Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 66 papers

Dementia with Lewy bodies: association of Alzheimer pathology with functional connectivity networks.

  • Julia Schumacher‎ et al.
  • Brain : a journal of neurology‎
  • 2021‎

Dementia with Lewy bodies (DLB) is neuropathologically defined by the presence of α-synuclein aggregates, but many DLB cases show concurrent Alzheimer's disease pathology in the form of amyloid-β plaques and tau neurofibrillary tangles. The first objective of this study was to investigate the effect of Alzheimer's disease co-pathology on functional network changes within the default mode network (DMN) in DLB. Second, we studied how the distribution of tau pathology measured with PET relates to functional connectivity in DLB. Twenty-seven DLB, 26 Alzheimer's disease and 99 cognitively unimpaired participants (balanced on age and sex to the DLB group) underwent tau-PET with AV-1451 (flortaucipir), amyloid-β-PET with Pittsburgh compound-B (PiB) and resting-state functional MRI scans. The resing-state functional MRI data were used to assess functional connectivity within the posterior DMN. This was then correlated with overall cortical flortaucipir PET and PiB PET standardized uptake value ratio (SUVr). The strength of interregional functional connectivity was assessed using the Schaefer atlas. Tau-PET covariance was measured as the correlation in flortaucipir SUVr between any two regions across participants. The association between region-to-region functional connectivity and tau-PET covariance was assessed using linear regression. Additionally, we identified the region with highest and the region with lowest tau SUVrs (tau hot- and cold spots) and tested whether tau SUVr in all other brain regions was associated with the strength of functional connectivity to these tau hot and cold spots. A reduction in posterior DMN connectivity correlated with overall higher cortical tau- (r = -0.39, P = 0.04) and amyloid-PET uptake (r = -0.41, P = 0.03) in the DLB group, i.e. patients with DLB who have more concurrent Alzheimer's disease pathology showed a more severe loss of DMN connectivity. Higher functional connectivity between regions was associated with higher tau covariance in cognitively unimpaired, Alzheimer's disease and DLB. Furthermore, higher functional connectivity of a target region to the tau hotspot (i.e. inferior/medial temporal cortex) was related to higher flortaucipir SUVrs in the target region, whereas higher functional connectivity to the tau cold spot (i.e. sensory-motor cortex) was related to lower flortaucipir SUVr in the target region. Our findings suggest that a higher burden of Alzheimer's disease co-pathology in patients with DLB is associated with more Alzheimer's disease-like changes in functional connectivity. Furthermore, we found an association between the brain's functional network architecture and the distribution of tau pathology that has recently been described in Alzheimer's disease. We show that this relationship also exists in patients with DLB, indicating that similar mechanisms of connectivity-dependent occurrence of tau pathology might be at work in both diseases.


Selecting software pipelines for change in flortaucipir SUVR: Balancing repeatability and group separation.

  • Christopher G Schwarz‎ et al.
  • NeuroImage‎
  • 2021‎

Since tau PET tracers were introduced, investigators have quantified them using a wide variety of automated methods. As longitudinal cohort studies acquire second and third time points of serial within-person tau PET data, determining the best pipeline to measure change has become crucial. We compared a total of 415 different quantification methods (each a combination of multiple options) according to their effects on a) differences in annual SUVR change between clinical groups, and b) longitudinal measurement repeatability as measured by the error term from a linear mixed-effects model. Our comparisons used MRI and Flortaucipir scans of 97 Mayo Clinic study participants who clinically either: a) were cognitively unimpaired, or b) had cognitive impairments that were consistent with Alzheimer's disease pathology. Tested methods included cross-sectional and longitudinal variants of two overarching pipelines (FreeSurfer 6.0, and an in-house pipeline based on SPM12), three choices of target region (entorhinal, inferior temporal, and a temporal lobe meta-ROI), five types of partial volume correction (PVC) (none, two-compartment, three-compartment, geometric transfer matrix (GTM), and a tau-specific GTM variant), seven choices of reference region (cerebellar crus, cerebellar gray matter, whole cerebellum, pons, supratentorial white matter, eroded supratentorial WM, and a composite of eroded supratentorial WM, pons, and whole cerebellum), two choices of region masking (GM or GM and WM), and two choices of statistic (voxel-wise mean vs. median). Our strongest findings were: 1) larger temporal-lobe target regions greatly outperformed entorhinal cortex (median sample size estimates based on a hypothetical clinical trial were 520-526 vs. 1740); 2) longitudinal processing pipelines outperformed cross-sectional pipelines (median sample size estimates were 483 vs. 572); and 3) reference regions including supratentorial WM outperformed traditional cerebellar and pontine options (median sample size estimates were 370 vs. 559). Altogether, our results favored longitudinally SUVR methods and a temporal-lobe meta-ROI that includes adjacent (juxtacortical) WM, a composite reference region (eroded supratentorial WM + pons + whole cerebellum), 2-class voxel-based PVC, and median statistics.


Longitudinal Accumulation of Cerebral Microhemorrhages in Dominantly Inherited Alzheimer Disease.

  • Nelly Joseph-Mathurin‎ et al.
  • Neurology‎
  • 2021‎

To investigate the inherent clinical risks associated with the presence of cerebral microhemorrhages (CMHs) or cerebral microbleeds and characterize individuals at high risk for developing hemorrhagic amyloid-related imaging abnormality (ARIA-H), we longitudinally evaluated families with dominantly inherited Alzheimer disease (DIAD).


The value of multimodal imaging with 123I-FP-CIT SPECT in differential diagnosis of dementia with Lewy bodies and Alzheimer's disease dementia.

  • Toji Miyagawa‎ et al.
  • Neurobiology of aging‎
  • 2021‎

Reduced nigrostriatal uptake on N-(3-fluoropropyl)-2β-carbomethoxy-3β-(4-[123I]iodophenyl) nortropane (123I-FP-CIT) SPECT reflects dopamine dysfunction, while other imaging markers could be complementary when used together. We assessed how well 123I-FP-CIT SPECT differentiates dementia with Lewy bodies (DLBs) from Alzheimer's disease dementia (ADem) and whether multimodal imaging provides additional value. 123I-FP-CIT SPECT, magnetic resonance imaging, [18F]2-fluoro-deoxy-D-glucose-positron emission tomography (PET), and 11C-Pittsburgh compound B (PiB)-PET were assessed in 35 participants with DLBs and 14 participants with ADem (autopsy confirmation in 9 DLBs and 4 ADem). Nigrostriatal dopamine transporter uptake was evaluated with 123I-FP-CIT SPECT using DaTQUANT software. Hippocampal volume was calculated with magnetic resonance imaging, cingulate island sign ratio with FDG-PET, and global cortical PiB retention with PiB-PET. The DaTQUANT z-scores of the putamen showed the highest c-statistic of 0.916 in differentiating DLBs from ADem among the analyzed imaging biomarkers. Adding another imaging modality to 123I-FP-CIT SPECT had c-statistics ranging from 0.968 to 0.975, and 123I-FP-CIT SPECT in combination with 2 other imaging modalities presented c-statistics ranging from 0.987 to 0.996. These findings suggest that multimodal imaging with 123I-FP-CIT SPECT aids in differentiating DLBs and ADem and in detecting comorbid Lewy-related and Alzheimer's disease pathology in patients with DLBs and ADem.


Predicting amyloid PET and tau PET stages with plasma biomarkers.

  • Clifford R Jack‎ et al.
  • Brain : a journal of neurology‎
  • 2023‎

Staging the severity of Alzheimer's disease pathology using biomarkers is useful for therapeutic trials and clinical prognosis. Disease staging with amyloid and tau PET has face validity; however, this would be more practical with plasma biomarkers. Our objectives were, first, to examine approaches for staging amyloid and tau PET and, second, to examine prediction of amyloid and tau PET stages using plasma biomarkers. Participants (n = 1136) were enrolled in either the Mayo Clinic Study of Aging or the Alzheimer's Disease Research Center; had a concurrent amyloid PET, tau PET and blood draw; and met clinical criteria for cognitively unimpaired (n = 864), mild cognitive impairment (n = 148) or Alzheimer's clinical syndrome with dementia (n = 124). The latter two groups were combined into a cognitively impaired group (n = 272). We used multinomial regression models to estimate discrimination [concordance (C) statistics] among three amyloid PET stages (low, intermediate, high), four tau PET stages (Braak 0, 1-2, 3-4, 5-6) and a combined amyloid and tau PET stage (none/low versus intermediate/high severity) using plasma biomarkers as predictors separately within unimpaired and impaired individuals. Plasma analytes, p-tau181, Aβ1-42 and Aβ1-40 (analysed as the Aβ42/Aβ40 ratio), glial fibrillary acidic protein and neurofilament light chain were measured on the HD-X Simoa Quanterix platform. Plasma p-tau217 was also measured in a subset (n = 355) of cognitively unimpaired participants using the Lilly Meso Scale Discovery assay. Models with all Quanterix plasma analytes along with risk factors (age, sex and APOE) most often provided the best discrimination among amyloid PET stages (C = 0.78-0.82). Models with p-tau181 provided similar discrimination of tau PET stages to models with all four plasma analytes (C = 0.72-0.85 versus C = 0.73-0.86). Discriminating a PET proxy of intermediate/high from none/low Alzheimer's disease neuropathological change with all four Quanterix plasma analytes was excellent but not better than p-tau181 only (C = 0.88 versus 0.87 for unimpaired and C = 0.91 versus 0.90 for impaired). Lilly p-tau217 outperformed the Quanterix p-tau181 assay for discriminating high versus intermediate amyloid (C = 0.85 versus 0.74) but did not improve over a model with all Quanterix plasma analytes and risk factors (C = 0.85 versus 0.83). Plasma analytes along with risk factors can discriminate between amyloid and tau PET stages and between a PET surrogate for intermediate/high versus none/low neuropathological change with accuracy in the acceptable to excellent range. Combinations of plasma analytes are better than single analytes for many staging predictions with the exception that Quanterix p-tau181 alone usually performed equivalently to combinations of Quanterix analytes for tau PET discrimination.


Longitudinal tau PET in ageing and Alzheimer's disease.

  • Clifford R Jack‎ et al.
  • Brain : a journal of neurology‎
  • 2018‎

See Hansson and Mormino (doi:10.1093/brain/awy065) for a scientific commentary on this article.Our objective was to compare different whole-brain and region-specific measurements of within-person change on serial tau PET and evaluate its utility for clinical trials. We studied 126 individuals: 59 cognitively unimpaired with normal amyloid, 37 cognitively unimpaired with abnormal amyloid, and 30 cognitively impaired with an amnestic phenotype and abnormal amyloid. All had baseline amyloid PET and two tau PET, MRI, and clinical assessments. We compared the topography across all cortical regions of interest of tau PET accumulation rates and the rates of four different whole-brain or region-specific meta-regions of interest among the three clinical groups. We computed sample size estimates for change in tau PET, cortical volume, and memory/mental status indices for use as outcome measures in clinical trials. The cognitively unimpaired normal amyloid group had no observable tau accumulation throughout the brain. Tau accumulation rates in cognitively unimpaired abnormal amyloid were low [0.006 standardized uptake value ratio (SUVR), 0.5%, per year] but greater than rates in the cognitively unimpaired normal amyloid group in the basal and mid-temporal, retrosplenial, posterior cingulate, and entorhinal regions of interest. Thus, the earliest elevation in accumulation rates was widespread and not confined to the entorhinal cortex. Tau accumulation rates in the cognitively impaired abnormal amyloid group were 0.053 SUVR (3%) per year and greater than rates in cognitively unimpaired abnormal amyloid in all cortical areas except medial temporal. Rates of accumulation in the four meta-regions of interest differed but only slightly from one another. Among all tau PET meta-regions of interest, sample size estimates were smallest for a temporal lobe composite within cognitively unimpaired abnormal amyloid and for the late Alzheimer's disease meta-region of interest within cognitively impaired abnormal amyloid. The ordering of the sample size estimates by outcome measure was MRI < tau PET < cognitive measures. At a group-wise level, observable rates of short-term serial tau accumulation were only seen in the presence of abnormal amyloid. As disease progressed to clinically symptomatic stages (cognitively impaired abnormal amyloid), observable rates of tau accumulation were seen uniformly throughout the brain providing evidence that tau does not accumulate in one area at a time or in start-stop, stepwise sequence. The information captured by rate measures in different meta-regions of interest, even those with little topographic overlap, was similar. The implication is that rate measurements from simple meta-regions of interest, without the need for Braak-like staging, may be sufficient to capture progressive within-person accumulation of pathologic tau. Tau PET SUVR measures should be an efficient outcome measure in disease-modifying clinical trials.


Differential diagnosis of neurodegenerative dementias with the explainable MRI based machine learning algorithm MUQUBIA.

  • Silvia De Francesco‎ et al.
  • Scientific reports‎
  • 2023‎

Biomarker-based differential diagnosis of the most common forms of dementia is becoming increasingly important. Machine learning (ML) may be able to address this challenge. The aim of this study was to develop and interpret a ML algorithm capable of differentiating Alzheimer's dementia, frontotemporal dementia, dementia with Lewy bodies and cognitively normal control subjects based on sociodemographic, clinical, and magnetic resonance imaging (MRI) variables. 506 subjects from 5 databases were included. MRI images were processed with FreeSurfer, LPA, and TRACULA to obtain brain volumes and thicknesses, white matter lesions and diffusion metrics. MRI metrics were used in conjunction with clinical and demographic data to perform differential diagnosis based on a Support Vector Machine model called MUQUBIA (Multimodal Quantification of Brain whIte matter biomArkers). Age, gender, Clinical Dementia Rating (CDR) Dementia Staging Instrument, and 19 imaging features formed the best set of discriminative features. The predictive model performed with an overall Area Under the Curve of 98%, high overall precision (88%), recall (88%), and F1 scores (88%) in the test group, and good Label Ranking Average Precision score (0.95) in a subset of neuropathologically assessed patients. The results of MUQUBIA were explained by the SHapley Additive exPlanations (SHAP) method. The MUQUBIA algorithm successfully classified various dementias with good performance using cost-effective clinical and MRI information, and with independent validation, has the potential to assist physicians in their clinical diagnosis.


TREM2 p.R47H substitution is not associated with dementia with Lewy bodies.

  • Ronald L Walton‎ et al.
  • Neurology. Genetics‎
  • 2016‎

Dementia with Lewy bodies (DLB) is the second leading cause of neurodegenerative dementia in the elderly and is clinically characterized by the presence of cognitive decline, parkinsonism, REM sleep behavior disorder, and visual hallucinations.(1,2) At autopsy, α-synuclein-positive Lewy-related pathology is observed throughout the brain. Concomitant Alzheimer disease-related pathology including amyloid plaques and, to a lesser degree, neurofibrillary tangles are often present.(2) The clinical characteristics of DLB share overlapping features with Alzheimer disease dementia (AD) and Parkinson disease (PD). A recent genetic association study examining known hits from PD and AD identified variants at both the α-synuclein (SNCA) and APOE loci as influencing the individual risk to DLB.(3) These findings would suggest that DLB may be a distinct disease with shared genetic risk factors with PD and AD.


Plasma sphingolipid changes with autopsy-confirmed Lewy Body or Alzheimer's pathology.

  • Rodolfo Savica‎ et al.
  • Alzheimer's & dementia (Amsterdam, Netherlands)‎
  • 2016‎

The clinical and pathological phenotypes of Dementia with Lewy Bodies (DLB) and Alzheimer's disease (AD) often overlap. We examined whether plasma lipids differed among individuals with autopsy-confirmed Lewy Body pathology or AD pathology.


Non-stationarity in the "resting brain's" modular architecture.

  • David T Jones‎ et al.
  • PloS one‎
  • 2012‎

Task-free functional magnetic resonance imaging (TF-fMRI) has great potential for advancing the understanding and treatment of neurologic illness. However, as with all measures of neural activity, variability is a hallmark of intrinsic connectivity networks (ICNs) identified by TF-fMRI. This variability has hampered efforts to define a robust metric of connectivity suitable as a biomarker for neurologic illness. We hypothesized that some of this variability rather than representing noise in the measurement process, is related to a fundamental feature of connectivity within ICNs, which is their non-stationary nature. To test this hypothesis, we used a large (n = 892) population-based sample of older subjects to construct a well characterized atlas of 68 functional regions, which were categorized based on independent component analysis network of origin, anatomical locations, and a functional meta-analysis. These regions were then used to construct dynamic graphical representations of brain connectivity within a sliding time window for each subject. This allowed us to demonstrate the non-stationary nature of the brain's modular organization and assign each region to a "meta-modular" group. Using this grouping, we then compared dwell time in strong sub-network configurations of the default mode network (DMN) between 28 subjects with Alzheimer's dementia and 56 cognitively normal elderly subjects matched 1:2 on age, gender, and education. We found that differences in connectivity we and others have previously observed in Alzheimer's disease can be explained by differences in dwell time in DMN sub-network configurations, rather than steady state connectivity magnitude. DMN dwell time in specific modular configurations may also underlie the TF-fMRI findings that have been described in mild cognitive impairment and cognitively normal subjects who are at risk for Alzheimer's dementia.


Imaging correlates of posterior cortical atrophy.

  • Jennifer L Whitwell‎ et al.
  • Neurobiology of aging‎
  • 2007‎

The aim of this study was to compare patterns of cerebral atrophy on MRI, and neurochemistry on magnetic resonance spectroscopy (MRS), in patients with posterior cortical atrophy (PCA) and typical Alzheimer's disease (AD). Voxel-based morphometry was used to assess grey matter atrophy in 38 patients with PCA, 38 patients with typical AD, and 38 controls. Clinical data was assessed in all PCA patients. Single voxel (1)H MRS located in the posterior cingulate was analyzed in a subset of patients with PCA, typical AD, and control subjects. PCA showed a pattern of atrophy affecting occipital, parietal and posterior temporal lobes, compared to controls. The pattern was bilateral, but more severe on the right. Patients with PCA showed greater atrophy in the right visual association cortex than patients with typical AD, whereas those with AD showed greater atrophy in the left hippocampus than those with PCA. (1)H MRS suggested loss of neuronal integrity and glial activation in subjects with PCA and typical AD. The differing patterns of atrophy on MRI suggest that PCA should be considered a distinct entity from typical AD.


Antemortem MRI based STructural Abnormality iNDex (STAND)-scores correlate with postmortem Braak neurofibrillary tangle stage.

  • Prashanthi Vemuri‎ et al.
  • NeuroImage‎
  • 2008‎

The clinical diagnosis of Alzheimer's disease (AD) does not exactly match the pathological findings at autopsy in every subject. Therefore, in-vivo imaging measures, such as Magnetic Resonance Imaging (MRI) that reflect underlying pathology, would be clinically useful independent supplementary measures of disease stage. We have developed an algorithm that extracts atrophy information from individual patient's 3D MRI scans and assigns a STructural Abnormality iNDex (STAND)-score to the scan based on the degree of atrophy in comparison to patterns extracted from a large library of clinically well characterized AD and CN (cognitively normal) subject's MRI scans. STAND-scores can be adjusted for demographics to give adjusted-STAND (aSTAND)-scores which are >0 for subjects with brains identified as abnormal by the algorithm. Since histopathological findings are considered to represent the "ground truth", our objective was to assess the sensitivity of aSTAND-scores to pathological AD staging. This was done by comparing antemortem MRI based aSTAND-scores with postmortem grading of disease severity in 101 subjects who had both antemortem MRI and postmortem Braak neurofibrillary tangle (NFT) staging. We found a rank correlation of 0.62 (p<0.0001) between Braak NFT stage and aSTAND-scores. The results show that optimally extracted information from MRI scans such as STAND-scores accurately capture the severity of neuronal pathology and can be used as an independent approximate surrogate marker for in-vivo pathological staging as well as for early identification of AD in individual subjects.


Longitudinal Tau Positron Emission Tomography in Dementia with Lewy Bodies.

  • Qin Chen‎ et al.
  • Movement disorders : official journal of the Movement Disorder Society‎
  • 2022‎

Patients with dementia with Lewy bodies (DLB) may have overlapping Alzheimer's disease pathology. We investigated the longitudinal rate of tau accumulation and its association with neurodegeneration and clinical disease progression in DLB.


Face recognition from research brain PET: An unexpected PET problem.

  • Christopher G Schwarz‎ et al.
  • NeuroImage‎
  • 2022‎

It is well known that de-identified research brain images from MRI and CT can potentially be re-identified using face recognition; however, this has not been examined for PET images. We generated face reconstruction images of 182 volunteers using amyloid, tau, and FDG PET scans, and we measured how accurately commercial face recognition software (Microsoft Azure's Face API) automatically matched them with the individual participants' face photographs. We then compared this accuracy with the same experiments using participants' CT and MRI. Face reconstructions from PET images from PET/CT scanners were correctly matched at rates of 42% (FDG), 35% (tau), and 32% (amyloid), while CT were matched at 78% and MRI at 97-98%. We propose that these recognition rates are high enough that research studies should consider using face de-identification ("de-facing") software on PET images, in addition to CT and structural MRI, before data sharing. We also updated our mri_reface de-identification software with extended functionality to replace face imagery in PET and CT images. Rates of face recognition on de-faced images were reduced to 0-4% for PET, 5% for CT, and 8% for MRI. We measured the effects of de-facing on regional amyloid PET measurements from two different measurement pipelines (PETSurfer/FreeSurfer 6.0, and one in-house method based on SPM12 and ANTs), and these effects were small: ICC values between de-faced and original images were > 0.98, biases were <2%, and median relative errors were < 2%. Effects on global amyloid PET SUVR measurements were even smaller: ICC values were 1.00, biases were <0.5%, and median relative errors were also <0.5%.


The temporal onset of the core features in dementia with Lewy bodies.

  • Parichita Choudhury‎ et al.
  • Alzheimer's & dementia : the journal of the Alzheimer's Association‎
  • 2022‎

We examined the temporal sequence of the core features in probable dementia with Lewy bodies (DLB).


Peripheral Markers of Neurovascular Unit Integrity and Amyloid-β in the Brains of Menopausal Women.

  • Muthuvel Jayachandran‎ et al.
  • Journal of Alzheimer's disease : JAD‎
  • 2021‎

The identification of blood-borne biomarkers for the diagnosis and prognosis of Alzheimer's disease and related dementias is more feasible at the population level than obtaining cerebrospinal fluid or neuroimaging markers.


Synthesizing images of tau pathology from cross-modal neuroimaging using deep learning.

  • Jeyeon Lee‎ et al.
  • Brain : a journal of neurology‎
  • 2024‎

Given the prevalence of dementia and the development of pathology-specific disease-modifying therapies, high-value biomarker strategies to inform medical decision-making are critical. In vivo tau-PET is an ideal target as a biomarker for Alzheimer's disease diagnosis and treatment outcome measure. However, tau-PET is not currently widely accessible to patients compared to other neuroimaging methods. In this study, we present a convolutional neural network (CNN) model that imputes tau-PET images from more widely available cross-modality imaging inputs. Participants (n = 1192) with brain T1-weighted MRI (T1w), fluorodeoxyglucose (FDG)-PET, amyloid-PET and tau-PET were included. We found that a CNN model can impute tau-PET images with high accuracy, the highest being for the FDG-based model followed by amyloid-PET and T1w. In testing implications of artificial intelligence-imputed tau-PET, only the FDG-based model showed a significant improvement of performance in classifying tau positivity and diagnostic groups compared to the original input data, suggesting that application of the model could enhance the utility of the metabolic images. The interpretability experiment revealed that the FDG- and T1w-based models utilized the non-local input from physically remote regions of interest to estimate the tau-PET, but this was not the case for the Pittsburgh compound B-based model. This implies that the model can learn the distinct biological relationship between FDG-PET, T1w and tau-PET from the relationship between amyloid-PET and tau-PET. Our study suggests that extending neuroimaging's use with artificial intelligence to predict protein specific pathologies has great potential to inform emerging care models.


Hippocampal volumes predict risk of dementia with Lewy bodies in mild cognitive impairment.

  • Kejal Kantarci‎ et al.
  • Neurology‎
  • 2016‎

To predict the risk of probable dementia with Lewy bodies (DLB) competing with Alzheimer disease (AD) dementia by hippocampal volume (HV) in patients with mild cognitive impairment (MCI) with impairments in amnestic or nonamnestic cognitive domains.


Regional proton magnetic resonance spectroscopy patterns in dementia with Lewy bodies.

  • Jonathan Graff-Radford‎ et al.
  • Neurobiology of aging‎
  • 2014‎

Magnetic resonance spectroscopy (MRS) characteristics of dementia with Lewy bodies (DLB) Alzheimer's disease (AD) and cognitively normal controls were compared. DLB (n = 34), AD (n = 35), and cognitively normal controls (n = 148) participated in a MRS study from frontal, posterior cingulate, and occipital voxels. We investigated DLB patients with preserved hippocampal volumes to determine the MRS changes in DLB with low probability of overlapping AD pathology. DLB patients were characterized by decreased N-acetylaspartate/creatine (NAA/Cr) in the occipital voxel. AD patients were characterized by lower NAA/Cr in the frontal and posterior cingulate voxels. Normal NAA/Cr levels in the frontal voxel differentiated DLB patients with preserved hippocampal volumes from AD patients. DLB and AD patients had elevated choline/creatine, and myo-Inositol/creatine in the posterior cingulate. MRS abnormalities associated with loss of neuronal integrity localized to the occipital lobes in DLB, and the posterior cingulate gyri and frontal lobes in AD. This pattern of MRS abnormalities may have a role in differential diagnosis of DLB and in distinguishing DLB patients with overlapping AD pathology.


An MRI-Based Atlas for Correlation of Imaging and Pathologic Findings in Alzheimer's Disease.

  • Mekala R Raman‎ et al.
  • Journal of neuroimaging : official journal of the American Society of Neuroimaging‎
  • 2016‎

Pathologic diagnosis is the gold standard in evaluating imaging measures developed as biomarkers for pathologically defined disorders. A brain MRI atlas representing autopsy-sampled tissue can be used to directly compare imaging and pathology findings. Our objective was to develop a brain MRI atlas representing the cortical regions that are routinely sampled at autopsy for the diagnosis of Alzheimer's disease (AD).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: