Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 71 papers

Field evaluation of a real time loop-mediated isothermal amplification assay (RealAmp) for malaria diagnosis in Cruzeiro do Sul, Acre, Brazil.

  • Giselle Maria Rachid Viana‎ et al.
  • PloS one‎
  • 2018‎

Conventional molecular methods, such as nested polymerase chain reaction (PCR), are very sensitive for detection of malaria parasites, but require advanced laboratory equipment and trained personnel. Real-time loop-mediated isothermal amplification (RealAmp), a loop-mediated isothermal amplification-based molecular tool (LAMP), facilitates rapid target amplification at a single temperature setting, reducing the need for sophisticated equipment. We evaluated the performance of a field-adapted RealAmp assay for malaria diagnosis in Cruzeiro do Sul, Acre State, Brazil, a remote area in Brazil with limited laboratory capabilities. We enrolled 1,000 patients with fever (axillary temperature ≥ 37.5 C) or history of fever in last 24 h presenting for malaria diagnosis from February through June 2015. DNA was extracted from dried blood spots using a boil and spin method (heat treatment) at the sample processing site, and also using commercial kits at a Brazilian national reference laboratory. RealAmp was performed for Plasmodium genus, P. falciparum, and P. vivax identification. In addition, Giemsa-stained blood smears were prepared and examined by two independent well-trained study microscopists. A combination of Real-time PCR and nested PCR was used as reference test. The sensitivity and specificity of RealAmp in the field site laboratory were 94.1% (95% confidence interval [CI]: 90.1-96.8) and 83.9% (95% CI: 81.1-86.4), respectively. The sensitivity and specificity of local microscopy were 87.7% (95% CI: 82.6-91.7) and 98.9% (95% CI: 97.8-99.4), respectively, while study microscopy showed sensitivity of 96.4% (95% CI: 93.0-98.4) and specificity of 98.2% (95% CI: 97.0-99.0). None of the three tests detected 20 P. falciparum and P. vivax mixed infections identified by the reference test. Our findings highlight that it is possible to implement simple molecular tests in facilities with limited resources such as Cruzeiro do Sul in Brazil. RealAmp sensitivity was similar to that of microscopy performed by skilled professionals; both RealAmp and study microscopy performed poorly in detection of mixed infection. Attempts to develop and evaluate simpler molecular tools should continue, especially for the detection of malaria infection in remote areas.


Use of Bead-Based Serologic Assay to Evaluate Chikungunya Virus Epidemic, Haiti.

  • Eric W Rogier‎ et al.
  • Emerging infectious diseases‎
  • 2018‎

The index case of chikungunya virus (CHIKV) in Haiti was reported during early 2014; the vector, the pervasive Aedes aegypti mosquito, promoted rapid spread throughout the country. During December 2014-February 2015, we collected blood samples from 4,438 persons at 154 sites (62 urban, 92 rural) throughout Haiti and measured CHIKV IgG by using a multiplex bead assay. Overall CHIKV seroprevalence was 57.9%; differences between rural (mean 44.9%) and urban (mean 78.4%) areas were pronounced. Logistic modeling identified the urban environment as a strong predictor of CHIKV exposure (adjusted odds ratio 3.34, 95% CI 2.38-4.69), and geographic elevation provided a strong negative correlation. We observed no correlation between age and antibody positivity or titer. Our findings demonstrated through serologic testing the recent and rapid dissemination of the arbovirus throughout the country. These results show the utility of serologic data to conduct epidemiologic studies of quickly spreading mosquitoborne arboviruses.


Specificity of the IgG antibody response to Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, and Plasmodium ovale MSP119 subunit proteins in multiplexed serologic assays.

  • Jeffrey W Priest‎ et al.
  • Malaria journal‎
  • 2018‎

Multiplex bead assays (MBA) that measure IgG antibodies to the carboxy-terminal 19-kDa sub-unit of the merozoite surface protein 1 (MSP119) are currently used to determine malaria seroprevalence in human populations living in areas with both stable and unstable transmission. However, the species specificities of the IgG antibody responses to the malaria MSP119 antigens have not been extensively characterized using MBA.


Multiple genetic origins of histidine-rich protein 2 gene deletion in Plasmodium falciparum parasites from Peru.

  • Sheila Akinyi‎ et al.
  • Scientific reports‎
  • 2013‎

The majority of malaria rapid diagnostic tests (RDTs) detect Plasmodium falciparum histidine-rich protein 2 (PfHRP2), encoded by the pfhrp2 gene. Recently, P. falciparum isolates from Peru were found to lack pfhrp2 leading to false-negative RDT results. We hypothesized that pfhrp2-deleted parasites in Peru derived from a single genetic event. We evaluated the parasite population structure and pfhrp2 haplotype of samples collected between 1998 and 2005 using seven neutral and seven chromosome 8 microsatellite markers, respectively. Five distinct pfhrp2 haplotypes, corresponding to five neutral microsatellite-based clonal lineages, were detected in 1998-2001; pfhrp2 deletions occurred within four haplotypes. In 2003-2005, outcrossing among the parasite lineages resulted in eight population clusters that inherited the five pfhrp2 haplotypes seen previously and a new haplotype; pfhrp2 deletions occurred within four of these haplotypes. These findings indicate that the genetic origin of pfhrp2 deletion in Peru was not a single event, but likely occurred multiple times.


Prevalence of pfhrp2 and pfhrp3 gene deletions in Puerto Lempira, Honduras.

  • Joseph F Abdallah‎ et al.
  • Malaria journal‎
  • 2015‎

Recent studies have demonstrated the deletion of the histidine-rich protein 2 (PfHRP2) gene (pfhrp2) in field isolates of Plasmodium falciparum, which could result in false negative test results when PfHRP2-based rapid diagnostic tests (RDTs) are used for malaria diagnosis. Although primary diagnosis of malaria in Honduras is determined based on microscopy, RDTs may be useful in remote areas. In this study, it was investigated whether there are deletions of the pfhrp2, pfhrp3 and their respective flanking genes in 68 P. falciparum parasite isolates collected from the city of Puerto Lempira, Honduras. In addition, further investigation considered the possible correlation between parasite population structure and the distribution of these gene deletions by genotyping seven neutral microsatellites.


Bead-based immunoassay allows sub-picogram detection of histidine-rich protein 2 from Plasmodium falciparum and estimates reliability of malaria rapid diagnostic tests.

  • Eric Rogier‎ et al.
  • PloS one‎
  • 2017‎

Detection of histidine-rich protein 2 (HRP2) from the malaria parasite Plasmodium falciparum provides evidence for active or recent infection, and is utilized for both diagnostic and surveillance purposes, but current laboratory immunoassays for HRP2 are hindered by low sensitivities and high costs. Here we present a new HRP2 immunoassay based on antigen capture through a bead-based system capable of detecting HRP2 at sub-picogram levels. The assay is highly specific and cost-effective, allowing fast processing and screening of large numbers of samples. We utilized the assay to assess results of HRP2-based rapid diagnostic tests (RDTs) in different P. falciparum transmission settings, generating estimates for true performance in the field. Through this method of external validation, HRP2 RDTs were found to perform well in the high-endemic areas of Mozambique and Angola with 86.4% and 73.9% of persons with HRP2 in their blood testing positive by RDTs, respectively, and false-positive rates of 4.3% and 0.5%. However, in the low-endemic setting of Haiti, only 14.5% of persons found to be HRP2 positive by the bead assay were RDT positive. Additionally, 62.5% of Haitians showing a positive RDT test had no detectable HRP2 by the bead assay, likely indicating that these were false positive tests. In addition to RDT validation, HRP2 biomass was assessed for the populations in these different settings, and may provide an additional metric by which to estimate P. falciparum transmission intensity and measure the impact of interventions.


Malaria vector research and control in Haiti: a systematic review.

  • Joseph Frederick‎ et al.
  • Malaria journal‎
  • 2016‎

Haiti has a set a target of eliminating malaria by 2020. However, information on malaria vector research in Haiti is not well known. This paper presents results from a systematic review of the literature on malaria vector research, bionomics and control in Haiti.


Genotyping Oral Commensal Bacteria to Predict Social Contact and Structure.

  • Stephen Starko Francis‎ et al.
  • PloS one‎
  • 2016‎

Social network structure is a fundamental determinant of human health, from infectious to chronic diseases. However, quantitative and unbiased approaches to measuring social network structure are lacking. We hypothesized that genetic relatedness of oral commensal bacteria could be used to infer social contact between humans, just as genetic relatedness of pathogens can be used to determine transmission chains of pathogens. We used a traditional, questionnaire survey-based method to characterize the contact network of the School of Public Health at a large research university. We then collected saliva from a subset of individuals to analyze their oral microflora using a modified deep sequencing multilocus sequence typing (MLST) procedure. We examined micro-evolutionary changes in the S. viridans group to uncover transmission patterns reflecting social network structure. We amplified seven housekeeping gene loci from the Streptococcus viridans group, a group of ubiquitous commensal bacteria, and sequenced the PCR products using next-generation sequencing. By comparing the generated S. viridans reads between pairs of individuals, we reconstructed the social network of the sampled individuals and compared it to the network derived from the questionnaire survey-based method. The genetic relatedness significantly (p-value < 0.001) correlated with social distance in the questionnaire-based network, and the reconstructed network closely matched the network derived from the questionnaire survey-based method. Oral commensal bacterial are thus likely transmitted through routine physical contact or shared environment. Their genetic relatedness can be used to represent a combination of social contact and shared physical space, therefore reconstructing networks of contact. This study provides the first step in developing a method to measure direct social contact based on commensal organism genotyping, potentially capable of unmasking hidden social networks that contribute to pathogen transmission.


Efficacy of artemether-lumefantrine, artesunate-amodiaquine, and dihydroartemisinin-piperaquine for treatment of uncomplicated Plasmodium falciparum malaria in Angola, 2015.

  • Mateusz M Plucinski‎ et al.
  • Malaria journal‎
  • 2017‎

Recent anti-malarial resistance monitoring in Angola has shown efficacy of artemether-lumefantrine (AL) in certain sites approaching the key 90% lower limit of efficacy recommended for artemisinin-based combination therapy. In addition, a controversial case of malaria unresponsive to artemisinins was reported in a patient infected in Lunda Sul Province in 2013.


Evaluation of case management of uncomplicated malaria in Haiti: a national health facility survey, 2012.

  • Keren Z Landman‎ et al.
  • Malaria journal‎
  • 2015‎

Malaria is a public health concern in Haiti, although there are limited data on its burden and case management. National malaria guidelines updated in 2012 recommend treatment with chloroquine and primaquine. In December 2012, a nationally-representative cross-sectional survey of health facilities (HFs) was conducted to determine malaria prevalence among febrile outpatients and malaria case management quality at baseline before scale-up of diagnostics and case management training.


Anti-folate drug resistance in Africa: meta-analysis of reported dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) mutant genotype frequencies in African Plasmodium falciparum parasite populations.

  • Sankar Sridaran‎ et al.
  • Malaria journal‎
  • 2010‎

Mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genes of Plasmodium falciparum are associated with resistance to anti-folate drugs, most notably sulphadoxine-pyrimethamine (SP). Molecular studies document the prevalence of these mutations in parasite populations across the African continent. However, there is no systematic review examining the collective epidemiological significance of these studies. This meta-analysis attempts to: 1) summarize genotype frequency data that are critical for molecular surveillance of anti-folate resistance and 2) identify the specific challenges facing the development of future molecular databases.


Genetic variation in the Plasmodium falciparum circumsporozoite protein in India and its relevance to RTS,S malaria vaccine.

  • Mohammad Zeeshan‎ et al.
  • PloS one‎
  • 2012‎

RTS,S is the most advanced malaria vaccine candidate, currently under phase-III clinical trials in Africa. This Plasmodium falciparum vaccine contains part of the central repeat region and the complete C-terminal T cell epitope region (Th2R and Th3R) of the circumsporozoite protein (CSP). Since naturally occurring polymorphisms at the vaccine candidate loci are critical determinants of the protective efficacy of the vaccines, it is imperative to investigate these polymorphisms in field isolates. In this study we have investigated the genetic diversity at the central repeat, C-terminal T cell epitope (Th2R and Th3R) and N-terminal T cell epitope regions of the CSP, in P. falciparum isolates from Madhya Pradesh state of India. These isolates were collected through a 5-year prospective study aimed to develop a well-characterized field-site for the future evaluation of malaria vaccine in India. Our results revealed that the central repeat (63 haplotypes, n = 161) and C-terminal Th2R/Th3R epitope (24 haplotypes, n = 179) regions were highly polymorphic, whereas N-terminal non-repeat region was less polymorphic (5 haplotypes, n = 161) in this population. We did not find any evidence of the role of positive natural selection in maintaining the genetic diversity at the Th2R/Th3R regions of CSP. Comparative analysis of the Th2R/Th3R sequences from this study to the global isolates (n = 1160) retrieved from the GenBank database revealed two important points. First, the majority of the sequences (~61%, n = 179) from this study were identical to the Dd2/Indochina type, which is also the predominant Th2R/Th3R haplotype in Asia (~59%, n = 974). Second, the Th2R/Th3R sequences in Asia, South America and Africa are geographically distinct with little allele sharing between continents. In conclusion, this study provides an insight on the existing polymorphisms in the CSP in a parasite population from India that could potentially influence the efficacy of RTS,S vaccine in this region.


Plasmodium falciparum sulfadoxine resistance is geographically and genetically clustered within the DR Congo.

  • Steve M Taylor‎ et al.
  • Scientific reports‎
  • 2013‎

Understanding the spatial clustering of Plasmodium falciparum populations can assist efforts to contain drug-resistant parasites and maintain the efficacy of future drugs. We sequenced single nucleotide polymorphisms (SNPs) in the dihydropteroate synthase gene (dhps) associated with sulfadoxine resistance and 5 microsatellite loci flanking dhps in order to investigate the genetic backgrounds, genetic relatedness, and geographic clustering of falciparum parasites in the Democratic Republic of the Congo (DRC). Resistant haplotypes were clustered into subpopulations: one in the northeast DRC, and the other in the balance of the DRC. Network and clonal lineage analyses of the flanking microsatellites indicate that geographically-distinct mutant dhps haplotypes derive from separate lineages. The DRC is therefore a watershed for haplotypes associated with sulfadoxine resistance. Given the importance of central Africa as a corridor for the spread of antimalarial resistance, the identification of the mechanisms of this transit can inform future policies to contain drug-resistant parasite strains.


Clonal population expansion in an outbreak of Plasmodium falciparum on the northwest coast of Ecuador.

  • Fabián E Sáenz‎ et al.
  • Malaria journal‎
  • 2015‎

Determining the source of malaria outbreaks in Ecuador and identifying remaining transmission foci will help in malaria elimination efforts. In this study, the genetic signatures of Plasmodium falciparum isolates, obtained from an outbreak that occurred in northwest Ecuador from 2012 to 2013, were characterized.


In vivo efficacy of artemether-lumefantrine and chloroquine against Plasmodium vivax: a randomized open label trial in central Ethiopia.

  • Jimee Hwang‎ et al.
  • PloS one‎
  • 2013‎

In vivo efficacy assessments of antimalarials are essential for ensuring effective case management. In Ethiopia, chloroquine (CQ) without primaquine is the first-line treatment for Plasmodium vivax in malarious areas, but artemether-lumefantrine (AL) is also commonly used.


Major Threat to Malaria Control Programs by Plasmodium falciparum Lacking Histidine-Rich Protein 2, Eritrea.

  • Araia Berhane‎ et al.
  • Emerging infectious diseases‎
  • 2018‎

False-negative results for Plasmodium falciparum histidine-rich protein (HRP) 2-based rapid diagnostic tests (RDTs) are increasing in Eritrea. We investigated HRP gene 2/3 (pfhrp2/pfhrp3) status in 50 infected patients at 2 hospitals. We showed that 80.8% (21/26) of patients at Ghindae Hospital and 41.7% (10/24) at Massawa Hospital were infected with pfhrp2-negative parasites and 92.3% (24/26) of patients at Ghindae Hospital and 70.8% (17/24) at Massawa Hospital were infected with pfhrp3-negative parasites. Parasite densities between pfhrp2-positive and pfhrp2-negative patients were comparable. All pfhrp2-negative samples had no detectable HRP2/3 antigen and showed negative results for HRP2-based RDTs. pfhrp2-negative parasites were genetically less diverse and formed 2 clusters with no close relationships to parasites from Peru. These parasites probably emerged independently by selection in Eritrea. High prevalence of pfhrp2-negative parasites caused a high rate of false-negative results for RDTs. Determining prevalence of pfhrp2-negative parasites is urgently needed in neighboring countries to assist case management policies.


Multiplex serology for impact evaluation of bed net distribution on burden of lymphatic filariasis and four species of human malaria in northern Mozambique.

  • Mateusz M Plucinski‎ et al.
  • PLoS neglected tropical diseases‎
  • 2018‎

Universal coverage with long-lasting insecticidal nets (LLINs) is a primary control strategy against Plasmodium falciparum malaria. However, its impact on the three other main species of human malaria and lymphatic filariasis (LF), which share the same vectors in many co-endemic areas, is not as well characterized. The recent development of multiplex antibody detection provides the opportunity for simultaneous evaluation of the impact of control measures on the burden of multiple diseases.


Origin and evolution of sulfadoxine resistant Plasmodium falciparum.

  • Sumiti Vinayak‎ et al.
  • PLoS pathogens‎
  • 2010‎

The Thailand-Cambodia border is the epicenter for drug-resistant falciparum malaria. Previous studies have shown that chloroquine (CQ) and pyrimethamine resistance originated in this region and eventually spread to other Asian countries and Africa. However, there is a dearth in understanding the origin and evolution of dhps alleles associated with sulfadoxine resistance. The present study was designed to reveal the origin(s) of sulfadoxine resistance in Cambodia and its evolutionary relationship to African and South American dhps alleles. We sequenced 234 Cambodian Plasmodium falciparum isolates for the dhps codons S436A/F, A437G, K540E, A581G and A613S/T implicated in sulfadoxine resistance. We also genotyped 10 microsatellite loci around dhps to determine the genetic backgrounds of various alleles and compared them with the backgrounds of alleles prevalent in Africa and South America. In addition to previously known highly-resistant triple mutant dhps alleles SGEGA and AGEAA (codons 436, 437, 540, 581, 613 are sequentially indicated), a large proportion of the isolates (19.3%) contained a 540N mutation in association with 437G/581G yielding a previously unreported triple mutant allele, SGNGA. Microsatellite data strongly suggest the strength of selection was greater on triple mutant dhps alleles followed by the double and single mutants. We provide evidence for at least three independent origins for the double mutants, one each for the SGKGA, AGKAA and SGEAA alleles. Our data suggest that the triple mutant allele SGEGA and the novel allele SGNGA have common origin on the SGKGA background, whereas the AGEAA triple mutant was derived from AGKAA on multiple, albeit limited, genetic backgrounds. The SGEAA did not share haplotypes with any of the triple mutants. Comparative analysis of the microsatellite haplotypes flanking dhps alleles from Cambodia, Kenya, Cameroon and Venezuela revealed an independent origin of sulfadoxine resistant alleles in each of these regions.


Using the Plasmodium mitochondrial genome for classifying mixed-species infections and inferring the geographical origin of P. falciparum parasites imported to the U.S.

  • Sarah E Schmedes‎ et al.
  • PloS one‎
  • 2019‎

The ability to identify mixed-species infections and track the origin of Plasmodium parasites can further enhance the development of treatment and prevention recommendations as well as outbreak investigations. Here, we explore the utility of using the full Plasmodium mitochondrial genome to classify Plasmodium species, detect mixed infections, and infer the geographical origin of imported P. falciparum parasites to the United States (U.S.). Using the recently developed standardized, high-throughput Malaria Resistance Surveillance (MaRS) protocol, the full Plasmodium mitochondrial genomes of 265 malaria cases imported to the U.S. from 2014-2017 were sequenced and analyzed. P. falciparum infections were found in 94.7% (251/265) of samples. Five percent (14/265) of samples were identified as mixed- Plasmodium species or non-P. falciparum, including P. vivax, P. malariae, P. ovale curtisi, and P. ovale wallikeri. P. falciparum mitochondrial haplotypes analysis revealed greater than eighteen percent of samples to have at least two P. falciparum mitochondrial genome haplotypes, indicating either heteroplasmy or multi-clonal infections. Maximum-likelihood phylogenies of 912 P. falciparum mitochondrial genomes with known country origin were used to infer the geographical origin of thirteen samples from persons with unknown travel histories as: Africa (country unspecified) (n = 10), Ghana (n = 1), Southeast Asia (n = 1), and the Philippines (n = 1). We demonstrate the utility and current limitations of using the Plasmodium mitochondrial genome to classify samples with mixed-infections and infer the geographical origin of imported P. falciparum malaria cases to the U.S. with unknown travel history.


Clearance dynamics of lactate dehydrogenase and aldolase following antimalarial treatment for Plasmodium falciparum infection.

  • Mateusz M Plucinski‎ et al.
  • Parasites & vectors‎
  • 2019‎

Lingering post-treatment parasite antigen in blood complicates malaria diagnosis through antigen detection. Characterization of antigen clearance dynamics is important for interpretation of positive antigen detection tests.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: