Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 150 papers

Circulating miR-148b and miR-133a as biomarkers for breast cancer detection.

  • Jie Shen‎ et al.
  • Oncotarget‎
  • 2014‎

Circulating microRNAs have drawn a great deal of attention as promising novel biomarkers for breast cancer. However, to date, the results are mixed. Here, we performed a three-stage microRNA analysis using plasma samples from breast cancer patients and healthy controls, with efforts taken to address several pitfalls in detection techniques and study design observed in previous studies. In the discovery phase with 122 Caucasian study subjects, we identified 43 microRNAs differentially expressed between breast cancer cases and healthy controls. When those microRNAs were compared with published data from other studies, we identified three microRNAs, including miR-148b, miR-133a and miR-409-3p, whose plasma levels were significantly higher in breast cancer cases than healthy controls and were also significant in previous independent studies. In the validation phase with 50 breast cancer cases and 50 healthy controls, we validated the associations with breast cancer detection for miR-148b and miR-133a (P = 1.5×10-6 and 1.3×10-10, respectively). In the in-vitro study phase, we found that both miR-148b and miR-133a were secreted from breast cancer cell lines, showing their secretory potential and possible tumor origin. Thus, our data suggest that both miR-148b and miR-133a have potential use as biomarkers for breast cancer detection.


Polymorphisms in the RANK/RANKL genes and their effect on bone specific prognosis in breast cancer patients.

  • Alexander Hein‎ et al.
  • BioMed research international‎
  • 2014‎

The receptor activator of NF-κB (RANK) pathway is involved in bone health as well as breast cancer (BC) pathogenesis and progression. Whereas the therapeutic implication of this pathway is established for the treatment of osteoporosis and bone metastases, the application in adjuvant BC is currently investigated. As genetic variants in this pathway have been described to influence bone health, aim of this study was the prognostic relevance of genetic variants in RANK and RANKL. Single nucleotide polymorphisms in RANK(L) (rs1054016/rs1805034/rs35211496) were genotyped and analyzed with regard to bone metastasis-free survival (BMFS), disease-free survival, and overall survival for a retrospective cohort of 1251 patients. Cox proportional hazard models were built to examine the prognostic influence in addition to commonly established prognostic factors. The SNP rs1054016 seems to influence BMFS. Patients with two minor alleles had a more favorable prognosis than patients with at least one common allele (HR 0.37 (95% CI: 0.17, 0.84)), whereas other outcome parameters remained unaffected. rs1805034 and rs35211496 had no prognostic relevance. The effect of rs1054016(RANKL) adds to the evidence that the RANK pathway plays a role in BC pathogenesis and progression with respect to BMFS, emphasizing the connection between BC and bone health.


Genetic predisposition to in situ and invasive lobular carcinoma of the breast.

  • Elinor Sawyer‎ et al.
  • PLoS genetics‎
  • 2014‎

Invasive lobular breast cancer (ILC) accounts for 10-15% of all invasive breast carcinomas. It is generally ER positive (ER+) and often associated with lobular carcinoma in situ (LCIS). Genome-wide association studies have identified more than 70 common polymorphisms that predispose to breast cancer, but these studies included predominantly ductal (IDC) carcinomas. To identify novel common polymorphisms that predispose to ILC and LCIS, we pooled data from 6,023 cases (5,622 ILC, 401 pure LCIS) and 34,271 controls from 36 studies genotyped using the iCOGS chip. Six novel SNPs most strongly associated with ILC/LCIS in the pooled analysis were genotyped in a further 516 lobular cases (482 ILC, 36 LCIS) and 1,467 controls. These analyses identified a lobular-specific SNP at 7q34 (rs11977670, OR (95%CI) for ILC = 1.13 (1.09-1.18), P = 6.0 × 10(-10); P-het for ILC vs IDC ER+ tumors = 1.8 × 10(-4)). Of the 75 known breast cancer polymorphisms that were genotyped, 56 were associated with ILC and 15 with LCIS at P<0.05. Two SNPs showed significantly stronger associations for ILC than LCIS (rs2981579/10q26/FGFR2, P-het = 0.04 and rs889312/5q11/MAP3K1, P-het = 0.03); and two showed stronger associations for LCIS than ILC (rs6678914/1q32/LGR6, P-het = 0.001 and rs1752911/6q14, P-het = 0.04). In addition, seven of the 75 known loci showed significant differences between ER+ tumors with IDC and ILC histology, three of these showing stronger associations for ILC (rs11249433/1p11, rs2981579/10q26/FGFR2 and rs10995190/10q21/ZNF365) and four associated only with IDC (5p12/rs10941679; rs2588809/14q24/RAD51L1, rs6472903/8q21 and rs1550623/2q31/CDCA7). In conclusion, we have identified one novel lobular breast cancer specific predisposition polymorphism at 7q34, and shown for the first time that common breast cancer polymorphisms predispose to LCIS. We have shown that many of the ER+ breast cancer predisposition loci also predispose to ILC, although there is some heterogeneity between ER+ lobular and ER+ IDC tumors. These data provide evidence for overlapping, but distinct etiological pathways within ER+ breast cancer between morphological subtypes.


Introducing a novel highly prognostic grading scheme based on tumour budding and cell nest size for squamous cell carcinoma of the uterine cervix.

  • Moritz Jesinghaus‎ et al.
  • The journal of pathology. Clinical research‎
  • 2018‎

A novel histopathological grading system based on tumour budding and cell nest size has recently been shown to outperform conventional (WHO-based) grading algorithms in several tumour entities such as lung, oral, and oesophageal squamous cell carcinoma (SCC) in terms of prognostic patient stratification. Here, we tested the prognostic value of this innovative grading approach in two completely independent cohorts of SCC of the uterine cervix. To improve morphology-based grading, we investigated tumour budding activity and cell nest size as well as several other histomorphological factors (e.g., keratinization, nuclear size, mitotic activity) in a test cohort (n = 125) and an independent validation cohort (n = 122) of cervical SCC. All parameters were correlated with clinicopathological factors and patient outcome. Small cell nest size and high tumour budding activity were strongly associated with a dismal patient prognosis (p < 0.001 for overall survival [OS], disease-specific survival, and disease-free survival; test cohort) in both cohorts of cervical SCC. A novel grading algorithm combining these two parameters proved to be a highly effective, stage-independent prognosticator in both cohorts (OS: p < 0.001, test cohort; p = 0.001, validation cohort). In the test cohort, multivariate statistical analysis of the novel grade revealed that the hazard ratio (HR) for OS was 2.3 for G2 and 5.1 for G3 tumours compared to G1 neoplasms (p = 0.010). In the validation cohort, HR for OS was 3.0 for G2 and 7.2 for G3 tumours (p = 0.012). In conclusion, our novel grading algorithm incorporating cell nest size and tumour budding allows strongly prognostic histopathological grading of cervical SCC superior to WHO-based grading. Therefore, our data can be regarded as a cross-organ validation of previous results demonstrated for oesophageal, lung, and oral SCC. We suggest this grading algorithm as an additional morphology-based parameter for the routine diagnostic assessment of this tumour entity.


PHIP - a novel candidate breast cancer susceptibility locus on 6q14.1.

  • Xiang Jiao‎ et al.
  • Oncotarget‎
  • 2017‎

Most non-BRCA1/2 breast cancer families have no identified genetic cause. We used linkage and haplotype analyses in familial and sporadic breast cancer cases to identify a susceptibility locus on chromosome 6q. Two independent genome-wide linkage analysis studies suggested a 3 Mb locus on chromosome 6q and two unrelated Swedish families with a LOD >2 together seemed to share a haplotype in 6q14.1. We hypothesized that this region harbored a rare high-risk founder allele contributing to breast cancer in these two families. Sequencing of DNA and RNA from the two families did not detect any pathogenic mutations. Finally, 29 SNPs in the region were analyzed in 44,214 cases and 43,532 controls from BCAC, and the original haplotypes in the two families were suggested as low-risk alleles for European and Swedish women specifically. There was also some support for one additional independent moderate-risk allele in Swedish familial samples. The results were consistent with our previous findings in familial breast cancer and supported a breast cancer susceptibility locus at 6q14.1 around the PHIP gene.


The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer.

  • Gisella Figlioli‎ et al.
  • NPJ breast cancer‎
  • 2019‎

Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM -/- patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors.


Impact of fibroblast growth factor receptor 1 (FGFR1) amplification on the prognosis of breast cancer patients.

  • Ramona Erber‎ et al.
  • Breast cancer research and treatment‎
  • 2020‎

Various aberrations in the fibroblast growth factor receptor genes FGFR1, FGFR2, and FGFR3 are found in different cancers, including breast cancer (BC). This study analyzed the impact of FGFR amplification on the BC prognosis.


Population-based targeted sequencing of 54 candidate genes identifies PALB2 as a susceptibility gene for high-grade serous ovarian cancer.

  • Honglin Song‎ et al.
  • Journal of medical genetics‎
  • 2021‎

The known epithelial ovarian cancer (EOC) susceptibility genes account for less than 50% of the heritable risk of ovarian cancer suggesting that other susceptibility genes exist. The aim of this study was to evaluate the contribution to ovarian cancer susceptibility of rare deleterious germline variants in a set of candidate genes.


Association of germline genetic variants with breast cancer-specific survival in patient subgroups defined by clinic-pathological variables related to tumor biology and type of systemic treatment.

  • Anna Morra‎ et al.
  • Breast cancer research : BCR‎
  • 2021‎

Given the high heterogeneity among breast tumors, associations between common germline genetic variants and survival that may exist within specific subgroups could go undetected in an unstratified set of breast cancer patients.


Plasticity of patient-matched normal mammary epithelial cells is dependent on autologous adipose-derived stem cells.

  • Annika Kengelbach-Weigand‎ et al.
  • Scientific reports‎
  • 2019‎

Due to the increasing clinical application of adipose-derived stem cells (ADSC), e.g. lipotransfer for breast reconstruction, this study aimed to gain novel insights regarding ADSC influence on breast tissue remodeling and determine patient-dependent factors affecting lipotransfer as well as begin to address its oncological risks. The ADSC secretome was analyzed from five normal breast reduction patients and contained elevated levels of growth factors, cytokines and proteins mediating invasion. ADSC/ADSC secretomes were tested for their influence on the function of primary mammary epithelial cells, and tumor epithelial cells using cell culture assays. ADSC/ADSC secretomes significantly stimulated proliferation, transmigration and 3D-invasion of primary normal and tumor epithelial cells. IL-6 significantly induced an EMT and invasion. The ADSC secretome significantly upregulated normal epithelial cell gene expression including MMPs and ECM receptors. Our study supports that ADSC and its secretome promote favorable conditions for normal breast tissue remodeling by changing the microenvironment. and may also be important regarding residual breast cancer cells following surgery.


HLA-G and HLA-F protein isoform expression in breast cancer patients receiving neoadjuvant treatment.

  • Franziska M Wuerfel‎ et al.
  • Scientific reports‎
  • 2020‎

The immunosuppressive human leukocyte antigens HLA-G and HLA-F are expressed on trophoblast and malignant cells. Four membrane-bound and three soluble HLA-G protein isoforms have been described, which have different immunosuppressive potentials. HLA-F has three transcript variants, resulting in three different protein isoforms. The aim of this study was to evaluate the prognostic and predictive value of HLA-G and HLA-F protein isoform expression patterns in patients with breast cancer. Core biopsies were taken at diagnosis in patients with HER2+ (n = 28), luminal B-like (n = 49) and triple-negative (n = 38) breast cancers who received neoadjuvant chemotherapy. Expression levels of HLA-F and -G were correlated with the pathological complete response (pCR). Protein expression was determined by Western blot analysis, using two antibodies for each HLA, specific for different isoforms. The protein expression of HLA isoforms did not significantly differ between breast cancer subtypes. However, some initial indications were found for an association between the soluble HLA-G6 protein isoform and pCR in HER2+ breast cancer. The study provides preliminary evidence for the evaluation of HLA-G isoform expression, in particular HLA-G6, as a possible new marker for pCR in HER2+ breast cancer.


Lifetime ovulations and epithelial ovarian cancer risk and survival: A systematic review and meta-analysis.

  • Zhuxuan Fu‎ et al.
  • Gynecologic oncology‎
  • 2022‎

To assess the relationship between lifetime ovulatory years (LOY) and Epithelial ovarian cancer (EOC) risk and survival.


Automated artifact detection in abbreviated dynamic contrast-enhanced (DCE) MRI-derived maximum intensity projections (MIPs) of the breast.

  • Lorenz A Kapsner‎ et al.
  • European radiology‎
  • 2022‎

To automatically detect MRI artifacts on dynamic contrast-enhanced (DCE) maximum intensity projections (MIPs) of the breast using deep learning.


Functional annotation of the 2q35 breast cancer risk locus implicates a structural variant in influencing activity of a long-range enhancer element.

  • Joseph S Baxter‎ et al.
  • American journal of human genetics‎
  • 2021‎

A combination of genetic and functional approaches has identified three independent breast cancer risk loci at 2q35. A recent fine-scale mapping analysis to refine these associations resulted in 1 (signal 1), 5 (signal 2), and 42 (signal 3) credible causal variants at these loci. We used publicly available in silico DNase I and ChIP-seq data with in vitro reporter gene and CRISPR assays to annotate signals 2 and 3. We identified putative regulatory elements that enhanced cell-type-specific transcription from the IGFBP5 promoter at both signals (30- to 40-fold increased expression by the putative regulatory element at signal 2, 2- to 3-fold by the putative regulatory element at signal 3). We further identified one of the five credible causal variants at signal 2, a 1.4 kb deletion (esv3594306), as the likely causal variant; the deletion allele of this variant was associated with an average additional increase in IGFBP5 expression of 1.3-fold (MCF-7) and 2.2-fold (T-47D). We propose a model in which the deletion allele of esv3594306 juxtaposes two transcription factor binding regions (annotated by estrogen receptor alpha ChIP-seq peaks) to generate a single extended regulatory element. This regulatory element increases cell-type-specific expression of the tumor suppressor gene IGFBP5 and, thereby, reduces risk of estrogen receptor-positive breast cancer (odds ratio = 0.77, 95% CI 0.74-0.81, p = 3.1 × 10-31).


Identification and validation of expressed HLA-binding breast cancer neoepitopes for potential use in individualized cancer therapy.

  • Hannah Reimann‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2021‎

Therapeutic regimens designed to augment the immunological response of a patient with breast cancer (BC) to tumor tissue are critically informed by tumor mutational burden and the antigenicity of expressed neoepitopes. Herein we describe a neoepitope and cognate neoepitope-reactive T-cell identification and validation program that supports the development of next-generation immunotherapies.


Expression of neuroendocrine markers in different molecular subtypes of breast carcinoma.

  • David L Wachter‎ et al.
  • BioMed research international‎
  • 2014‎

Carcinomas of the breast with neuroendocrine features are incorporated in the World Health Organization classification since 2003 and include well-differentiated neuroendocrine tumors, poorly differentiated neuroendocrine carcinomas/small cell carcinomas, and invasive breast carcinomas with neuroendocrine differentiation. Neuroendocrine differentiation is known to be more common in certain low-grade histologic special types and has been shown to mainly cluster to the molecular (intrinsic) luminal A subtype.


Polymorphisms in a Putative Enhancer at the 10q21.2 Breast Cancer Risk Locus Regulate NRBF2 Expression.

  • Hatef Darabi‎ et al.
  • American journal of human genetics‎
  • 2015‎

Genome-wide association studies have identified SNPs near ZNF365 at 10q21.2 that are associated with both breast cancer risk and mammographic density. To identify the most likely causal SNPs, we fine mapped the association signal by genotyping 428 SNPs across the region in 89,050 European and 12,893 Asian case and control subjects from the Breast Cancer Association Consortium. We identified four independent sets of correlated, highly trait-associated variants (iCHAVs), three of which were located within ZNF365. The most strongly risk-associated SNP, rs10995201 in iCHAV1, showed clear evidence of association with both estrogen receptor (ER)-positive (OR = 0.85 [0.82-0.88]) and ER-negative (OR = 0.87 [0.82-0.91]) disease, and was also the SNP most strongly associated with percent mammographic density. iCHAV2 (lead SNP, chr10: 64,258,684:D) and iCHAV3 (lead SNP, rs7922449) were also associated with ER-positive (OR = 0.93 [0.91-0.95] and OR = 1.06 [1.03-1.09]) and ER-negative (OR = 0.95 [0.91-0.98] and OR = 1.08 [1.04-1.13]) disease. There was weaker evidence for iCHAV4, located 5' of ADO, associated only with ER-positive breast cancer (OR = 0.93 [0.90-0.96]). We found 12, 17, 18, and 2 candidate causal SNPs for breast cancer in iCHAVs 1-4, respectively. Chromosome conformation capture analysis showed that iCHAV2 interacts with the ZNF365 and NRBF2 (more than 600 kb away) promoters in normal and cancerous breast epithelial cells. Luciferase assays did not identify SNPs that affect transactivation of ZNF365, but identified a protective haplotype in iCHAV2, associated with silencing of the NRBF2 promoter, implicating this gene in the etiology of breast cancer.


Common germline polymorphisms associated with breast cancer-specific survival.

  • Ailith Pirie‎ et al.
  • Breast cancer research : BCR‎
  • 2015‎

Previous studies have identified common germline variants nominally associated with breast cancer survival. These associations have not been widely replicated in further studies. The purpose of this study was to evaluate the association of previously reported SNPs with breast cancer-specific survival using data from a pooled analysis of eight breast cancer survival genome-wide association studies (GWAS) from the Breast Cancer Association Consortium.


Selective expression of sense and antisense transcripts of the sushi-ichi-related retrotransposon--derived family during mouse placentogenesis.

  • Christine Henke‎ et al.
  • Retrovirology‎
  • 2015‎

LTR-retrotransposons became functional neogenes through evolution by acquiring promoter sequences, regulatory elements and sequence modification. Mammalian retrotransposon transcripts (Mart1-9), also called sushi-ichi-related retrotransposon-homolog (SIRH) genes, are a class of Ty3/gypsy LTR-retroelements showing moderate homology to the sushi-ichi LTR-retrotransposon in pufferfish. Rtl1/Mart1 and Peg10/Mart2 expression in mouse placenta and demonstration of their functional roles during placental development exemplifies their importance in cellular processes. In this study, we analyzed all eleven mouse Mart genes from the blastocyst stage and throughout placentogenesis in order to gain information about their expression and regulation.


Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer.

  • Kyriaki Michailidou‎ et al.
  • Nature genetics‎
  • 2015‎

Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to women of European ancestry. We generated genotypes for more than 11 million SNPs by imputation using the 1000 Genomes Project reference panel, and we identified 15 new loci associated with breast cancer at P < 5 × 10(-8). Combining association analysis with ChIP-seq chromatin binding data in mammary cell lines and ChIA-PET chromatin interaction data from ENCODE, we identified likely target genes in two regions: SETBP1 at 18q12.3 and RNF115 and PDZK1 at 1q21.1. One association appears to be driven by an amino acid substitution encoded in EXO1.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: