Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 42 papers

Chromatin-associated APC regulates gene expression in collaboration with canonical WNT signaling and AP-1.

  • William Hankey‎ et al.
  • Oncotarget‎
  • 2018‎

Mutation of the APC gene occurs in a high percentage of colorectal tumors and is a central event driving tumor initiation in the large intestine. The APC protein performs multiple tumor suppressor functions including negative regulation of the canonical WNT signaling pathway by both cytoplasmic and nuclear mechanisms. Published reports that APC interacts with β-catenin in the chromatin fraction to repress WNT-activated targets have raised the possibility that chromatin-associated APC participates more broadly in mechanisms of transcriptional control. This screening study has used chromatin immunoprecipitation and next-generation sequencing to identify APC-associated genomic regions in colon cancer cell lines. Initial target selection was performed by comparison and statistical analysis of 3,985 genomic regions associated with the APC protein to whole transcriptome sequencing data from APC-deficient and APC-wild-type colon cancer cells, and two types of murine colon adenomas characterized by activated Wnt signaling. 289 transcripts altered in expression following APC loss in human cells were linked to APC-associated genomic regions. High-confidence targets additionally validated in mouse adenomas included 16 increased and 9 decreased in expression following APC loss, indicating that chromatin-associated APC may antagonize canonical WNT signaling at both WNT-activated and WNT-repressed targets. Motif analysis and comparison to ChIP-seq datasets for other transcription factors identified a prevalence of binding sites for the TCF7L2 and AP-1 transcription factors in APC-associated genomic regions. Our results indicate that canonical WNT signaling can collaborate with or antagonize the AP-1 transcription factor to fine-tune the expression of shared target genes in the colorectal epithelium. Future therapeutic strategies for APC-deficient colorectal cancers might be expanded to include agents targeting the AP-1 pathway.


Acquired resistance to BRAF inhibition in BRAFV600E mutant gliomas.

  • Tsun-Wen Yao‎ et al.
  • Oncotarget‎
  • 2017‎

Activating mutation of BRAF is a common finding in pediatric gliomas. As many as 14% of high grade and up to 66% of certain subtypes of low grade pediatric glioma have the BRAFV600E mutation. Small molecule inhibitors that selectively target BRAFV600E are FDA approved for melanoma and have shown significant efficacy in treating BRAFV600E glioma in pre-clinical trials. Despite showing initial anti-tumor activity, acquired drug resistance significantly limits the benefit from being treated with BRAFV600E inhibitors. Here, we have identified molecular responses to BRAFV600E inhibitor treatment in human glioma models that have substantial clinical implications. Specifically, we show that BRAFV600E inhibitor resistant cells upregulate pro-survival mediators such as Wnt, and additionally increase receptor tyrosine kinase activity, including EGFR and Axl, promoting resistance to BRAFV600E inhibition. Our results suggest strategies to circumvent acquired resistance to BRAFV600E inhibitor therapy, and thereby improve outcomes for patients with BRAFV600E gliomas.


High expression of GFAT1 predicts unfavorable prognosis in patients with hepatocellular carcinoma.

  • Lili Li‎ et al.
  • Oncotarget‎
  • 2017‎

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths worldwide. As a branch of glucose metabolism, hexosamine biosynthesis pathway (HBP) has been reported to play a critical role in the insulin resistance and progression of cancer. Glutamine:fructose-6-phosphate amidotransferase (GFAT) is the rate-limiting enzyme of the HBP; nevertheless, the prognostic value of GFAT1 in HCC remains elusive. In this study, we found that high expression of GFAT1 was significantly associated with serum alpha-fetoprotein (AFP), serum alanine aminotransferase (ALT), tumor size, tumor encapsulation, T stage and TNM stage. High GFAT1 expression was identified as an independent prognostic factor which predicted poor overall survival (OS) and recurrence-free survival (RFS) in HCC patients. Incorporation of GFAT1 expression could improve the prognostic accuracy of traditional TNM stage system. Integration of GFAT1 expression with other independent prognosticators generated a predictive nomogram, which showed better prognostic efficiency for OS and RFS in HCC patients. In vitro studies also revealed that GFAT1 promoted the proliferation, cell cycle progression, migration and invasion of HCC cells. In conclusion, GFAT1 is a potential prognostic biomarker for overall survival and recurrence-free survival of HCC patients after surgery.


Tumor suppressor PRSS8 targets Sphk1/S1P/Stat3/Akt signaling in colorectal cancer.

  • Yonghua Bao‎ et al.
  • Oncotarget‎
  • 2016‎

PRSS8 is a membrane-anchored serine protease prostasin and has been shown an association with carcinogenesis. Herein we found that PRSS8 expression was significantly reduced in colorectal adenomas and adenocarcinomas. The decreased PRSS8 was well correlated with clinical stages, poor differentiation and shorter survival time of colorectal cancer. Furthermore, increase of PRSS8 led to the inhibition of colorectal cancer cell proliferation, knockdown of PRSS8 accelerated cell proliferation in vitro, and overexpressing PRSS8 retarded cancer cell growth in nude mice. Mechanistic studies revealed that PRSS8 inhibited Sphk1/S1P/Stat3/Akt signaling pathway, in terms of inverse association between PRSS8 and Sphk1 in human colorectal cancers and in Sphk1-/- mice. In conclusion, PRSS8 acts as a tumor suppressor by inhibiting Sphk1/S1P/Stat3/Akt signaling pathway, and could be used as a biomarker to monitor colorectal carcinogenesis and predict outcomes.


MGr1-Antigen/37 kDa laminin receptor precursor promotes cellular prion protein induced multi-drug-resistance of gastric cancer.

  • Guanhong Luo‎ et al.
  • Oncotarget‎
  • 2017‎

Cellular prion protein (PrPC), the infective agent of transmissible spongiform encephalopathies, is thought to be related to several cellular physiological and physiopathological processes. We have previously reported that PrPC participates in multi-drug-resistance of gastric cancer. As the salient ligand molecule of PrP for participating in internalization and propagation of the scrapie form of prion protein (PrPSc), 37 kDa laminin receptor precursor protein (37LRP) shared the same gene coding sequence of MGr1-Ag, another protein previously found to be involved in multi-drug-resistance of gastric cancer in our lab. In the present study, we explored whether MGr1-Ag/37LRP contributed to PrPC mediated multi-drug-resistance in gastric cancer. Immunohistochemical staining showed similar expression patterns of MGr1-Ag/37LRP and PrPC in gastric cancer tissue serial sections. Western blot and immunohistochemistry also demonstrated correlative expression of MGr1-Ag/37LRP and PrPC in gastric cancer cell lines. Interaction between MGr1-Ag/37LRP and PrPC in gastric cancer cell lines and gastric cancer tissues were verified by immunofluorescence and co-immunoprecipitation. Furthermore, knockdown of MGr1-Ag/37LRP significantly attenuated PrPC induced multi-drug-resistance by sensitizing drug-induced apoptosis through inhibition of AKT activation. In conclusion, MGr1-Ag/37LRP may interact with PrPC and promote the PrPC induced multi-drug-resistance in gastric cancer through PI3K/AKT pathway. The current study elucidates the mechanism of how PrPC triggers intracellular signaling cascade resulting in multi-drug-resistance phenotype and provides a novel candidate molecular target against gastric cancer.


Molecular profiling identifies prognostic markers of stage IA lung adenocarcinoma.

  • Jie Zhang‎ et al.
  • Oncotarget‎
  • 2017‎

We previously showed that different pathologic subtypes were associated with different prognostic values in patients with stage IA lung adenocarcinoma (AC). We hypothesize that differential gene expression profiles of different subtypes may be valuable factors for prognosis in stage IA lung adenocarcinoma. We performed microarray gene expression profiling on tumor tissues micro-dissected from patients with acinar and solid predominant subtypes of stage IA lung adenocarcinoma. These patients had undergone a lobectomy and mediastinal lymph node dissection at the Shanghai Chest Hospital, Shanghai, China in 2012. No patient had preoperative treatment. We performed the Gene Set Enrichment Analysis (GSEA) analysis to look for gene expression signatures associated with tumor subtypes. The histologic subtypes of all patients were classified according to the 2015 WHO lung Adenocarcinoma classification. We found that patients with the solid predominant subtype are enriched for genes involved in RNA polymerase activity as well as inactivation of the p53 pathway. Further, we identified a list of genes that may serve as prognostic markers for stage IA lung adenocarcinoma. Validation in the TCGA database shows that these genes are correlated with survival, suggesting that they are novel prognostic factors for stage IA lung adenocarcinoma. In conclusion, we have uncovered novel prognostic factors for stage IA lung adenocarcinoma using gene expression profiling in combination with histopathology subtyping.


Discovery and evaluation of triple inhibitors of VEGFR-2, TIE-2 and EphB4 as anti-angiogenic and anti-cancer agents.

  • Lin Zhang‎ et al.
  • Oncotarget‎
  • 2017‎

Receptor tyrosine kinases (RTKs), especially VEGFR-2, TIE-2, and EphB4, play a crucial role in both angiogenesis and tumorigenesis. Moreover, complexity and heterogeneity of angiogenesis make it difficult to treat such pathological traits with single-target agents. Herein, we developed two classes of multi-target RTK inhibitors (RTKIs) based on the highly conserved ATP-binding pocket of VEGFR-2/TIE-2/EphB4, using previously reported BPS-7 as a lead compound. These multi-target RTKIs exhibited considerable potential as novel anti-angiogenic and anticancer agents. Among them, QDAU5 displayed the most promising potency and selectivity. It significantly suppressed viability of EA.hy926 and proliferation of several cancer cells. Further investigations indicated that QDAU5 showed high affinity to VEGFR-2 and reduced the phosphorylation of VEGFR-2. We identified QDAU5 as a potent multiple RTKs inhibitor exhibiting prominent anti-angiogenic and anticancer potency both in vitro and in vivo. Moreover, quinazolin-4(3H)-one has been identified as an excellent hinge binding moiety for multi-target inhibitors of angiogenic VEGFR-2, Tie-2, and EphB4.


Chemotherapy-induced changes of cerebral activity in resting-state functional magnetic resonance imaging and cerebral white matter in diffusion tensor imaging.

  • Caiqin Mo‎ et al.
  • Oncotarget‎
  • 2017‎

While chemotherapy related cognitive disorder has been described in many studies, but we still lack relatively reliable and objective diagnostic tools, and there are few similar studies in Asian patients. We recruited Asian breast cancer patients to perform a cohort study to uncover chemotherapy related cognitive disorder by using resting-state functioning magnetic resonance imaging (RS-fMRI) and magnetic resonance diffusion tensor imaging (DTI) combined with neuropsychologic assessments. This is the first prospective study which combines RS-fMRI and DTI to detect chemotherapy related cognitive disorder. The neuropsychologic tests and MRI were performed before and after the chemotherapy. The healthy controls were tested at matched times. The chemotherapy-treated group performed worse on memory and we found significant changes in the cerebellum, right orbitofrontal area, right middle and superior temporal gyrus, right subcentral area, left dorsolateral prefrontal cortex, and precentral gyrus in RS-fMRI after chemotherapy. We found changes in the fornix and superior fronto-occipital fasciculus with DTI. There was a correlation between some cognitive function and MRI measurements in the correlation analysis, but it was not significant after false discovery rate (FDR) multiple testing corrections. The results indicate that RS-fMRI and DTI may be a prospective application for assessing chemotherapy related cognitive disorder.


PRSS8 methylation and its significance in esophageal squamous cell carcinoma.

  • Yonghua Bao‎ et al.
  • Oncotarget‎
  • 2016‎

Esophageal cancer is one of the most common cancers worldwide, and the incidence and mortality is increasing rapidly in recent years in China, but the underlying mechanisms are largely unclear. Herein we found that the expression of PRSS8, a serine protease prostasin, is significantly decreased in esophageal squamous cell carcinomas (ESCC) at mRNA and protein levels. The reduction of PRSS8 was well correlated with poor differentiation and shorter survival time. Interestingly, ESCC stromal expression of PRSS8 was significantly correlated with stromal lymphocyte infiltration and cancer progression. Methylation specific PCR showed that PRSS8 was hypermethylated in ESCC tissues and ESCC cell lines, which was linked to the downregulation of PRSS8 expression and decreased activities of PRSS8 promoter. De-methylation agent decitabine was able to restore PRSS8 expression, leading to the inhibition of cancer cell proliferation, motility, migration and cell cycle arrest. However, the restored PRSS8 and its tumor inhibition could be reversed by small interfering RNA targeting PRSS8. Mechanistic study showed that tumor inhibition of PRSS8 may be associated with proliferation- and epithelial mesenchymal transition - related proteins in ESCC cells. In conclusion, our finding showed that PRSS8 methylation and its stromal expression had important clinical significance in ESCC.


Programmed death-ligand-1 expression in advanced gastric cancer detected with RNA in situ hybridization and its clinical significance.

  • Jiajia Yuan‎ et al.
  • Oncotarget‎
  • 2016‎

PD-L1 expression may be a predictive marker for anti-PD-1 therapeutic efficacy. No standard detection method of PD-L1 expression was available for advanced gastric cancer (AGC), which would be investigated in this study using RNA in situ hybridization and immunohistochemistry. Patients (N = 165) with AGC treated at Peking University Cancer Hospital from October 2008 to February 2013 were retrospectively studied. Tissue samples prior to chemotherapy were assessed for PD-L1 expression using RNA in situ hybridization (an RNAscope assay) and immunohistochemistry (IHC). The correlations of PD-L1 expression to patient characteristics and clinical outcomes were statistically analyzed. PD-L1 mRNA signals were located in tumor compartments or the mesenchyme in a brown dotted or clustered pattern, and PD-L1 mRNA expression in gastric cancer was heterogeneous. PD-L1-positive expressions were observed in 33.9% (56/165) and 35.1% (46/131) patients in mRNA level and protein level, respectively. A positive relationship was found between PD-L1 mRNA and PD-L1 protein, and compared to IHC, RNAscope assay could provide an intuitional and quantitative data with potential clinical application. No statistically significant differences occurred between PD-L1 expression and clinical response to chemotherapy, or survival. However, we found that PD-L1 expression was higher in intestinal type than in diffuse type. These findings suggested that the RNAscope assay may be a promising method for patient assessment in gastric cancer clinical trials, which would be illustrated in further study.


Identification of the microRNA networks contributing to macrophage differentiation and function.

  • Hong Zhou‎ et al.
  • Oncotarget‎
  • 2016‎

Limited evidence is available about the specific miRNA networks that regulate differentiation of specific immune cells. In this study, we characterized miRNA expression and associated alterations in expression with putative mRNA targets that are critical during differentiation of macrophages. In an effort to map the dynamic changes in the bone marrow (BM), we profiled whole BM cultures during differentiation into macrophages. We identified 112 miRNAs with expression patterns that were differentially regulated 5-fold or more during BMDM development. With TargetScan and MeSH databases, we identified 1267 transcripts involved in 30 canonical pathways linked to macrophage biology as potentially regulated by these specific 112 miRNAs. Furthermore, by employing miRanda and Ingenuity Pathways Analysis (IPA) analysis systems, we identified 18 miRNAs that are temporally linked to the expression of CSF1R, CD36, MSR1 and SCARB1; 7 miRNAs linked to the regulation of the transcription factors RUNX1 and PU.1, and 14 miRNAs target the nuclear receptor PPARα and PPARγ. This novel information provides an important reference resource for further study of the functional links between miRNAs and their target mRNAs for the regulation of differentiation and function of macrophages.


Tumors with unmethylated MLH1 and the CpG island methylator phenotype are associated with a poor prognosis in stage II colorectal cancer patients.

  • Tao Fu‎ et al.
  • Oncotarget‎
  • 2016‎

We previously developed a novel tumor subtype classification model for duodenal adenocarcinomas based on a combination of the CpG island methylator phenotype (CIMP) and MLH1 methylation status. Here, we tested the prognostic value of this model in stage II colorectal cancer (CRC) patients. Tumors were assigned to CIMP+/MLH1-unmethylated (MLH1-U), CIMP+/MLH1-methylated (MLH1-M), CIMP-/MLH1-U, or CIMP-/MLH1-M groups. Age, tumor location, lymphovascular invasion, and mucin production differed among the four patient subgroups, and CIMP+/MLH1-U tumors were more likely to have lymphovascular invasion and mucin production. Kaplan-Meier analyses revealed differences in both disease-free survival (DFS) and overall survival (OS) among the four groups. In a multivariate analysis, CIMP/MLH1 methylation status was predictive of both DFS and OS, and DFS and OS were shortest in CIMP+/MLH1-U stage II CRC patients. These results suggest that tumor subtype classification based on the combination of CIMP and MLH1 methylation status is informative in stage II CRC patients, and that CIMP+/MLH1-U tumors exhibit aggressive features and are associated with poor clinical outcomes.


B7-H3 promoted proliferation of mouse spermatogonial stem cells via the PI3K signaling pathway.

  • Xuedong Wei‎ et al.
  • Oncotarget‎
  • 2018‎

We found seminal B7-H3 was associated with human sperm concentration. However, the mechanism is unclear. The purpose of this study was to investigate the expression of B7-H3 in mouse testis and determine the effects of B7-H3 on the proliferation of mouse spermatogonial stem cells (SSCs) and the underlying mechanisms.


Survival and time to initiation of adjuvant chemotherapy among breast cancer patients: a systematic review and meta-analysis.

  • Qiao-Hui Zhan‎ et al.
  • Oncotarget‎
  • 2018‎

The relationship between survival and time to the start of adjuvant chemotherapy (AC) among breast cancer patients is unclear. In order to illustrate the effect of delaying the initiation of AC on survival we have undertaken a systematic review and meta-analysis. We identified 12 available studies in the meta-analysis including 15 independent analytical groups. This meta-analysis showed that a 4-week delay before AC was associated with a significantly worse overall survival (OS)(HR=1.13; 95% confidence interval [CI], 1.08-1.19) and disease free survival (DFS)(HR=1.14; 95%CI, 1.05-1.24). Two studies categorized patients into hormone receptor-positive, ERBB2-positive, and triple-negative breast cancer (TNBC) patients according to the clinicopathological features of breast cancer. The HRs for OS between waiting time (WT) ≤30 days and 31-60 days in the subgroups were extracted and analyzed. The analysis demonstrated that a WT of 31-60 days was related to worse OS among patients with TNBC (HR, 1.26; 95% CI, 1.08-1.48), but had no significant effect on OS among those with hormone receptor-positive (HR, 1.02; 95% CI, 0.89-1.15) or ERBB2-postive (HR, 0.95; 95%CI, 0.79-1.14) tumors. In this meta-analysis of the eligible literatures reviewing the time to AC, a longer waiting time to adjuvant chemotherapy may lead to worse survival in breast cancer patients, especially in TNBC patients.


Interleukin enhancer-binding factor 3 and HOXC8 co-activate cadherin 11 transcription to promote breast cancer cells proliferation and migration.

  • Yang Zhang‎ et al.
  • Oncotarget‎
  • 2017‎

Cadherin 11 (CDH11) expression is detected only in invasive breast cancer cells and aggressive breast cancer specimens. However, little is known about the molecular mechanisms of CDH11 transcriptional regulation. Here, we report that interleukin enhancer binding factor 3 (ILF3) interacts with Homeobox C8 (HOXC8) to activate CDH11 transcription in breast cancer cells. Using co-immunoprecipitation and mass spectrometry analyses, ILF3 is shown to interact with HOXC8 in breast cancer cells. We demonstrate that ILF3 binds to the CDH11 promoter on nucleotides -2982 ~ -2978 and -2602 ~ 2598 and interacts with HOXC8 to co-activate CDH11 transcription. We further show that ILF3 promotes proliferation and migration, at least partially, by facilitating CDH11 expression in breast cancer cells. Moreover, immunohistochemistry (IHC) shows that expression of CDH11, ILF3 and HOXC8 are all upregulated in breast cancer specimens compared to normal breast tissues. Importantly, the expression levels of CDH11, ILF3 and HOXC8 are elevated in the advanced stages of breast cancer, and high expression of CDH11, ILF3 and HOXC8 is associated with poor distant metastasis-free survival (DMFS) for breast cancer patients.


Cbl-b predicts postoperative survival in patients with resectable pancreatic ductal adenocarcinoma.

  • Qian Dong‎ et al.
  • Oncotarget‎
  • 2017‎

Casitas B-lineage lymphoma b (Cbl-b) is a ubiquitin-protein ligase and a signal transducing adaptor protein involved in immune regulation, and it may be involved in the development and progression of cancer. We investigated the association between Cbl-b expression and prognosis in patients with resectable pancreatic ductal adenocarcinoma (PDAC). The clinicopathological characteristics and survival data of 134 patients with surgery for PDAC between January 2009 and February 2012 were retrospectively evaluated, and Cbl-b expression was assayed by immunohistochemical staining. The association of Cbl-b expression with clinicopathological features and postoperative prognosis was analyzed. Cbl-b expression was strongly associated with the pathological primary tumor (pT) category (P = 0.005) and pathological TNM (pTNM) stage (P = 0.035), but not with other clinicopathological characteristics (all P > 0.05). In addition to current markers including pathological regional lymph nodes (pN) category, CA19-9, and histological differentiation, univariate and multivariate analysis found that Cbl-b was independently associated with overall survival (OS) of patients with resectable PDAC. Cbl-b was predictive of OS in a subgroup of patients with serum CA19-9 ≥ 37 U/mL. Cbl-b expression combined with pN, histological differentiation, and CA19-9 level could be used as a novel clinical model predictive of OS for patients with resectable PDAC. In conclusion, Cbl-b in resectable PDAC was an independent predictor of adverse prognosis. Cbl-b expression together with pN, histological differentiation, and CA19-9 level might lead to improved risk stratification and prognosis for patients with resectable PDAC.


Clinical significance of MSKCC nomogram on guiding the application of touch imprint cytology and frozen section in intraoperative assessment of breast sentinel lymph nodes.

  • Lisha Sun‎ et al.
  • Oncotarget‎
  • 2017‎

The widely practiced intra-operative methods for rapid evaluation and detection of sentinel lymph node (SLN) status include frozen section (FS) and touch imprint cytology (TIC). This study optimized the use of TIC and FS in the intra-operative detection of breast SLNs based on the Memorial Sloan Kettering Cancer Center (MSKCC) nomogram. Three hundred forty-two SLNs were removed from 79 patients. SLN metastatic probability was assessed by the MSKCC nomogram. The SLNs underwent intra-operative TIC and FS, as well as routine post-operative paraffin sections (RPSs). The relationships between TIC, FS, and SLN metastatic probability were analyzed. Overall, TIC was more sensitive than FS (92.31% vs. 76.92%), while TIC specificity was inferior to FS specificity (84.85% vs. 100%). In addition, the best cut-off value for TIC based on the MSKCC nomogram was inferior to the best FS cut-off value (22.5% vs. 34.5%). All patients with a MSKCC value <22.5% in the present study were negative based on FS and RPS, while the true-negative and false-positive rates for TIC were 92.5% and 7.5%, respectively. Thus, early breast cancer patients, based on a MSKCC value <22.5%, can safely avoid FS, but should have TIC performed intra-operatively. Patients with a MSKCC value >22.5% should have TIC and FS to determine the size of metastases, whether or not to proceed with axillary lymph node dissection, and to avoid easily missed metastases.


Anxa2 binds to STAT3 and promotes epithelial to mesenchymal transition in breast cancer cells.

  • Tong Wang‎ et al.
  • Oncotarget‎
  • 2015‎

Overexpression of annexin A2 (Anxa2) is correlated with invasion and metastasis in breast cancer cells. In this study, breast cancer patients with upregulated Anxa2 exhibited poor overall and disease-free survival rates. Anxa2 expression was also positively correlated with the expression of epidermal growth factor receptor (EGFR) and epithelial-mesenchymal transition (EMT) markers in breast cancer tissues and cell lines. Moreover, knockdown of Anxa2 impaired EGF-induced EMT, as well as the migration and invasion of breast cancer cells in vitro. Meanwhile, Anxa2 depletion significantly ablated pulmonary metastasis in a severe combined immunodeficiency mouse model of breast cancer. Importantly, Anxa2 reduction inhibited EGF-induced activation of STAT3, which is required for EGF-induced EMT. Anxa2 directly bound to STAT3 and enhanced its transcriptional activity, thereby indicating that Anxa2 promotes EGF-induced EMT in a STAT3-dependent manner. Our findings provide clinical evidence that Anxa2 is a poor prognostic factor for breast cancer and reveal a novel mechanism through which Anxa2 promotes breast cancer metastasis.


Comparative effectiveness of combined therapy inhibiting EGFR and VEGF pathways in patients with advanced non-small-cell lung cancer: a meta-analysis of 16 phase II/III randomized trials.

  • Yongzhao Zhao‎ et al.
  • Oncotarget‎
  • 2017‎

Combined therapy inhibiting EGFR and VEGF pathways is becoming a promising therapy in the treatment of advanced non-small-cell lung cancer (NSCLC), however, with controversy. The study aims to compare the efficacy of combined inhibition therapy versus control therapy (including placebo, single EGFR inhibition and single VEGF inhibition) in patients with advanced NSCLC.


Loss of ZNF32 augments the regeneration of nervous lateral line system through negative regulation of SOX2 transcription.

  • Yuyan Wei‎ et al.
  • Oncotarget‎
  • 2016‎

Human zinc finger protein 32 (ZNF32) is a Cys2-His2 zinc-finger transcription factor that plays an important role in cell fate, yet much of its function remains unknown. Here, we reveal that the zebrafish ZNF32 homologue zfZNF32 is expressed in the nervous system, particularly in the lateral line system. ZfZNF32 knock-out zebrafish (zfZNF-/-) were generated using the CRISPR-associated protein 9 system. We found that the regenerative capacity of the lateral line system was increased in zfZNF-/- upon hair cell damage compared with the wild type. Moreover, SOX2 was essential for the zfZNF32-dependent modulation of lateral line system regeneration. Mechanistic studies showed that ZNF32 suppressed SOX2 transcription by directly binding to a consensus sequence (5'-gcattt-3') in the SOX2 promoter. In addition, ZNF32 localizes to the nucleus, and we have identified that amino acids 1-169 (Aa 1-169) and each of three independent nuclear localization signals (NLSs) in ZNF32 are indispensable for ZNF32 nuclear trafficking. Mutating the NLSs disrupted the inhibitory effect of ZNF32 in SOX2 expression, highlighting the critical role of the NLSs in ZNF32 function. Our findings reveal a pivotal role for ZNF32 function in SOX2 expression and regeneration regulation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: