Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 29 papers out of 29 papers

Vav1 downmodulates Akt in different breast cancer subtypes: a new promising chance to improve breast cancer outcome.

  • Silvia Grassilli‎ et al.
  • Molecular oncology‎
  • 2018‎

Targeting different members of the Akt pathways is a promising therapeutic chance in solid tumors including breast cancer. The variable expression levels of Akt isoforms with opposite effects on tumor growth and metastasis, however, make it difficult to select the inhibitors to be used for specific breast tumor subtypes. Using in vitro and in vivo models, we demonstrated here that Vav1, ectopically expressed in invasive breast tumors derived cells, downmodulates Akt acting at expression and/or activation levels depending on tumor subtype. The decreased p-Akt1 (Ser473) levels are a common effect of Vav1 upmodulation, suggesting that, in breast tumor-derived cells and independently of their phenotype, Vav1 interferes with signaling pathways ended to specifically recruit Akt1. Only in ER-negative cell lines, the silencing of Vav1 induced the expression but not the activation of Akt2. A retrospective analysis of early invasive breast tumors allowed to establish the prognostic significance of the p-Akt/Vav1 relationship. In particular, low Vav1 levels negatively influence the follow-up of patients with low p-Akt in their primary tumors and subjected to adjuvant chemotherapy. As the use of specific or pan Akt inhibitors may not be sufficient or may even be detrimental, increasing the levels of Vav1 could be a new approach to improve breast cancer outcomes. This might be particularly relevant for tumors with a triple-negative phenotype, for which target-based therapies are not currently available.


Plasma membrane factor XIIIA transglutaminase activity regulates osteoblast matrix secretion and deposition by affecting microtubule dynamics.

  • Hadil F Al-Jallad‎ et al.
  • PloS one‎
  • 2011‎

Transglutaminase activity, arising potentially from transglutaminase 2 (TG2) and Factor XIIIA (FXIIIA), has been linked to osteoblast differentiation where it is required for type I collagen and fibronectin matrix deposition. In this study we have used an irreversible TG-inhibitor to 'block -and-track' enzyme(s) targeted during osteoblast differentiation. We show that the irreversible TG-inhibitor is highly potent in inhibiting osteoblast differentiation and mineralization and reduces secretion of both fibronectin and type I collagen and their release from the cell surface. Tracking of the dansyl probe by Western blotting and immunofluorescence microscopy demonstrated that the inhibitor targets plasma membrane-associated FXIIIA. TG2 appears not to contribute to crosslinking activity on the osteoblast surface. Inhibition of FXIIIA with NC9 resulted in defective secretory vesicle delivery to the plasma membrane which was attributable to a disorganized microtubule network and decreased microtubule association with the plasma membrane. NC9 inhibition of FXIIIA resulted in destabilization of microtubules as assessed by cellular Glu-tubulin levels. Furthermore, NC9 blocked modification of Glu-tubulin into 150 kDa high-molecular weight Glu-tubulin form which was specifically localized to the plasma membrane. FXIIIA enzyme and its crosslinking activity were colocalized with plasma membrane-associated tubulin, and thus, it appears that FXIIIA crosslinking activity is directed towards stabilizing the interaction of microtubules with the plasma membrane. Our work provides the first mechanistic cues as to how transglutaminase activity could affect protein secretion and matrix deposition in osteoblasts and suggests a novel function for plasma membrane FXIIIA in microtubule dynamics.


Integrative proteomic and functional analyses provide novel insights into the action of the repurposed drug candidate nitroxoline in AsPC-1 cells.

  • Serena Veschi‎ et al.
  • Scientific reports‎
  • 2020‎

We recently identified nitroxoline as a repurposed drug candidate in pancreatic cancer (PC) showing a dose-dependent antiproliferative activity in different PC cell lines. This antibiotic is effective in several in vitro and animal cancer models. To date, the mechanisms of nitroxoline anticancer action are largely unknown. Using shotgun proteomics we identified 363 proteins affected by nitroxoline treatment in AsPC-1 pancreatic cancer cells, including 81 consistently deregulated at both 24- and 48-hour treatment. These proteins previously unknown to be affected by nitroxoline were mostly downregulated and interconnected in a single highly-enriched network of protein-protein interactions. Integrative proteomic and functional analyses revealed nitroxoline-induced downregulation of Na/K-ATPase pump and β-catenin, which associated with drastic impairment in cell growth, migration, invasion, increased ROS production and induction of DNA damage response. Remarkably, nitroxoline induced a previously unknown deregulation of molecules with a critical role in cell bioenergetics, which resulted in mitochondrial depolarization. Our study also suggests that deregulation of cytosolic iron homeostasis and of co-translational targeting to membrane contribute to nitroxoline anticancer action. This study broadens our understanding of the mechanisms of nitroxoline action, showing that the drug modulates multiple proteins crucial in cancer biology and previously unknown to be affected by nitroxoline.


Deletion or Inhibition of Astrocytic Transglutaminase 2 Promotes Functional Recovery after Spinal Cord Injury.

  • Anissa Elahi‎ et al.
  • Cells‎
  • 2021‎

Following CNS injury, astrocytes become "reactive" and exhibit pro-regenerative or harmful properties. However, the molecular mechanisms that cause astrocytes to adopt either phenotype are not well understood. Transglutaminase 2 (TG2) plays a key role in regulating the response of astrocytes to insults. Here, we used mice in which TG2 was specifically deleted in astrocytes (Gfap-Cre+/- TG2fl/fl, referred to here as TG2-A-cKO) in a spinal cord contusion injury (SCI) model. Deletion of TG2 from astrocytes resulted in a significant improvement in motor function following SCI. GFAP and NG2 immunoreactivity, as well as number of SOX9 positive cells, were significantly reduced in TG2-A-cKO mice. RNA-seq analysis of spinal cords from TG2-A-cKO and control mice 3 days post-injury identified thirty-seven differentially expressed genes, all of which were increased in TG2-A-cKO mice. Pathway analysis revealed a prevalence for fatty acid metabolism, lipid storage and energy pathways, which play essential roles in neuron-astrocyte metabolic coupling. Excitingly, treatment of wild type mice with the selective TG2 inhibitor VA4 significantly improved functional recovery after SCI, similar to what was observed using the genetic model. These findings indicate the use of TG2 inhibitors as a novel strategy for the treatment of SCI and other CNS injuries.


Structure-activity relationships of N-terminal variants of peptidomimetic tissue transglutaminase inhibitors.

  • Nicole M R McNeil‎ et al.
  • European journal of medicinal chemistry‎
  • 2022‎

Tissue transglutaminase (TG2) is a multifunctional protein that catalyses protein crosslinking in the extracellular matrix, and functions as an intracellular G-protein. While both activities have been associated with human diseases, its role as a G-protein has been linked to cancer stem cell survival and maintenance of a metastatic phenotype. Recently we have shown that targeted covalent inhibitors (TCIs) can react selectively with the enzyme active site of TG2, to allosterically abolish its ability to bind GTP. In the present work, we focused on the variation of the N-terminal group of these peptidomimetic inhibitors, in order to enhance efficiency, while reducing log P and the number of rotatable bonds. This approach led to the synthesis and evaluation of 41 novel inhibitors, some of which had greatly improved efficiency and affinity for TG2 (e.g. TCI 72: KI = 1.0 μM, kinact/KI = 4.4 × 105 M-1 min-1). Molecular modelling provided a hypothetical binding mode for these TCIs. The most efficient inhibitors were evaluated further and shown to have excellent isozyme selectivity, to block GTP binding, and to have improved pharmacokinetic properties, as expected. Their biological activity was also confirmed, in a cellular invasion assay, although with less potency than expected.


Targeting transglutaminase 2 mediated exostosin glycosyltransferase 1 signaling in liver cancer stem cells with acyclic retinoid.

  • Xian-Yang Qin‎ et al.
  • Cell death & disease‎
  • 2023‎

Transglutaminase 2 (TG2) is a multifunctional protein that promotes or suppresses tumorigenesis, depending on intracellular location and conformational structure. Acyclic retinoid (ACR) is an orally administered vitamin A derivative that prevents hepatocellular carcinoma (HCC) recurrence by targeting liver cancer stem cells (CSCs). In this study, we examined the subcellular location-dependent effects of ACR on TG2 activity at a structural level and characterized the functional role of TG2 and its downstream molecular mechanism in the selective depletion of liver CSCs. A binding assay with high-performance magnetic nanobeads and structural dynamic analysis with native gel electrophoresis and size-exclusion chromatography-coupled multi-angle light scattering or small-angle X-ray scattering showed that ACR binds directly to TG2, induces oligomer formation of TG2, and inhibits the transamidase activity of cytoplasmic TG2 in HCC cells. The loss-of-function of TG2 suppressed the expression of stemness-related genes, spheroid proliferation and selectively induced cell death in an EpCAM+ liver CSC subpopulation in HCC cells. Proteome analysis revealed that TG2 inhibition suppressed the gene and protein expression of exostosin glycosyltransferase 1 (EXT1) and heparan sulfate biosynthesis in HCC cells. In contrast, high levels of ACR increased intracellular Ca2+ concentrations along with an increase in apoptotic cells, which probably contributed to the enhanced transamidase activity of nuclear TG2. This study demonstrates that ACR could act as a novel TG2 inhibitor; TG2-mediated EXT1 signaling is a promising therapeutic target in the prevention of HCC by disrupting liver CSCs.


Vav1 Down-Modulates Akt2 Expression in Cells from Pancreatic Ductal Adenocarcinoma: Nuclear Vav1 as a Potential Regulator of Akt Related Malignancy in Pancreatic Cancer.

  • Silvia Grassilli‎ et al.
  • Biomedicines‎
  • 2020‎

Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive tumor malignancy worldwide, mainly due to uncontrolled metastasis. Among the numerous molecules deregulated in PDAC, different members of the Akt pathways are of great importance because they are involved in tumor cell proliferation, migration, and invasion. We have recently demonstrated that Vav1, ectopically expressed in solid tumors, is capable of down-modulating expression and/or activation of specific Akt isoforms in breast cancer cells. By using pancreatic cell lines expressing different basal levels of Vav1, we demonstrated here that Vav1 down-regulates the expression of Akt2, known to correlate with tumor metastases and resistance to therapy. In particular, while the silencing of Vav1 is sufficient to induce Akt2, its up-modulation reduces Akt2 levels only when Vav1 accumulates inside the nucleus of PDAC cells. Moreover, in PDAC tissues, we revealed that high nuclear levels of Vav1 correlate with low Akt2 expression. Although we cannot demonstrate the mechanisms involved, our results provide new insights into the role of Vav1 in PDAC and, as targeting specific members of the Akt family is a promising therapeutic chance in solid tumors, they suggest that Vav1, by down-modulating Akt2, has potential as a molecular target in PDAC.


Design of a glutamine substrate tag enabling protein labelling mediated by Bacillus subtilis transglutaminase.

  • Samuel K Oteng-Pabi‎ et al.
  • PloS one‎
  • 2018‎

Transglutaminases (TGases) are enzymes that catalyse protein cross-linking through a transamidation reaction between the side chain of a glutamine residue on one protein and the side chain of a lysine residue on another. Generally, TGases show low substrate specificity with respect to their amine substrate, such that a wide variety of primary amines can participate in the modification of specific glutamine residue. Although a number of different TGases have been used to mediate these bioconjugation reactions, the TGase from Bacillus subtilis (bTG) may be particularly suited to this application. It is smaller than most TGases, can be expressed in a soluble active form, and lacks the calcium dependence of its mammalian counterparts. However, little is known regarding this enzyme and its glutamine substrate specificity, limiting the scope of its application. In this work, we designed a FRET-based ligation assay to monitor the bTG-mediated conjugation of the fluorescent proteins Clover and mRuby2. This assay allowed us to screen a library of random heptapeptide glutamine sequences for their reactivity with recombinant bTG in bacterial cells, using fluorescence assisted cell sorting. From this library, several reactive sequences were identified and kinetically characterized, with the most reactive sequence (YAHQAHY) having a kcat/KM value of 19 ± 3 μM-1 min-1. This sequence was then genetically appended onto a test protein as a reactive 'Q-tag' and fluorescently labelled with dansyl-cadaverine, in the first demonstration of protein labelling mediated by bTG.


Peptidic Inhibitors and a Fluorescent Probe for the Selective Inhibition and Labelling of Factor XIIIa Transglutaminase.

  • Eric W J Gates‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Factor XIIIa (FXIIIa) is a transglutaminase of major therapeutic interest for the development of anticoagulants due to its essential role in the blood coagulation cascade. While numerous FXIIIa inhibitors have been reported, they failed to reach clinical evaluation due to their lack of metabolic stability and low selectivity over transglutaminase 2 (TG2). Furthermore, the chemical tools available for the study of FXIIIa activity and localization are extremely limited. To combat these shortcomings, we designed, synthesised, and evaluated a library of 21 novel FXIIIa inhibitors. Electrophilic warheads, linker lengths, and hydrophobic units were varied on small molecule and peptidic scaffolds to optimize isozyme selectivity and potency. A previously reported FXIIIa inhibitor was then adapted for the design of a probe bearing a rhodamine B moiety, producing the innovative KM93 as the first known fluorescent probe designed to selectively label active FXIIIa with high efficiency (kinact/KI = 127,300 M-1 min-1) and 6.5-fold selectivity over TG2. The probe KM93 facilitated fluorescent microscopy studies within bone marrow macrophages, labelling FXIIIa with high efficiency and selectivity in cell culture. The structure-activity trends with these novel inhibitors and probes will help in the future study of the activity, inhibition, and localization of FXIIIa.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: