Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 112 papers

The PI3K regulatory subunit gene PIK3R1 is under direct control of androgens and repressed in prostate cancer cells.

  • Jennifer Munkley‎ et al.
  • Oncoscience‎
  • 2015‎

Androgen receptor (AR) signalling and the PI3K pathway mediate survival signals in prostate cancer, and have been shown to regulate each other by reciprocal negative feedback, such that inhibition of one activates the other. Understanding the reciprocal regulation of these pathways is important for disease management as tumour cells can adapt and survive when either single pathway is inhibited pharmacologically. We recently carried out genome-wide exon-specific profiling of prostate cancer cells to identify novel androgen-regulated transcriptional events. Here we interrogated this dataset for novel androgen-regulated genes associated with the PI3K pathway. We find that the PI3K regulatory subunits PIK3R1 (p85α) and PIK3R3 (p55γ) are direct targets of the AR which are rapidly repressed by androgens in LNCaP cells. Further characterisation revealed that the PIK3CA p110α catalytic subunit is also indirectly regulated by androgens at the protein level. We show that PIK3R1 mRNA is significantly under-expressed in prostate cancer (PCa) tissue, and provide data to suggest a context-dependent regulatory mechanism whereby repression of the p85α protein by the AR results in destabilisation of the PI3K p110α catalytic subunit and downstream PI3K pathway inhibition that functionally affects the properties of prostate cancer cells.


Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma.

  • Saverio Tardito‎ et al.
  • Nature cell biology‎
  • 2015‎

L-Glutamine (Gln) functions physiologically to balance the carbon and nitrogen requirements of tissues. It has been proposed that in cancer cells undergoing aerobic glycolysis, accelerated anabolism is sustained by Gln-derived carbons, which replenish the tricarboxylic acid (TCA) cycle (anaplerosis). However, it is shown here that in glioblastoma (GBM) cells, almost half of the Gln-derived glutamate (Glu) is secreted and does not enter the TCA cycle, and that inhibiting glutaminolysis does not affect cell proliferation. Moreover, Gln-starved cells are not rescued by TCA cycle replenishment. Instead, the conversion of Glu to Gln by glutamine synthetase (GS; cataplerosis) confers Gln prototrophy, and fuels de novo purine biosynthesis. In both orthotopic GBM models and in patients, (13)C-glucose tracing showed that GS produces Gln from TCA-cycle-derived carbons. Finally, the Gln required for the growth of GBM tumours is contributed only marginally by the circulation, and is mainly either autonomously synthesized by GS-positive glioma cells, or supplied by astrocytes.


In vivo SILAC-based proteomics reveals phosphoproteome changes during mouse skin carcinogenesis.

  • Sara Zanivan‎ et al.
  • Cell reports‎
  • 2013‎

Cancer progresses through distinct stages, and mouse models recapitulating traits of this progression are frequently used to explore genetic, morphological, and pharmacological aspects of tumor development. To complement genomic investigations of this process, we here quantify phosphoproteomic changes in skin cancer development using the SILAC mouse technology coupled to high-resolution mass spectrometry. We distill protein expression signatures from our data that distinguish between skin cancer stages. A distinct phosphoproteome of the two stages of cancer progression is identified that correlates with perturbed cell growth and implicates cell adhesion as a major driver of malignancy. Importantly, integrated analysis of phosphoproteomic data and prediction of kinase activity revealed PAK4-PKC/SRC network to be highly deregulated in SCC but not in papilloma. This detailed molecular picture, both at the proteome and phosphoproteome level, will prove useful for the study of mechanisms of tumor progression.


MicroRNA-155 regulates angiotensin II type 1 receptor expression and phenotypic differentiation in vascular adventitial fibroblasts.

  • Liang Zheng‎ et al.
  • Biochemical and biophysical research communications‎
  • 2010‎

MicroRNAs (miRNAs), which are genomically encoded small RNAs, negatively regulate target gene expression at the post-transcriptional level. Our recent study indicated that microRNA-155 (miR-155) might be negatively correlated with blood pressure, and it has been suggested that miR-155-mediated target genes could be involved in the cardiovascular diseases. Bioinformatic analyses predict that angiotensin II type 1 receptor (AT(1)R) is a miR-155 target gene. The present study investigated the potential role of miR-155 in regulating AT(1)R expression and phenotypic differentiation in rat aortic adventitial fibroblasts (AFs). Luciferase assay demonstrated that miR-155 suppressed AT(1)R 3'-UTR reporter construct activity. miR-155 overexpression in AFs did not reduce target mRNA levels, but significantly reduced target protein expression. In addition, AFs transfected with pSUPER/miR-155 exhibited reduced Ang II-induced ERK1/2 activation. miR-155 overexpression in cells attenuated Ang II-induced α-smooth muscle actin (α-SMA, produces myofibroblast) expression, but did not transform growth factor beta-1 (TGF-β1). This study demonstrated that miR-155 could have an important role in regulating adventitial fibroblast differentiation and contribute to suppression of AT(1)R expression.


ROS production and NF-κB activation triggered by RAC1 facilitate WNT-driven intestinal stem cell proliferation and colorectal cancer initiation.

  • Kevin B Myant‎ et al.
  • Cell stem cell‎
  • 2013‎

The Adenomatous Polyposis Coli (APC) gene is mutated in the majority of colorectal cancers (CRCs). Loss of APC leads to constitutively active WNT signaling, hyperproliferation, and tumorigenesis. Identification of pathways that facilitate tumorigenesis after APC loss is important for therapeutic development. Here, we show that RAC1 is a critical mediator of tumorigenesis after APC loss. We find that RAC1 is required for expansion of the LGR5 intestinal stem cell (ISC) signature, progenitor hyperproliferation, and transformation. Mechanistically, RAC1-driven ROS and NF-κB signaling mediate these processes. Together, these data highlight that ROS production and NF-κB activation triggered by RAC1 are critical events in CRC initiation.


Prognostic Role of the Circulating Tumor Cells Detected by Cytological Methods in Gastric Cancer: A Meta-Analysis.

  • Kun Zou‎ et al.
  • BioMed research international‎
  • 2016‎

Objective. We performed a meta-analysis of available studies to assess the prognostic value of circulating tumor cells detected by cytological methods for patients with gastric cancer. Methods. Two authors systematically searched the studies independently with key words in PubMed, MEDLINE, EMBASE, Science Citation Index Expanded, and Cochrane Library (from inception to April 2016). The estimated hazard ratio, risk ratio, odds ratio, and their 95% confidence intervals were set as effect measures. All analyses were performed by STATA 12.0. Results. Sixteen studies were included in this meta-analysis. CTCs-high status was significantly associated with poor overall survival (HR = 2.23, 95% CI: 1.86-2.66) and progression-free survival (HR = 2.02, 95% CI: 1.36-2.99). CTCs-high status was also associated with depth of infiltration (OR = 2.07, 95% CI: 1.16-3.70), regional lymph nodes metastasis (OR = 1.85, 95% CI: 1.26-2.71), and distant metastasis (OR = 2.83, 95% CI: 1.77-4.52). For unresectable gastric cancer patients, CTCs-high status was significantly associated with poor overall survival, progression-free survival, and disease control rate before and during chemotherapy group. Conclusions. Our meta-analysis has evidenced the significant prognostic value of CTCs detected for both PFS and OS in gastric cancer patients. For patients treated with chemotherapy alone, we proved that CTCs detected by cytological method showed a significant prognostic value and poor response to chemotherapy.


Porcine epidemic diarrhea virus ORF3 protein causes endoplasmic reticulum stress to facilitate autophagy.

  • Dehua Zou‎ et al.
  • Veterinary microbiology‎
  • 2019‎

Porcine epidemic diarrhea virus (PEDV), the causative agent of PED, is an enveloped, positive-stranded RNA virus in the genus Alphacoronavirus, family Coronaviridae, order Nidovirales. PEDV non-structural accessory protein ORF3 is an ion channel related to viral infectivity and pathogenicity. Our previous study showed that PEDV ORF3 has expression characteristic of aggregation in cytoplasm, but its biological function remains elusive. Thus in this study, we initiated the construction of various vectors to express ORF3, and found ORF3 localized in the cytoplasm in the aggregation manner. Subsequently, confocal microscopy analysis showed that the aggregated ORF3 localized in endoplasmic reticulum (ER) to trigger ER stress response via up-regulation of GRP78 protein expression and activation of PERK-eIF2α signaling pathway. In addition, our results showed that PEDV ORF3 could induce the autophagy through inducing conversion of LC3-I to LC3-II, but couldn't influence the apoptosis. In contrast, conversion of LC3-I/LC3-II could be significantly inhibited by 4-PBA, an ER stress inhibitor, indicating that ORF3-induced autophagy is dependent on ER stress response. This work not only provides some new findings for the biological function of the PEDV ORF3 protein, but also help us for the further understanding the molecular interaction between PEDV ORF3 protein and cells.


Migration through physical constraints is enabled by MAPK-induced cell softening via actin cytoskeleton re-organization.

  • Dominika A Rudzka‎ et al.
  • Journal of cell science‎
  • 2019‎

Cancer cells are softer than the normal cells, and metastatic cells are even softer. These changes in biomechanical properties contribute to cancer progression by facilitating cell movement through physically constraining environments. To identify properties that enabled passage through physical constraints, cells that were more efficient at moving through narrow membrane micropores were selected from established cell lines. By examining micropore-selected human MDA MB 231 breast cancer and MDA MB 435 melanoma cancer cells, membrane fluidity and nuclear elasticity were excluded as primary contributors. Instead, reduced actin cytoskeleton anisotropy, focal adhesion density and cell stiffness were characteristics associated with efficient passage through constraints. By comparing transcriptomic profiles between the parental and selected populations, increased Ras/MAPK signalling was linked with cytoskeleton rearrangements and cell softening. MEK inhibitor treatment reversed the transcriptional, cytoskeleton, focal adhesion and elasticity changes. Conversely, expression of oncogenic KRas in parental MDA MB 231 cells, or oncogenic BRaf in parental MDA MB 435 cells, significantly reduced cell stiffness. These results reveal that MAPK signalling, in addition to tumour cell proliferation, has a significant role in regulating cell biomechanics.This article has an associated First Person interview with the first author of the paper.


Intestinal stem cell overproliferation resulting from inactivation of the APC tumor suppressor requires the transcription cofactors Earthbound and Erect wing.

  • Ai Tian‎ et al.
  • PLoS genetics‎
  • 2017‎

Wnt/β-catenin signal transduction directs intestinal stem cell (ISC) proliferation during homeostasis. Hyperactivation of Wnt signaling initiates colorectal cancer, which most frequently results from truncation of the tumor suppressor Adenomatous polyposis coli (APC). The β-catenin-TCF transcription complex activates both the physiological expression of Wnt target genes in the normal intestinal epithelium and their aberrantly increased expression in colorectal tumors. Whether mechanistic differences in the Wnt transcription machinery drive these distinct levels of target gene activation in physiological versus pathological states remains uncertain, but is relevant for the design of new therapeutic strategies. Here, using a Drosophila model, we demonstrate that two evolutionarily conserved transcription cofactors, Earthbound (Ebd) and Erect wing (Ewg), are essential for all major consequences of Apc1 inactivation in the intestine: the hyperactivation of Wnt target gene expression, excess number of ISCs, and hyperplasia of the epithelium. In contrast, only Ebd, but not Ewg, mediates the Wnt-dependent regulation of ISC proliferation during homeostasis. Therefore, in the adult intestine, Ebd acts independently of Ewg in physiological Wnt signaling, but cooperates with Ewg to induce the hyperactivation of Wnt target gene expression following Apc1 loss. These findings have relevance for human tumorigenesis, as Jerky (JRK/JH8), the human Ebd homolog, promotes Wnt pathway hyperactivation and is overexpressed in colorectal, breast, and ovarian cancers. Together, our findings reveal distinct requirements for Ebd and Ewg in physiological Wnt pathway activation versus oncogenic Wnt pathway hyperactivation following Apc1 loss. Such differentially utilized transcription cofactors may offer new opportunities for the selective targeting of Wnt-driven cancers.


Effect of acupuncture at 3-points for intelligence on vascular dementia: Protocol for a systematic review and meta-analysis of randomized controlled trials.

  • Weipeng Sun‎ et al.
  • Medicine‎
  • 2018‎

Vascular dementia (VD) is a commonly-seen disease in the elderly. What is more, "Acupuncture at 3-points for intelligence" is one of the most important components of "Jin's three-needle therapy" created by Rui Jin, a professor of Guangzhou University of Chinese Medicine, which can be used in the VD patients. In this article, researchers will assess the clinical efficacy and safety of acupuncture at 3-points for intelligence in the treatment of VD.


Oral oxymatrine for hepatitis B cirrhosis: A systematic review protocol.

  • Xiaotao Jiang‎ et al.
  • Medicine‎
  • 2018‎

Characterized by diffuse hepatic fibrosis and nodule formation, hepatitis B cirrhosis (HBC), an important result of chronic hepatitis B development, mainly contains compensated and decompensated stage. Compensated cirrhosis can further develop into decompensated stage and hepatocellular carcinoma with serious complications and high mortality. Antiviral therapy using interferon (IFN) or nucleos(t)ide analogs (NUCs) is essential for improving the prognosis of the disease but IFN has large side effects while NUCs often develop drug resistance. Antifibrosis is also an important strategy, but currently there is no effective antifibrosis drug. Pharmacologic studies have demonstrated that oxymatrine (OM) exhibits anti-hepatitis B virus (HBV) and antifibrosis effects. An increasing number of clinical controlled studies also have found that OM combined with conventional therapy could improve the curative effect and reduce adverse events incidence in treating HBC but there is no systematic review of it. Based on the extensive collection of literature, we will use meta-analysis to assess the efficacy and safety of OM for HBC.


Distinct Circulating Expression Profiles of Long Noncoding RNAs in Heart Failure Patients With Ischemic and Nonischemic Dilated Cardiomyopathy.

  • Fang Lin‎ et al.
  • Frontiers in genetics‎
  • 2019‎

Ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM), with distinct long-term prognosis and responses to treatment, are two major problems that lead to heart failure (HF) ultimately. In this study, we investigated the long noncoding RNA (lncRNA) and messenger RNA (mRNA) expressions in the plasma of patients with DCM and ICM and analyzed the different lncRNA profile between the two groups. The microarray analysis identified 3,222 and 1,911 significantly differentially expressed lncRNAs and mRNAs between DCM and ICM group. The most enriched upregulated functional terms included positive regulation of I-kappaB kinase/nuclear factor-kappaB signaling and regulation of cellular localization, while the top 10 downregulated genes mainly consisted of acid secretion and myosin heavy chain binding. Furthermore, the Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the differentially expressed lncRNA-coexpressed mRNAs between DCM and ICM group were significantly enriched in the natural killer cell mediated cytotoxicity and ras signaling pathway respectively. Quantitative real-time PCR confirmed 8 of 12 lncRNAs were upregulated in DCM group compared to ICM group which was consistent with the initial microarray results. The lncRNA/mRNA coexpression network indicated the possible functions of the validated lncRNAs. These findings revealed for the first time the specific expression pattern of both protein-coding RNAs and lncRNAs in plasma of HF patients due to DCM and ICM which may provide some important evidence to conveniently identify the etiology of myocardial dysfunctions and help to explore a better strategy for future HF prognosis evaluation.


ROCK signaling promotes collagen remodeling to facilitate invasive pancreatic ductal adenocarcinoma tumor cell growth.

  • Nicola Rath‎ et al.
  • EMBO molecular medicine‎
  • 2017‎

Pancreatic ductal adenocarcinoma (PDAC) is a major cause of cancer death; identifying PDAC enablers may reveal potential therapeutic targets. Expression of the actomyosin regulatory ROCK1 and ROCK2 kinases increased with tumor progression in human and mouse pancreatic tumors, while elevated ROCK1/ROCK2 expression in human patients, or conditional ROCK2 activation in a KrasG12D/p53R172H mouse PDAC model, was associated with reduced survival. Conditional ROCK1 or ROCK2 activation promoted invasive growth of mouse PDAC cells into three-dimensional collagen matrices by increasing matrix remodeling activities. RNA sequencing revealed a coordinated program of ROCK-induced genes that facilitate extracellular matrix remodeling, with greatest fold-changes for matrix metalloproteinases (MMPs) Mmp10 and Mmp13 MMP inhibition not only decreased collagen degradation and invasion, but also reduced proliferation in three-dimensional contexts. Treatment of KrasG12D/p53R172H PDAC mice with a ROCK inhibitor prolonged survival, which was associated with increased tumor-associated collagen. These findings reveal an ancillary role for increased ROCK signaling in pancreatic cancer progression to promote extracellular matrix remodeling that facilitates proliferation and invasive tumor growth.


Postsynaptic GluN2B-containing NMDA receptors contribute to long-term depression induction in medial vestibular nucleus neurons of juvenile rats.

  • Yan-Hai Li‎ et al.
  • Neuroscience letters‎
  • 2020‎

Medial vestibular nucleus (MVN) neurons are involved in the regulation of eye movements to endure the stability of the image during head movement, and play a critical role in plasticity of the vestibulo-ocular reflex (VOR) during the juvenile period. We have previously shown that the long-term depression (LTD) of synaptic transmission was induced by high frequency stimulation (HFS) and blocked by N-methyl-D-aspartate (NMDA) receptor antagonist D-APV at the vestibular afferent synapses of type-B MVN neurons. In the present study, we used whole-cell patch-clamp recordings in vitro to investigate the subunit composition of these NMDA receptors in the induction of LTD in MVN slices from postnatal 13-16 day rats. We found that LTD induced in type-B neurons of the rat MVN with HFS was blocked by Ro 25-6981, a specific antagonist for GluN2B-containing NMDA receptors. Moreover, the other selective GluN2B-containing NMDA receptor antagonist (ifenprodil) also prevented the induction of LTD. However, bath application of the GluN2A-containing NMDA receptor antagonists (Zn2+ and TCN 201) had no influence on the induction of LTD. Similar results were obtained by exogenously applied two GluN2C/GluN2D-preferring NMDA receptor antagonists (PPDA and UBP 141). Furthermore, presynaptic NMDA receptor subunits are not necessary for vestibular LTD. These results suggest that the induction of LTD by HFS in vestibular afferent synapses of type-B MVN neurons requires postsynaptic GluN2B-containing NMDA receptors, but not GluN2A-containing NMDA receptors or GluN2C/GluN2D-containing NMDA receptors.


Different Effects of Leucine Supplementation and/or Exercise on Systemic Insulin Sensitivity in Mice.

  • Xiaofan Jiang‎ et al.
  • Frontiers in endocrinology‎
  • 2021‎

Obesity-related diseases such as diabetes, hypertension, dyslipidemia, and cardiovascular diseases have increased due to the obesity epidemic. Early intervention for obesity through lifestyle and nutrition plays an important role in preventing obesity-related diseases. Therefore, the purpose of this study is to explore the role of leucine and exercise in adiposity, systemic insulin resistance, and inflammation to provide theoretical and guiding basis for the early prevention and treatment of obesity.


Transcriptomic profiling of human breast and melanoma cells selected by migration through narrow constraints.

  • Dominika A Rudzka‎ et al.
  • Scientific data‎
  • 2017‎

The metastatic spread of cancer cells is a step-wise process that starts with dissociation from primary tumours and local invasion of adjacent tissues. The ability to invade local tissues is the product of several processes, including degradation of extracellular matrices (ECM) and movement of tumour cells through physically-restricting gaps. To identify properties contributing to tumour cells squeezing through narrow gaps, invasive MDA-MB-231 human breast cancer and MDA-MB-435 human melanoma cells were subjected to three successive rounds of selection using cell culture inserts with highly constraining 3 μm pores. For comparison purposes, flow cytometry was also employed to enrich for small diameter MDA-MB-231 cells. RNA-Sequencing (RNA-seq) using the Illumina NextSeq 500 platform was undertaken to characterize how gene expression differed between parental, invasive pore selected or small diameter cells. Gene expression results obtained by RNA-seq were validated by comparing with RT-qPCR. Transcriptomic data generated could be used to determine how alterations that enable cell passage through narrow spaces contribute to local invasion and metastasis.


Proline-rich acidic protein 1 upregulates mitotic arrest deficient 1 to promote cisplatin-resistance of colorectal carcinoma by restraining mitotic checkpoint complex assembly.

  • Jintian Song‎ et al.
  • Journal of Cancer‎
  • 2023‎

Background: The mechanism underlying cisplatin resistance in colorectal carcinoma (CRC) has not yet been elucidated. This study is aimed to illustrate the indispensable role of proline-rich acidic protein 1 (PRAP1) in cisplatin-resistant CRC. Methods: Cell viability and apoptosis were monitored using cell counting kit-8 and flow cytometry. Immunofluorescence and morphological analysis were used to determine mitotic arrest in cells. In vivo drug resistance was evaluated using a tumor xenograft assay. Results: PRAP1 was highly expressed in cisplatin-resistant CRC. PRAP1-upregulation in HCT-116 cells increased chemoresistance to cisplatin, whereas RNAi-mediated knockdown of PRAP1 sensitized cisplatin-resistant HCT-116 cells (HCT-116/DDP) to cisplatin. PRAP1-upregulation in HCT-116 cells hindered mitotic arrest and the formation of mitotic checkpoint complexes (MCC), followed by an increase in multidrug-resistant proteins such as p-glycoprotein 1 and multidrug resistance-associated protein 1, while PRAP1-knockdown in HCT-116/DDP cells partly restored colcemid-induced mitotic arrest and MCC assembly, resulting in decreased multidrug-resistant protein levels. PRAP1 downregulation-mediated sensitization to cisplatin in HCT-116/DDP cells was abolished by the inhibition of mitotic kinase activity by limiting MCC assembly. Additionally, PRAP1-upregulation increased cisplatin-resistance in CRC in vivo. Mechanistically, PRAP1 increased the expression of mitotic arrest deficient 1 (MAD1), that competitively binds to mitotic arrest deficient 2 (MAD2) in cisplatin-resistant CRC cells, leading to failed assembly of MCC and subsequent chemotherapy resistance. Conclusion: PRAP1-overexpression caused cisplatin resistance in CRC. Possibly, PRAP1 induced an increase in MAD1, which competitively interacted with MAD2 and subsequently restrained the formation of MCC, resulting in CRC cells escape from the supervision of MCC and chemotherapy resistance.


PRPS1-mediated purine biosynthesis is critical for pluripotent stem cell survival and stemness.

  • Yi Yang‎ et al.
  • Aging‎
  • 2021‎

Pluripotent stem cells (PSCs) have a unique energetic and biosynthetic metabolism compared with typically differentiated cells. However, the metabolism profiling of PSCs and its underlying mechanism are still unclear. Here, we report PSCs metabolism profiling and identify the purine synthesis enzymes, phosphoribosyl pyrophosphate synthetase 1/2 (PRPS1/2), are critical for PSCs stemness and survival. Ultra-high performance liquid chromatography/mass spectroscopy (UHPLC-MS) analysis revealed that purine synthesis intermediate metabolite levels in PSCs are higher than that in somatic cells. Ectopic expression of PRPS1/2 did not improve purine biosynthesis, drug resistance, or stemness in PSCs. However, knockout of PRPS1 caused PSCs DNA damage and apoptosis. Depletion of PRPS2 attenuated PSCs stemness and assisted PSCs differentiation. Our finding demonstrates that PRPS1/2-mediated purine biosynthesis is critical for pluripotent stem cell stemness and survival.


Intervention time decides the status of autophagy, NLRP3 activity and apoptosis in macrophages induced by ox-LDL.

  • Liang Zheng‎ et al.
  • Lipids in health and disease‎
  • 2022‎

It has been determined through extensive studies that autophagy, the Nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome and apoptotic responses in macrophages jointly contribute to atherogenesis and its development in the presence of lipid abnormalities. Few studies have investigated in full-scale if the intervention time for lipids abnormality or NLRP3 activation have a significant effect on autophagy, NLRP3 or the apoptotic status in macrophages.


Dynamic Analysis and Path Planning of a Turtle-Inspired Amphibious Spherical Robot.

  • Liang Zheng‎ et al.
  • Micromachines‎
  • 2022‎

A dynamic path-planning algorithm based on a general constrained optimization problem (GCOP) model and a sequential quadratic programming (SQP) method with sensor input is proposed in this paper. In an unknown underwater space, the turtle-inspired amphibious spherical robot (ASR) can realise the path-planning control movement and achieve collision avoidance. Due to the special underwater environments, thrusters and diamond parallel legs (DPLs) are installed in the lower hemisphere to realise accurate motion control. A propulsion model for a novel water-jet thruster based on experimental analysis and a modified Denavit-Hartenberg (MDH) algorithm are developed for multiple degrees of freedom (MDOF) to realize high-precision and high-speed motion control. Simulations and experiments verify that the effectiveness of the GCOP and SQP algorithms can realize reasonable path planning and make it possible to improve the flexibility of underwater movement with a small estimation error.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: