results indicated that allisartan isoproxil alleviated DCM by attenuating diabetes‑induced oxidative stress and inflammation through the SIRT1/Nrf2/NF‑κB signalling pathway.


TASP1 Promotes Gallbladder Cancer Cell Proliferation and Metastasis by Up-regulating FAM49B via PI3K/AKT Pathway.

  • Yijian Zhang‎ et al.
  • International journal of biological sciences‎
  • 2020‎

The highly conserved protease TASP1 not only takes part in critical site-specific proteolysis, but also plays an important role in numerous liquid and solid malignancies. However, the TASP1 expression and its biological regulation function in malignant gallbladder carcinoma (GBC) remain fully unknown. Here we observed that TASP1 levels were substantially overexpressed in GBC samples compared with non-tumor tissues. High TASP1 level was closely associated with T stage and metastasis, and was also correlated with poor prognosis in GBC patients. The depletion of TASP1 inhibited GBC cell proliferation and metastasis in vitro and in vivo. Furthermore, we first revealed that FAM49B had biological function and was positively regulated by TASP1 activating PI3K/AKT signaling pathway in GBC. At the same time, FAM49B also promoted GBC cell proliferation and migration. Inhibition of PI3K/AKT with LY294002 or FAM49B expression abrogated Myc-TASP1/Lv-shTASP1-induced GBC cell proliferation and motility. In conclusion, these findings demonstrate that TASP1 is critical for GBC progression via TASP1-PI3K/AKT-FAM49B axis and it may be a novel prognostic factor. The therapeutic targeting TASP1 may be a potential treatment approach for GBC patients.


LncRNA-HGBC stabilized by HuR promotes gallbladder cancer progression by regulating miR-502-3p/SET/AKT axis.

  • Yun-Ping Hu‎ et al.
  • Molecular cancer‎
  • 2019‎

Long non-coding RNAs (lncRNAs) are essential factors that regulate tumor development and metastasis via diverse molecular mechanisms in a broad type of cancers. However, the pathological roles of lncRNAs in gallbladder carcinoma (GBC) remain largely unknown. Here we discovered a novel lncRNA termed lncRNA Highly expressed in GBC (lncRNA-HGBC) which was upregulated in GBC tissue and aimed to investigate its role and regulatory mechanism in the development and progression of GBC.


AMPK-Regulated Autophagy Contributes to Ursolic Acid Supplementation-Alleviated Hepatic Steatosis and Liver Injury in Chronic Alcohol-Fed Mice.

  • Yue Ma‎ et al.
  • ACS omega‎
  • 2023‎

Alcoholic liver disease (ALD) is a chronic liver disease caused by long-term heavy consumption of alcohol. The pathogenesis of ALD is complex, and there is no effective clinical treatment at present. Ursolic acid (UA), a general triterpenoid with multiple biological roles, is widely distributed in plants. This study aims to explore the therapeutic effect and potential mechanisms of UA that protect against liver injury and hepatic steatosis in an ALD mouse model. In this study, we analyzed the lipid accumulation and the effect of UA treatment in a mouse model of ALD; AML12 and HepG2 cells were used to study the biological effect and potential mechanisms of UA on ethanol-induced hepatotoxicity. The morphologic and histological detections showed that UA significantly reduced alcohol-induced liver injury and hepatic steatosis. In addition, UA dramatically ameliorated alcohol-induced metabolic disorders, oxidative stress, and inflammation. Furthermore, UA treatment activated autophagy via the AMPK-ACC pathway to protect hepatocytes from lipotoxicity. Thus, these findings demonstrate that UA treatment alleviates alcoholic-induced liver injury by activating autophagy through the AMPK-ACC pathway. Therefore, UA may represent a promising candidate for the treatment of ALD.


Isoliquiritigenin induces HMOX1 and GPX4-mediated ferroptosis in gallbladder cancer cells.

  • Zeyu Wang‎ et al.
  • Chinese medical journal‎
  • 2023‎

Gallbladder cancer (GBC) is the most common malignant tumor of biliary tract. Isoliquiritigenin (ISL) is a natural compound with chalcone structure extracted from the roots of licorice and other plants. Relevant studies have shown that ISL has a strong anti-tumor ability in various types of tumors. However, the research of ISL against GBC has not been reported, which needs to be further investigated.


Association of Fucosyltransferase 2 Gene Variant with Inflammatory Bowel Diseases: A Meta-Analysis.

  • Feng Zhou‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2019‎

BACKGROUND Ulcerative colitis (UC) and Crohn's disease (CD) are the 2 main type of inflammatory bowel diseases (IBDs). Several studies have been conducted to investigate the association of fucosyltransferase 2 gene (rs601338) variant with UC and CD, but the results were inconsistent. Here, we performed a meta-analysis to clarify this issue based on a relatively larger sample size. MATERIAL AND METHODS A systematic literature search was conducted in PubMed, Embase, CNKI, and Chinese Wangfang databases up to 31 May 2018. Meta results were synthesized by using crude odds ratio with 95% confidence interval. Heterogeneity, sensitivity analysis, subgroup analysis, and publication bias were assessed using STATA 11.0 software. RESULTS A total of 8 relevant studies including 3874 IBDs patients (1872 UC cases, 2002 CD cases) and 5445 controls were included for meta-analysis. We found a significant association between rs601338 A allele and risk of IBDs in the Chinese population (OR=2.35, 95%CI=1.66~3.34, P=0.001), but not in whites. Stratified by disease type, we found a significant association between rs601338 polymorphism with CD and UC in the Chinese population, but not in the white population. In addition, funnel plot and Egger's linear regression test suggests no publication bias in all genetic models. CONCLUSIONS Fucosyltransferase 2 gene (rs601338) polymorphism is associated with susceptibility to IBD, UC, and CD in the Chinese population, but these results might not be generalizable to other ethnic populations. Further well-designed studies are needed to confirm these findings.


Structural basis for halogenation by iron- and 2-oxo-glutarate-dependent enzyme WelO5.

  • Andrew J Mitchell‎ et al.
  • Nature chemical biology‎
  • 2016‎

A 2.4-Å-resolution X-ray crystal structure of the carrier-protein-independent halogenase WelO5 in complex with its welwitindolinone precursor substrate, 12-epi-fischerindole U, reveals that the C13 chlorination target is proximal to the anticipated site of the oxo group in a presumptive cis-halo-oxo-iron(IV) (haloferryl) intermediate. Prior study of related halogenases forecasts substrate hydroxylation in this active-site configuration, but X-ray crystallographic verification of C13 halogenation in single crystals mandates that ligand dynamics must reposition the oxygen ligand to enable the observed outcome. S189A WelO5 produces a mixture of halogenation and hydroxylation products, showing that an outer-sphere hydrogen-bonding group orchestrates ligand movements to achieve a configuration that promotes halogen transfer.


CD146 promotes metastasis and predicts poor prognosis of hepatocellular carcinoma.

  • Guoqing Jiang‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2016‎

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide. Recurrence and metastasis after curative resection remain critical obstacles in HCC treatment. CD146 predicted poor prognosis of a variety of cancers including melanoma, breast tumors, prostate cancer, and gastric cancer. However, the role of CD146 in HCC has not yet been systematically explored.


Lack of conspicuous sex-biased dispersal patterns at different spatial scales in an Asian endemic goose species breeding in unpredictable steppe wetlands.

  • Qin Zhu‎ et al.
  • Ecology and evolution‎
  • 2020‎

Dispersal affects the spatial distribution and population structure of species. Dispersal is often male-biased in mammals while female-biased in birds, with the notable exception of the Anatidae. In this study, we tested genetic evidence for sex-biased dispersal (SBD) in the Swan Goose Anser cygnoides, an Asian endemic and IUCN vulnerable species, which has been increasingly restricted to breeding on Mongolian steppe wetlands. We analyzed the genotypes of 278 Swan Geese samples from 14 locations at 14 microsatellite loci. Results from assignment indices, analysis of molecular variance, and five other population descriptors all failed to support significant SBD signals for the Swan Goose at the landscape level. Although overall results showed significantly high relatedness within colonies (suggesting high levels of philopatry in both sexes), local male genetic structure at the 1,050 km distance indicated greater dispersal distance for females from the eastern sector of the breeding range. Hence, local dispersal is likely scale-dependent and female-biased within the eastern breeding range. These findings are intriguing considering the prevailing expectation for there to be female fidelity in most goose species. We suggest that while behavior-related traits may have facilitated the local genetic structure for the Swan Goose, several extrinsic factors, including the decreasing availability of the nesting sites and the severe fragmentation of breeding habitats, could have contributed to the absence of SBD at the landscape level. The long-distance molt migration that is typical of goose species such as the Swan Goose may also have hampered our ability to detect SBD. Hence, we urge further genetic sampling from other areas in summer to extend our results, complemented by field observations to confirm our DNA analysis conclusions about sex-specific dispersal patterns at different spatial scales in this species.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: