Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 103 papers

Microglia integration into human midbrain organoids leads to increased neuronal maturation and functionality.

  • Sonia Sabate-Soler‎ et al.
  • Glia‎
  • 2022‎

The human brain is a complex, three-dimensional structure. To better recapitulate brain complexity, recent efforts have focused on the development of human-specific midbrain organoids. Human iPSC-derived midbrain organoids consist of differentiated and functional neurons, which contain active synapses, as well as astrocytes and oligodendrocytes. However, the absence of microglia, with their ability to remodel neuronal networks and phagocytose apoptotic cells and debris, represents a major disadvantage for the current midbrain organoid systems. Additionally, neuroinflammation-related disease modeling is not possible in the absence of microglia. So far, no studies about the effects of human iPSC-derived microglia on midbrain organoid neural cells have been published. Here we describe an approach to derive microglia from human iPSCs and integrate them into iPSC-derived midbrain organoids. Using single nuclear RNA Sequencing, we provide a detailed characterization of microglia in midbrain organoids as well as the influence of their presence on the other cells of the organoids. Furthermore, we describe the effects that microglia have on cell death and oxidative stress-related gene expression. Finally, we show that microglia in midbrain organoids affect synaptic remodeling and increase neuronal excitability. Altogether, we show a more suitable system to further investigate brain development, as well as neurodegenerative diseases and neuroinflammation.


Post-translational proteomics platform identifies neurite outgrowth impairments in Parkinson's disease GBA-N370S dopamine neurons.

  • Helle Bogetofte‎ et al.
  • Cell reports‎
  • 2023‎

Variants at the GBA locus, encoding glucocerebrosidase, are the strongest common genetic risk factor for Parkinson's disease (PD). To understand GBA-related disease mechanisms, we use a multi-part-enrichment proteomics and post-translational modification (PTM) workflow, identifying large numbers of dysregulated proteins and PTMs in heterozygous GBA-N370S PD patient induced pluripotent stem cell (iPSC) dopamine neurons. Alterations in glycosylation status show disturbances in the autophagy-lysosomal pathway, which concur with upstream perturbations in mammalian target of rapamycin (mTOR) activation in GBA-PD neurons. Several native and modified proteins encoded by PD-associated genes are dysregulated in GBA-PD neurons. Integrated pathway analysis reveals impaired neuritogenesis in GBA-PD neurons and identify tau as a key pathway mediator. Functional assays confirm neurite outgrowth deficits and identify impaired mitochondrial movement in GBA-PD neurons. Furthermore, pharmacological rescue of glucocerebrosidase activity in GBA-PD neurons improves the neurite outgrowth deficit. Overall, this study demonstrates the potential of PTMomics to elucidate neurodegeneration-associated pathways and potential drug targets in complex disease models.


Calcium dysregulation combined with mitochondrial failure and electrophysiological maturity converge in Parkinson's iPSC-dopamine neurons.

  • Dayne A Beccano-Kelly‎ et al.
  • iScience‎
  • 2023‎

Parkinson's disease (PD) is characterized by a progressive deterioration of motor and cognitive functions. Although death of dopamine neurons is the hallmark pathology of PD, this is a late-stage disease process preceded by neuronal dysfunction. Here we describe early physiological perturbations in patient-derived induced pluripotent stem cell (iPSC)-dopamine neurons carrying the GBA-N370S mutation, a strong genetic risk factor for PD. GBA-N370S iPSC-dopamine neurons show an early and persistent calcium dysregulation notably at the mitochondria, followed by reduced mitochondrial membrane potential and oxygen consumption rate, indicating mitochondrial failure. With increased neuronal maturity, we observed decreased synaptic function in PD iPSC-dopamine neurons, consistent with the requirement for ATP and calcium to support the increase in electrophysiological activity over time. Our work demonstrates that calcium dyshomeostasis and mitochondrial failure impair the higher electrophysiological activity of mature neurons and may underlie the vulnerability of dopamine neurons in PD.


Multi-modal proteomic characterization of lysosomal function and proteostasis in progranulin-deficient neurons.

  • Saadia Hasan‎ et al.
  • Molecular neurodegeneration‎
  • 2023‎

Progranulin (PGRN) is a lysosomal glycoprotein implicated in various neurodegenerative diseases, including frontotemporal dementia and neuronal ceroid lipofuscinosis. Over 70 mutations discovered in the GRN gene all result in reduced expression of the PGRN protein. Genetic and functional studies point toward a regulatory role for PGRN in lysosome functions. However, the detailed molecular function of PGRN within lysosomes and the impact of PGRN deficiency on lysosomes remain unclear.


Single-cell spatial transcriptomic and translatomic profiling of dopaminergic neurons in health, aging, and disease.

  • Peter Kilfeather‎ et al.
  • Cell reports‎
  • 2024‎

The brain is spatially organized and contains unique cell types, each performing diverse functions and exhibiting differential susceptibility to neurodegeneration. This is exemplified in Parkinson's disease with the preferential loss of dopaminergic neurons of the substantia nigra pars compacta. Using a Parkinson's transgenic model, we conducted a single-cell spatial transcriptomic and dopaminergic neuron translatomic analysis of young and old mouse brains. Through the high resolving capacity of single-cell spatial transcriptomics, we provide a deep characterization of the expression features of dopaminergic neurons and 27 other cell types within their spatial context, identifying markers of healthy and aging cells, spanning Parkinson's relevant pathways. We integrate gene enrichment and genome-wide association study data to prioritize putative causative genes for disease investigation, identifying CASR as a regulator of dopaminergic calcium handling. These datasets represent the largest public resource for the investigation of spatial gene expression in brain cells in health, aging, and disease.


PARK2 Mutation Causes Metabolic Disturbances and Impaired Survival of Human iPSC-Derived Neurons.

  • Helle Bogetofte‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2019‎

The protein parkin, encoded by the PARK2 gene, is vital for mitochondrial homeostasis, and although it has been implicated in Parkinson's disease (PD), the disease mechanisms remain unclear. We have applied mass spectrometry-based proteomics to investigate the effects of parkin dysfunction on the mitochondrial proteome in human isogenic induced pluripotent stem cell-derived neurons with and without PARK2 knockout (KO). The proteomic analysis quantified nearly 60% of all mitochondrial proteins, 119 of which were dysregulated in neurons with PARK2 KO. The protein changes indicated disturbances in oxidative stress defense, mitochondrial respiration and morphology, cell cycle control, and cell viability. Structural and functional analyses revealed an increase in mitochondrial area and the presence of elongated mitochondria as well as impaired glycolysis and lactate-supported respiration, leading to an impaired cell survival in PARK2 KO neurons. This adds valuable insight into the effect of parkin dysfunction in human neurons and provides knowledge of disease-related pathways that can potentially be targeted for therapeutic intervention.


An integrated transcriptomics and proteomics analysis reveals functional endocytic dysregulation caused by mutations in LRRK2.

  • Natalie Connor-Robson‎ et al.
  • Neurobiology of disease‎
  • 2019‎

Mutations in LRRK2 are the most common cause of autosomal dominant Parkinson's disease, and the relevance of LRRK2 to the sporadic form of the disease is becoming ever more apparent. It is therefore essential that studies are conducted to improve our understanding of the cellular role of this protein. Here we use multiple models and techniques to identify the pathways through which LRRK2 mutations may lead to the development of Parkinson's disease.


Transportin 3 promotes a nuclear maturation step required for efficient HIV-1 integration.

  • Lihong Zhou‎ et al.
  • PLoS pathogens‎
  • 2011‎

The HIV/AIDS pandemic is a major global health threat and understanding the detailed molecular mechanisms of HIV replication is critical for the development of novel therapeutics. To replicate, HIV-1 must access the nucleus of infected cells and integrate into host chromosomes, however little is known about the events occurring post-nuclear entry but before integration. Here we show that the karyopherin Transportin 3 (Tnp3) promotes HIV-1 integration in different cell types. Furthermore Tnp3 binds the viral capsid proteins and tRNAs incorporated into viral particles. Interaction between Tnp3, capsid and tRNAs is stronger in the presence of RanGTP, consistent with the possibility that Tnp3 is an export factor for these substrates. In agreement with this interpretation, we found that Tnp3 exports from the nuclei viral tRNAs in a RanGTP-dependent way. Tnp3 also binds and exports from the nuclei some species of cellular tRNAs with a defective 3'CCA end. Depletion of Tnp3 results in a re-distribution of HIV-1 capsid proteins between nucleus and cytoplasm however HIV-1 bearing the N74D mutation in capsid, which is insensitive to Tnp3 depletion, does not show nucleocytoplasmic redistribution of capsid proteins. We propose that Tnp3 promotes HIV-1 infection by displacing any capsid and tRNA that remain bound to the pre-integration complex after nuclear entry to facilitate integration. The results also provide evidence for a novel tRNA nucleocytoplasmic trafficking pathway in human cells.


Region-specific deficits in dopamine, but not norepinephrine, signaling in a novel A30P α-synuclein BAC transgenic mouse.

  • Tonya N Taylor‎ et al.
  • Neurobiology of disease‎
  • 2014‎

Parkinson's disease (PD) is a neurodegenerative disorder classically characterized by the death of dopamine (DA) neurons in the substantia nigra pars compacta and by intracellular Lewy bodies composed largely of α-synuclein. Approximately 5-10% of PD patients have a familial form of Parkinsonism, including mutations in α-synuclein. To better understand the cell-type specific role of α-synuclein on DA neurotransmission, and the effects of the disease-associated A30P mutation, we generated and studied a novel transgenic model of PD. We expressed the A30P mutant form of human α-synuclein in a spatially-relevant manner from the 111kb SNCA genomic DNA locus on a bacterial artificial chromosome (BAC) insert on a mouse null (Snca-/-) background. The BAC transgenic mice expressed α-synuclein in tyrosine hydroxylase-positive neurons and expression of either A30P α-synuclein or wildtype α-synuclein restored the sensitivity of DA neurons to MPTP in resistant Snca-/- animals. A30P α-synuclein mice showed no Lewy body-like aggregation, and did not lose catecholamine neurons in substantia nigra or locus coeruleus. However, using cyclic voltammetry at carbon-fiber microelectrodes we identified a deficit in evoked DA release in the caudate putamen, but not in the nucleus accumbens, of SNCA-A30P Snca-/- mice but no changes to release of another catecholamine, norepinephrine (NE), in the NE-rich ventral bed nucleus of stria terminalis. SNCA-A30P Snca-/- mice had no overt behavioral impairments but exhibited a mild increase in wheel-running. In summary, this refined PD mouse model shows that A30P α-synuclein preferentially perturbs the dopaminergic system in the dorsal striatum, reflecting the region-specific change seen in PD.


Familial Alzheimer's disease coding mutations reduce Presenilin-1 expression in a novel genomic locus reporter model.

  • Sara Ahmadi‎ et al.
  • Neurobiology of aging‎
  • 2014‎

We have generated a physiologically relevant bacterial artificial chromosome (BAC)-based genomic DNA expression model to study PS1 gene expression and function. The PS1-WT-BAC construct restored γ-secretase function, whereas the mutant PS1 BACs demonstrated partial to complete loss of enzymatic activity when stably expressed in a PS double knock-out clonal cell line. We then engineered WT and mutant human PS1-BAC-Luciferase whole genomic locus reporter transgenes, which we transiently transduced in mouse and human non-neuronal and neuronal-like cells, respectively. PS1 ΔE9 and C410Y FAD were found to lower PS1 gene expression in both cell lines, whereas PS1-M146V showed a neuron-specific effect. The nonclinical γ-secretase inactive PS1-D257A mutation did not alter gene expression in either cell line. This is the first time that pathogenic coding mutations in the PS1 gene have been shown to lower PS1 gene expression. These findings may represent a pathologic mechanism for PS1 FAD mutations independent of their effects on γ-secretase activity and demonstrate how dominant PS1 mutations may exert their pathogenic effects by a loss-of-function mechanism.


Mitochondrial dysfunction and increased glycolysis in prodromal and early Parkinson's blood cells.

  • Amy M Smith‎ et al.
  • Movement disorders : official journal of the Movement Disorder Society‎
  • 2018‎

Although primarily a neurodegenerative process, there is increasing awareness of peripheral disease mechanisms in Parkinson's disease. To investigate disease processes in accessible patient cells, we studied peripheral blood mononuclear cells in recently diagnosed PD patients and rapid eye movement-sleep behavior disorder patients who have a greatly increased risk of developing PD. We hypothesized that peripheral blood mononuclear cells may recapitulate cellular pathology found in the PD brain and investigated these cells for mitochondrial dysfunction and oxidative stress.


Growth Arrest Specific 1 (Gas1) Gene Overexpression in Liver Reduces the In Vivo Progression of Murine Hepatocellular Carcinoma and Partially Restores Gene Expression Levels.

  • Natalia Sacilotto‎ et al.
  • PloS one‎
  • 2015‎

The prognosis of hepatocellular carcinoma patients is usually poor, the size of tumors being a limiting factor for surgical treatments. Present results suggest that the overexpression of Gas1 (growth arrest specific 1) gene reduces the size, proliferating activity and malignancy of liver tumors. Mice developing diethylnitrosamine-induced hepatocellular carcinoma were subjected to hydrodynamic gene delivery to overexpress Gas1 in liver. This treatment significantly (p < 0.05) reduced the number of large tumors, while the difference in the total number of lesions was not significant. Moreover, the number of carcinoma foci in the liver and the number of lung metastases were reduced. These results are related with the finding that overexpression of Gas1 in Hepa 1-6 cells arrests cell cycle before S phase, with a significant (p < 0.01) and concomitant reduction in the expression of cyclin E2 gene. In addition, a triangular analysis of microarray data shows that Gas1 overexpression restores the transcription levels of 150 genes whose expression was affected in the diethylnitrosamine-induced tumors, thirteen of which are involved in the hedgehog signaling pathway. Since the in vivo Gas1 gene delivery to livers of mice carrying hepatocellular carcinoma reduces the size and proliferating activity of tumors, partially restoring the transcriptional profile of the liver, the present study opens promising insights towards a therapeutic approach for hepatocellular carcinoma.


LRRK2 is a negative regulator of Mycobacterium tuberculosis phagosome maturation in macrophages.

  • Anetta Härtlova‎ et al.
  • The EMBO journal‎
  • 2018‎

Mutations in the leucine-rich repeat kinase 2 (LRRK2) are associated with Parkinson's disease, chronic inflammation and mycobacterial infections. Although there is evidence supporting the idea that LRRK2 has an immune function, the cellular function of this kinase is still largely unknown. By using genetic, pharmacological and proteomics approaches, we show that LRRK2 kinase activity negatively regulates phagosome maturation via the recruitment of the Class III phosphatidylinositol-3 kinase complex and Rubicon to the phagosome in macrophages. Moreover, inhibition of LRRK2 kinase activity in mouse and human macrophages enhanced Mycobacterium tuberculosis phagosome maturation and mycobacterial control independently of autophagy. In vivo, LRRK2 deficiency in mice resulted in a significant decrease in M. tuberculosis burdens early during the infection. Collectively, our findings provide a molecular mechanism explaining genetic evidence linking LRRK2 to mycobacterial diseases and establish an LRRK2-dependent cellular pathway that controls M. tuberculosis replication by regulating phagosome maturation.


Physiological transgene regulation and functional complementation of a neurological disease gene deficiency in neurons.

  • Pier Paolo Peruzzi‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2009‎

The microtubule-associated protein tau (MAPT) and alpha-synuclein (SNCA) genes play central roles in neurodegenerative disorders. Mutations in each gene cause familial disease, whereas common genetic variation at both loci contributes to susceptibility to sporadic neurodegenerative disease. Here, we demonstrate exquisite gene regulation of the human MAPT and SNCA transgene loci and functional complementation in neuronal cell cultures and organotypic brain slices using the herpes simplex virus type 1 (HSV-1) amplicon-based infectious bacterial artificial chromosome (iBAC) vector to express complete loci >100 kb. Cell cultures transduced by iBAC vectors carrying a 143 kb MAPT or 135 kb SNCA locus expressed the human loci similar to the endogenous gene. We focused on analysis of the iBAC-MAPT vector carrying the complete MAPT locus. On transduction into neuronal cultures, multiple MAPT transcripts were expressed from iBAC-MAPT under strict developmental and cell type-specific control. In primary neurons from Mapt(-/-) mice, the iBAC-MAPT vector expressed the human tau protein, as detected by enzyme-linked immunosorbent assay and immunocytochemistry, and restored sensitivity of Mapt(-/-) neurons to Abeta peptide treatment in dissociated neuronal cultures and in organotypic slice cultures. The faithful retention of gene expression and phenotype complementation by the system provides a novel method to analyze neurological disease genes.


Infectious delivery and expression of a 135 kb human FRDA genomic DNA locus complements Friedreich's ataxia deficiency in human cells.

  • Silvia Gomez-Sebastian‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2007‎

Friedreich's ataxia (FA) is the most common recessive ataxia, affecting 1-2 in 50,000 Caucasians, and there is currently no effective cure or treatment. FA results from a deficiency of the mitochondrial protein frataxin brought about by a repeat expansion in intron 1 of the FRDA gene. The main areas affected are the central nervous system (particularly the spinocerebellar system) and cardiac tissue. Therapies aimed at alleviating the neurological degeneration have proved unsuccessful to date. Here, we describe the construction and delivery of high capacity herpes simplex virus type 1 (HSV-1) amplicon vectors expressing the entire 80 kb FRDA genomic locus, driven by the endogenous FRDA promoter and including all introns and flanking regulatory sequences within a 135 kb genomic DNA insert. FA patient primary fibroblasts deficient in frataxin protein and exhibiting sensitivity to oxidative stress were transduced at high efficiency by FRDA genomic locus vectors. Following vector transduction, expression of FRDA protein by immunofluorescence was shown. Finally, functional complementation studies demonstrated restoration of the wild-type cellular phenotype in response to oxidative stress in transduced FA patient cells. These results suggest the potential of the infectious bacterial artificial chromosome-FRDA vectors for gene therapy of FA.


CLR01 protects dopaminergic neurons in vitro and in mouse models of Parkinson's disease.

  • Nora Bengoa-Vergniory‎ et al.
  • Nature communications‎
  • 2020‎

Parkinson's disease (PD) affects millions of patients worldwide and is characterized by alpha-synuclein aggregation in dopamine neurons. Molecular tweezers have shown high potential as anti-aggregation agents targeting positively charged residues of proteins undergoing amyloidogenic processes. Here we report that the molecular tweezer CLR01 decreased aggregation and toxicity in induced pluripotent stem cell-derived dopaminergic cultures treated with PD brain protein extracts. In microfluidic devices CLR01 reduced alpha-synuclein aggregation in cell somas when axonal terminals were exposed to alpha-synuclein oligomers. We then tested CLR01 in vivo in a humanized alpha-synuclein overexpressing mouse model; mice treated at 12 months of age when motor defects are mild exhibited an improvement in motor defects and a decreased oligomeric alpha-synuclein burden. Finally, CLR01 reduced alpha-synuclein-associated pathology in mice injected with alpha-synuclein aggregates into the striatum or substantia nigra. Taken together, these results highlight CLR01 as a disease-modifying therapy for PD and support further clinical investigation.


Multiparameter phenotypic screening for endogenous TFEB and TFE3 translocation identifies novel chemical series modulating lysosome function.

  • Phillippa J Carling‎ et al.
  • Autophagy‎
  • 2023‎

The accumulation of toxic protein aggregates in multiple neurodegenerative diseases is associated with defects in the macroautophagy/autophagy-lysosome pathway. The amelioration of disease phenotypes across multiple models of neurodegeneration can be achieved through modulating the master regulator of lysosome function, TFEB (transcription factor EB). Using a novel multi-parameter high-throughput screen for cytoplasmic:nuclear translocation of endogenous TFEB and the related transcription factor TFE3, we screened the Published Kinase Inhibitor Set 2 (PKIS2) library as proof of principle and to identify kinase regulators of TFEB and TFE3. Given that TFEB and TFE3 are responsive to cellular stress we have established assays for cellular toxicity and lysosomal function, critical to ensuring the identification of hit compounds with only positive effects on lysosome activity. In addition to AKT inhibitors which regulate TFEB localization, we identified a series of quinazoline-derivative compounds that induced TFEB and TFE3 translocation. A novel series of structurally-related analogs was developed, and several compounds induced TFEB and TFE3 translocation at higher potency than previously screened compounds. KINOMEscan and cell-based KiNativ kinase profiling revealed high binding for the PRKD (protein kinase D) family of kinases, suggesting good selectivity for these compounds. We describe and utilize a cellular target-validation platform using CRISPRi knockdown and orthogonal PRKD inhibitors to demonstrate that the activity of these compounds is independent of PRKD inhibition. The more potent analogs induced subsequent upregulation of the CLEAR gene network and cleared pathological HTT protein in a cellular model of proteinopathy, demonstrating their potential to alleviate neurodegeneration-relevant phenotypes. Abbreviations: AD: Alzheimer disease; AK: adenylate kinase; CLEAR: coordinated lysosomal expression and regulation; CQ: chloroquine; HD: Huntington disease; PD: Parkinson disease; PKIS2: Published Kinase Inhibitor Set 2; PRKD: protein kinase D; TFEB: transcription factor EB.


Alpha-synuclein RT-QuIC in the CSF of patients with alpha-synucleinopathies.

  • Graham Fairfoul‎ et al.
  • Annals of clinical and translational neurology‎
  • 2016‎

We have developed a novel real-time quaking-induced conversion RT-QuIC-based assay to detect alpha-synuclein aggregation in brain and cerebrospinal fluid from dementia with Lewy bodies and Parkinson's disease patients. This assay can detect alpha-synuclein aggregation in Dementia with Lewy bodies and Parkinson's disease cerebrospinal fluid with sensitivities of 92% and 95%, respectively, and with an overall specificity of 100% when compared to Alzheimer and control cerebrospinal fluid. Patients with neuropathologically confirmed tauopathies (progressive supranuclear palsy; corticobasal degeneration) gave negative results. These results suggest that RT-QuiC analysis of cerebrospinal fluid is potentially useful for the early clinical assessment of patients with alpha-synucleinopathies.


iPSC-Derived Microglia as a Model to Study Inflammation in Idiopathic Parkinson's Disease.

  • Katja Badanjak‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2021‎

Parkinson's disease (PD) is a neurodegenerative disease with unknown cause in the majority of patients, who are therefore considered "idiopathic" (IPD). PD predominantly affects dopaminergic neurons in the substantia nigra pars compacta (SNpc), yet the pathology is not limited to this cell type. Advancing age is considered the main risk factor for the development of IPD and greatly influences the function of microglia, the immune cells of the brain. With increasing age, microglia become dysfunctional and release pro-inflammatory factors into the extracellular space, which promote neuronal cell death. Accordingly, neuroinflammation has also been described as a feature of PD. So far, studies exploring inflammatory pathways in IPD patient samples have primarily focused on blood-derived immune cells or brain sections, but rarely investigated patient microglia in vitro. Accordingly, we decided to explore the contribution of microglia to IPD in a comparative manner using, both, iPSC-derived cultures and postmortem tissue. Our meta-analysis of published RNAseq datasets indicated an upregulation of IL10 and IL1B in nigral tissue from IPD patients. We observed increased expression levels of these cytokines in microglia compared to neurons using our single-cell midbrain atlas. Moreover, IL10 and IL1B were upregulated in IPD compared to control microglia. Next, to validate these findings in vitro, we generated IPD patient microglia from iPSCs using an established differentiation protocol. IPD microglia were more readily primed as indicated by elevated IL1B and IL10 gene expression and higher mRNA and protein levels of NLRP3 after LPS treatment. In addition, IPD microglia had higher phagocytic capacity under basal conditions-a phenotype that was further exacerbated upon stimulation with LPS, suggesting an aberrant microglial function. Our results demonstrate the significance of microglia as the key player in the neuroinflammation process in IPD. While our study highlights the importance of microglia-mediated inflammatory signaling in IPD, further investigations will be needed to explore particular disease mechanisms in these cells.


Recommendations for measuring whisker movements and locomotion in mice with sensory, motor and cognitive deficits.

  • Ugne Simanaviciute‎ et al.
  • Journal of neuroscience methods‎
  • 2020‎

Previous studies have measured whisker movements and locomotion to characterise mouse models of neurodegenerative disease. However, these studies have always been completed in isolation, and do not involve standardized procedures for comparisons across multiple mouse models and background strains.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: