Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 589 papers

Influence of tetramethylenedisulfotetramine on synchronous calcium oscillations at distinct developmental stages of hippocampal neuronal cultures.

  • Zhengyu Cao‎ et al.
  • Neurotoxicology‎
  • 2017‎

The spatial and temporal patterns of spontaneous synchronous Ca2+ oscillations (SCOs) regulate physiological pathways that influence neuronal development, excitability, and health. Hippocampal neuronal cultures (HN) and neuron/glia co-cultures (HNG) produced from neonatal mice were loaded with Fluo-4/AM and SCOs recorded in real-time using a Fluorescence Imaging Plate Reader at different developmental stages in vitro. HNG showed an earlier onset of SCOs, with low amplitude and low frequency SCOs at 4days in vitro (DIV), whereas HN were quiescent at this point. SCO amplitude peaked at 9 DIV for both cultures. SCO network frequency peaked at 12 DIV in HN, whereas in HNG the frequency peaked at 6 DIV. SCO patterns were associated with the temporal development of neuronal networks and their ratio of glutamatergic to GABAergic markers of excitatory/inhibitory balance. HN and HNG exhibited differential responses to the convulsant tetramethylenedisulfotetramine (TETS) and were highly dependent on DIV. In HN, TETS triggered an acute rise of intracellular Ca2+ (Phase I response) only in 14 DIV and a sustained decrease of SCO frequency with increased amplitude (Phase II response) at all developmental stages. In HNG, TETS decreased the SCO frequency and increased the amplitude at 6 and 14 but not 9 DIV. There was no acute Ca2+ rise (Phase I response) in any age of HNG tested with TETS. These data demonstrated the importance of glia and developmental stage in modulating neuronal responses to TETS. Our results illustrate the applicability of the model for investigating how caged convulsants elicit abnormal network activity during the development of HN and HNG cultures in vitro.


Genome-Wide Association Study for Muscle Fat Content and Abdominal Fat Traits in Common Carp (Cyprinus carpio).

  • Xianhu Zheng‎ et al.
  • PloS one‎
  • 2016‎

Muscle fat content is an important phenotypic trait in fish, as it affects the nutritional, technical and sensory qualities of flesh. To identify loci and candidate genes associated with muscle fat content and abdominal fat traits, we performed a genome-wide association study (GWAS) using the common carp 250 K SNP assay in a common carp F2 resource population. A total of 18 loci surpassing the genome-wide suggestive significance level were detected for 4 traits: fat content in dorsal muscle (MFdo), fat content in abdominal muscle (MFab), abdominal fat weight (AbFW), and AbFW as a percentage of eviscerated weight (AbFP). Among them, one SNP (carp089419) affecting both AbFW and AbFP reached the genome-wide significance level. Ten of those loci were harbored in or near known genes. Furthermore, relative expressions of 5 genes related to MFdo were compared using dorsal muscle samples with high and low phenotypic values. The results showed that 4 genes were differentially expressed between the high and low phenotypic groups. These genes are, therefore, prospective candidate genes for muscle fat content: ankyrin repeat domain 10a (ankrd10a), tetratricopeptide repeat, ankyrin repeat and coiled-coil containing 2 (tanc2), and four jointed box 1 (fjx1) and choline kinase alpha (chka). These results offer valuable insights into the complex genetic basis of fat metabolism and deposition.


Dissecting super-enhancer hierarchy based on chromatin interactions.

  • Jialiang Huang‎ et al.
  • Nature communications‎
  • 2018‎

Recent studies have highlighted super-enhancers (SEs) as important regulatory elements for gene expression, but their intrinsic properties remain incompletely characterized. Through an integrative analysis of Hi-C and ChIP-seq data, here we find that a significant fraction of SEs are hierarchically organized, containing both hub and non-hub enhancers. Hub enhancers share similar histone marks with non-hub enhancers, but are distinctly associated with cohesin and CTCF binding sites and disease-associated genetic variants. Genetic ablation of hub enhancers results in profound defects in gene activation and local chromatin landscape. As such, hub enhancers are the major constituents responsible for SE functional and structural organization.


Inhibition of Shp2 ameliorates monocrotaline-induced pulmonary arterial hypertension in rats.

  • Yusheng Cheng‎ et al.
  • BMC pulmonary medicine‎
  • 2018‎

Src homology 2 containing protein tyrosine phosphatase (PTP) 2 (Shp2) is a typical tyrosine phosphatase interacting with receptor tyrosine kinase to regulate multiple signaling pathways in diverse pathological processes. Here, we will investigate the effect of Shp2 inhibition on pulmonary arterial hypertension (PAH) in a rat model and its potential cellular and molecular mechanisms underlying.


Comparative transcriptomics reveals suppressed expression of genes related to auxin and the cell cycle contributes to the resistance of cucumber against Meloidogyne incognita.

  • Xing Wang‎ et al.
  • BMC genomics‎
  • 2018‎

Meloidogyne incognita is a devastating nematode that causes significant losses in cucumber production worldwide. Although numerous studies have emphasized on the susceptible response of plants after nematode infection, the exact regulation mechanism of M. incognita-resistance in cucumber remains elusive. Verification of an introgression line, 'IL10-1', with M. incognita-resistance provides the opportunity to unravel the resistance mechanism of cucumber against M. incognita.


Population genetic analysis of aquaculture salmonid populations in China using a 57K rainbow trout SNP array.

  • Han-Yuan Zhang‎ et al.
  • PloS one‎
  • 2018‎

Various salmonid species are cultivated in cold water aquaculture. However, due to limited genomic data resources, specific high-throughput genotyping tools are not available to many of the salmonid species. In this study, a 57K single nucleotide polymorphism (SNP) array for rainbow trout (Oncorhynchus mykiss) was utilized to detect polymorphisms in seven salmonid species, including Hucho taimen, Oncorhynchus masou, Salvelinus fontinalis, Brachymystax lenok, Salvelinus leucomaenis, O. kisutch, and O. mykiss. The number of polymorphic markers per population ranged from 3,844 (O. kisutch) to 53,734 (O. mykiss), indicating that the rainbow trout SNP array was applicable as a universal genotyping tool for other salmonid species. Among the six other salmonid populations from four genera, 28,882 SNPs were shared, whereas 525 SNPs were polymorphic in all four genera. The genetic diversity and population relationships of the seven salmonid species were studied by principal component analysis (PCA). The phylogenetic relationships among populations were analyzed using the maximum likelihood method, which indicated that the shared SNP markers provide reliable genomic information for population genetic analyses in common aquaculture salmonid fishes. Furthermore, this obtained genomic information may be applicable for population genetic evaluation, marker-assisted breeding, and propagative parent selection in fry production.


H4K20me3 co-localizes with activating histone modifications at transcriptionally dynamic regions in embryonic stem cells.

  • Jian Xu‎ et al.
  • BMC genomics‎
  • 2018‎

Bivalent chromatin domains consisting of the activating histone 3 lysine 4 trimethylation (H3K4me3) and repressive histone 3 lysine 27 trimethylation (H3K27me3) histone modifications are enriched at developmental genes that are repressed in embryonic stem cells but active during differentiation. However, it is unknown whether another repressive histone modification, histone 4 lysine 20 trimethylation (H4K20me3), co-localizes with activating histone marks in ES cells.


The role of the GLP-1/GLP-1R signaling pathway in regulating seizure susceptibility in rats.

  • Yusong Zhang‎ et al.
  • Brain research bulletin‎
  • 2018‎

This study aimed to investigate the role of glucagon-like peptide-1 (GLP-1)/GLP-1 receptor(R) signaling in the regulation of seizure susceptibility and to explore the potential mechanism in rats.


Genome-wide SNP discovery from transcriptome of four common carp strains.

  • Jian Xu‎ et al.
  • PloS one‎
  • 2012‎

Single nucleotide polymorphisms (SNPs) have been used as genetic marker for genome-wide association studies in many species. Gene-associated SNPs could offer sufficient coverage in trait related research and further more could themselves be causative SNPs for traits. Common carp (Cyprinus carpio) is one of the most important aquaculture species in the world accounting for nearly 14% of freshwater aquaculture production. There are various strains of common carp with different economic traits, however, the genetic mechanism underlying the different traits have not been elucidated yet. In this project, we identified a large number of gene-associated SNPs from four strains of common carp using next-generation sequencing.


MetaSee: an interactive and extendable visualization toolbox for metagenomic sample analysis and comparison.

  • Baoxing Song‎ et al.
  • PloS one‎
  • 2012‎

The NGS (next generation sequencing)-based metagenomic data analysis is becoming the mainstream for the study of microbial communities. Faced with a large amount of data in metagenomic research, effective data visualization is important for scientists to effectively explore, interpret and manipulate such rich information. The visualization of the metagenomic data, especially multi-sample data, is one of the most critical challenges. The different data sample sources, sequencing approaches and heterogeneous data formats make robust and seamless data visualization difficult. Moreover, researchers have different focuses on metagenomic studies: taxonomical or functional, sample-centric or genome-centric, single sample or multiple samples, etc. However, current efforts in metagenomic data visualization cannot fulfill all of these needs, and it is extremely hard to organize all of these visualization effects in a systematic manner. An extendable, interactive visualization tool would be the method of choice to fulfill all of these visualization needs. In this paper, we have present MetaSee, an extendable toolbox that facilitates the interactive visualization of metagenomic samples of interests. The main components of MetaSee include: (I) a core visualization engine that is composed of different views for comparison of multiple samples: Global view, Phylogenetic view, Sample view and Taxa view, as well as link-out for more in-depth analysis; (II) front-end user interface with real metagenomic models that connect to the above core visualization engine and (III) open-source portal for the development of plug-ins for MetaSee. This integrative visualization tool not only provides the visualization effects, but also enables researchers to perform in-depth analysis of the metagenomic samples of interests. Moreover, its open-source portal allows for the design of plug-ins for MetaSee, which would facilitate the development of any additional visualization effects.


Parallel-META: efficient metagenomic data analysis based on high-performance computation.

  • Xiaoquan Su‎ et al.
  • BMC systems biology‎
  • 2012‎

Metagenomics method directly sequences and analyses genome information from microbial communities. There are usually more than hundreds of genomes from different microbial species in the same community, and the main computational tasks for metagenomic data analyses include taxonomical and functional component examination of all genomes in the microbial community. Metagenomic data analysis is both data- and computation- intensive, which requires extensive computational power. Most of the current metagenomic data analysis softwares were designed to be used on a single computer or single computer clusters, which could not match with the fast increasing number of large metagenomic projects' computational requirements. Therefore, advanced computational methods and pipelines have to be developed to cope with such need for efficient analyses.


High throughput mining and characterization of microsatellites from common carp genome.

  • Peifeng Ji‎ et al.
  • International journal of molecular sciences‎
  • 2012‎

In order to supply sufficient microsatellite loci for high-density linkage mapping, whole genome shotgun (WGS) sequences of the common carp (Cyprinus carpio) were assembled and surveyed for microsatellite identification. A total of 79,014 microsatellites were collected which were harbored in 68,827 distinct contig sequences. These microsatellites were characterized in the common carp genome. Information of all microsatellites, including previously published BAC-based microsatellites, was then stored in a MySQL database, and a web-based database interface (http://genomics.cafs.ac.cn/ssrdb) was built for public access and download. A total of 3,110 microsatellites, including 1,845 from WGS and 1,265 from BAC end sequences (BES), were tested and genotyped on a mapping family with 192 individuals. A total of 963 microsatellites markers were validated with polymorphism in the mapping family. They will soon be used for high-density linkage mapping with a vast number of polymorphic SNP markers.


Kaposi's sarcoma-associated herpesvirus (KSHV) vIL-6 promotes cell proliferation and migration by upregulating DNMT1 via STAT3 activation.

  • Jing Wu‎ et al.
  • PloS one‎
  • 2014‎

Kaposi's sarcoma-associated herpesvirus (KSHV) is etiologically associated with Kaposi's sarcoma (KS), the most common AIDS-related malignancy. KSHV vIL-6 promotes KS development, but the exact mechanisms remain unclear. Here, we reported that KSHV vIL-6 enhanced the expression of DNA methyltransferase 1 (DNMT1) in endothelial cells,increased the global genomic DNA methylation, and promoted cell proliferation and migration. And this effect could be blocked by the DNA methyltransferase inhibitor, 5-azadeoxycytidine. We also showed that vIL-6 induced up-regulation of DNMT1 was dependent on STAT3 activation. Therefore, the present study suggests that vIL-6 plays a role in KS tumorigenesis partly by activating DNMT1 and inducing aberrant DNA methylation, and it might be a potential target for KS therapy.


An increase in the cerebral infarction area during fatigue is mediated by il-6 through an induction of fibrinogen synthesis.

  • Hong Lei‎ et al.
  • Clinics (Sao Paulo, Brazil)‎
  • 2014‎

Our study aimed to investigate the impact of fatigue on the severity of stroke and to explore the underlying mechanisms.


Alteration of lipid profile in subclinical hypothyroidism: a meta-analysis.

  • Xiao-Li Liu‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2014‎

Previous studies yielded controversial results about the alteration of lipid profiles in patients with subclinical hypothyroidism. We performed a meta-analysis to investigate the association between subclinical hypothyroidism and lipid profiles.


Genomic and transcriptome analyses reveal that MAPK- and phosphatidylinositol-signaling pathways mediate tolerance to 5-hydroxymethyl-2-furaldehyde for industrial yeast Saccharomyces cerevisiae.

  • Qian Zhou‎ et al.
  • Scientific reports‎
  • 2014‎

The industrial yeast Saccharomyces cerevisiae is a traditional ethanologenic agent and a promising biocatalyst for advanced biofuels production using lignocellulose materials. Here we present the genomic background of type strain NRRL Y-12632 and its transcriptomic response to 5-hydroxymethyl-2-furaldehyde (HMF), a commonly encountered toxic compound liberated from lignocellulosic-biomass pretreatment, in dissecting the genomic mechanisms of yeast tolerance. Compared with the genome of laboratory model strain S288C, we identified more than 32,000 SNPs in Y-12632 with 23,000 missense and nonsense SNPs. Enriched sequence mutations occurred for genes involved in MAPK- and phosphatidylinositol (PI)- signaling pathways in strain Y-12632, with 41 and 13 genes containing non-synonymous SNPs, respectively. Many of these mutated genes displayed consistent up-regulated signature expressions in response to challenges of 30 mM HMF. Analogous single-gene deletion mutations of these genes showed significantly sensitive growth response on a synthetic medium containing 20 mM HMF. Our results suggest at least three MAPK-signaling pathways, especially for the cell-wall integrity pathway, and PI-signaling pathways to be involved in mediation of yeast tolerance against HMF in industrial yeast Saccharomyces cerevisiae. Higher levels of sequence variations were also observed for genes involved in purine and pyrimidine metabolism pathways.


Effects of doxycycline on cx43 distribution and cardiac arrhythmia susceptibility of rats after myocardial infarction.

  • Xi-Zhen Fana‎ et al.
  • Iranian journal of pharmaceutical research : IJPR‎
  • 2014‎

This study aims to observe the effects of doxycycline (DOX) on gap junction remodeling after MI and the susceptibility of rats to cardiac arrhythmia. The proximal left anterior descending coronary artery of rats was ligated to establish a myocardial infarction animal model. DOX, methylprednisolone (MP), or vehicle was intraperitoneally injected into the animals for two weeks. Then, the heart size and heart function of all animals were determined through echocardiography. The experimental animals were sacrificed after the electrophysiologic study. Myocardial tissues were sampled to analyze the distribution of Cx43 using immunofluorescence; the Cx43 content was analyzed using western blot analysis; and the MMP-2 and MMP-9 activity in the myocardium was analyzed using gelatin zymography. The distribution of Cx43 in the border of the infarcted myocardia in the MI and MP groups was clearly disrupted and the Cx43 content was significantly reduced. In addition, the distribution of Cx43 in the border of the infarct in the DOX group was relatively regular, whereas two weeks of DOX treatment significantly inhibited MMP activity. Meanwhile, the induction rate of arrhythmia in the rats after DOX treatment was lower than those in the MI and MP groups. The results show that DOX treatment after myocardial infarction improves gap junction remodeling in the myocardial tissue near the infarcted area by inhibiting MMP activity and reducing susceptibility to cardiac arrhythmia.


Genetic regulatory network analysis reveals that low density lipoprotein receptor-related protein 11 is involved in stress responses in mice.

  • Jian Xu‎ et al.
  • Psychiatry research‎
  • 2014‎

To study whether Lrp11 is involved in stress response and find its expression regulatory network, the model of stress has been built using C57BL/6J (B6) and DBA/2 (D2) mice. Western blotting, qPCR and immunohistochemistry were used to investigate the expression variation of Lrp11 in amygdala tissue after exposure to stress. We found the quantity of Lrp11 was more obvious in stress models than that in normal mice (P<0.05) which suggests Lrp11 might participate in the process of stress response. The expression of Lrp11 is controlled by a cis-acting quantitative trait locus (cis-eQTL). We identified four genes that are regulated by Lrp11 and the expression of 66 genes highly correlated with Lrp11, seven of which have previously been implicated in stress pathways. To evaluate the relationship between Lrp11 and its downstream genes or network members, we transfected HEK 293T cells and SH-SY5Y cells with Lrp11 siRNA leading to down-regulation of Lrp11mRNA and were able to confirm a significant influence of Lrp11 depletion on the expression of Xpnpep1, Maneal, Pgap1 and Uprt. These validated downstream targets and members of Lrp11 gene network provide new insight into the biological role of Lrp11 and may be an important risk factor in the development of stress.


Inhibitor of the tyrosine phosphatase STEP reverses cognitive deficits in a mouse model of Alzheimer's disease.

  • Jian Xu‎ et al.
  • PLoS biology‎
  • 2014‎

STEP (STriatal-Enriched protein tyrosine Phosphatase) is a neuron-specific phosphatase that regulates N-methyl-D-aspartate receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) trafficking, as well as ERK1/2, p38, Fyn, and Pyk2 activity. STEP is overactive in several neuropsychiatric and neurodegenerative disorders, including Alzheimer's disease (AD). The increase in STEP activity likely disrupts synaptic function and contributes to the cognitive deficits in AD. AD mice lacking STEP have restored levels of glutamate receptors on synaptosomal membranes and improved cognitive function, results that suggest STEP as a novel therapeutic target for AD. Here we describe the first large-scale effort to identify and characterize small-molecule STEP inhibitors. We identified the benzopentathiepin 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride (known as TC-2153) as an inhibitor of STEP with an IC50 of 24.6 nM. TC-2153 represents a novel class of PTP inhibitors based upon a cyclic polysulfide pharmacophore that forms a reversible covalent bond with the catalytic cysteine in STEP. In cell-based secondary assays, TC-2153 increased tyrosine phosphorylation of STEP substrates ERK1/2, Pyk2, and GluN2B, and exhibited no toxicity in cortical cultures. Validation and specificity experiments performed in wild-type (WT) and STEP knockout (KO) cortical cells and in vivo in WT and STEP KO mice suggest specificity of inhibitors towards STEP compared to highly homologous tyrosine phosphatases. Furthermore, TC-2153 improved cognitive function in several cognitive tasks in 6- and 12-mo-old triple transgenic AD (3xTg-AD) mice, with no change in beta amyloid and phospho-tau levels.


Association between STAT4 gene polymorphisms and autoimmune thyroid diseases in a Chinese population.

  • Ni Yan‎ et al.
  • International journal of molecular sciences‎
  • 2014‎

The STAT4 gene encodes a transcriptional factor that transmits signals induced by several key cytokines which play important roles in the development of autoimmune diseases. The aim of this study was to explore the association of STAT4 polymorphism with Graves' disease (GD) and Hashimoto's thyroiditis (HT). A total of 1048 autoimmune thyroid diseases (AITDs) patients (693 with GD and 355 with HT) and 909 age- and gender-matched controls were examined. STAT4 polymorphisms (rs7574865/rs10181656/ rs7572482) were genotyped by multiplex polymerase chain reaction (PCR) and ligase detection reaction (LDR). The results indicated that the frequencies of rs7574865 genotypes in patients with GD differed significantly from the controls (p=0.028), the T allele frequency of GD patients was also significantly higher than the controls (p=0.020). The genotypes of rs10181656 differed significantly in GD patients from controls (p=0.012); G allele frequencies were significantly higher in AITD patients than the controls (p=0.014 and 0.031, respectively). The frequencies of haplotype GC with GD and HT patients were significantly lower than their controls (p=0.015 and 0.030, respectively). In contrast, the frequencies of haplotype TG with GD and HT patients were significantly higher than their controls (p=0.016 and 0.048, respectively). These findings strongly suggest that STAT4 rs7574865/rs10181656 polymorphisms increase the risk of AITD in a Chinese population.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: