Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 115 papers

Gβ1 controls collective cell migration by regulating the protrusive activity of leader cells in the posterior lateral line primordium.

  • Hui Xu‎ et al.
  • Developmental biology‎
  • 2014‎

Collective cell migration is critical for normal development, tissue repair and cancer metastasis. Migration of the posterior lateral line primordium (pLLP) generates the zebrafish sensory organs (neuromasts, NMs). This migration is promoted by the leader cells at the leading edge of the pLLP, which express the G protein-coupled chemokine receptor Cxcr4b and respond to the chemokine Cxcl12a. However, the mechanism by which Cxc112a/Cxcr4b signaling regulates pLLP migration remains unclear. Here we report that signal transduction by the heterotrimeric G protein subunit Gβ1 is essential for proper pLLP migration. Although both Gβ1 and Gβ4 are expressed in the pLLP and NMs, depletion of Gβ1 but not Gβ4 resulted in an arrest of pLLP migration. In embryos deficient for Gβ1, the pLLP cells migrated in an uncoordinated fashion and were unable to extend protrusions at the leading front, phenocopying those in embryos deficient for Cxcl12a or Cxcr4b. A transplantation assay showed that, like Cxcr4b, Gβ1 is required only in the leader cells of the pLLP. Analysis of F-actin dynamics in the pLLP revealed that whereas wild-type leader cells display extensive actin polymerization in the direction of pLLP migration, counterparts defective for Gβ1, Cxcr4b or Cxcl12a do not. Finally, synergy experiments revealed that Gβ1 and Cxcr4b interact genetically in regulating pLLP migration. Collectively, our data indicate that Gβ1 controls migration of the pLLP, likely by acting downstream of the Cxcl12a/Cxcr4b signaling. This study also provides compelling evidence for functional specificity among Gβ isoforms in vivo.


Activated cathepsin L is associated with the switch from autophagy to apoptotic death of SH-SY5Y cells exposed to 6-hydroxydopamine.

  • Lingyun Li‎ et al.
  • Biochemical and biophysical research communications‎
  • 2016‎

Autophagy and apoptosis are common responses to pathological damage in the process of Parkinson's disease (PD), and lysosome dysfunction may contribute to the etiology of PD's neurodegenerative process. In this study, we demonstrated that the neurotoxin 6-hydroxydopamine (6-OHDA) increased autophagy in SH-SY5Y cells, as determined by detection of the lysosome marker lysosomal-associated membrane protein1, the autophagy protein light chain 3 (LC3)-II and the autophagy substrate P62 protein. Meanwhile, autophagy repression with 3-methyladenine accelerated the activation of caspase-3 and PARP and aggravated the cell apoptotic death induced by 6-OHDA. Furthermore, we found that 6-OHDA treatment resulted in a transient increase in the intracellular and nuclear expression of cathepsin L (CTSL). The CTSL inhibitor, Z-FY-CHO, could promote autophagy, decrease accumulation of P62, and block activation of caspase-3 and PARP. Taken together, these results suggest that activation of autophagy may primarily be a protective process in SH-SY5Y cell death induced by 6-OHDA, and the nuclear translocation of CTSL could enhance the cell apoptotic cascade via disturbing autophagy-apoptotic systems in SH-SY5Y cells. Our findings highlight the potential role of CTSL in the cross talk between autophagy and apoptosis, which might be considered a therapeutic strategy for treatment of pathologic conditions associated with neurodegeneration.


Endoplasmic reticulum chaperone GRP78 is involved in autophagy activation induced by ischemic preconditioning in neural cells.

  • Xiang-Yang Zhang‎ et al.
  • Molecular brain‎
  • 2015‎

Our previous finding showed that brain ischemic preconditioning mediates neuroprotection through endoplasmic reticulum (ER) stress-induced autophagy. This study was aimed at exploring the role of ER chaperone GRP78 in IPC induced autophagy activation in neural cells.


Suppression of Inflammation and Arthritis by Orally Administrated Cardiotoxin from Naja naja atra.

  • Cao-Xin Chen‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2015‎

Cardiotoxin (CTX) from Naja naja atra venom (NNAV) reportedly had analgesic effect in animal models but its role in inflammation and arthritis was unknown. In this study, we investigated the analgesic, anti-inflammatory, and antiarthritic actions of orally administered CTX-IV isolated from NNAV on rodent models of inflammation and adjuvant arthritis. CTX had significant anti-inflammatory effects in models of egg white induced nonspecific inflammation, filter paper induced rat granuloma formation, and capillary osmosis tests. CTX significantly reduced the swelling of paw induced by egg white, the inflammatory exudation, and the formation of granulomas. CTX reduced the swelling of paw, the AA clinical scores, and pathological alterations of joint. CTX significantly decreased the number of the CD4 T cells and inhibited the expression of relevant proinflammatory cytokines IL-17 and IL-6. CTX significantly inhibited the secretion of proinflammatory cytokine IL-6 and reduced the level of p-STAT3 in FLS. These results suggest that CTX inhibits inflammation and inflammatory pain and adjuvant-induced arthritis. CTX may be a novel therapeutic drug for treatment of arthritis.


Early growth response gene 1, a TRBP binding protein, is involved in miRNA activity of miR-125a-3p in human cells.

  • Junxia Wei‎ et al.
  • Cellular signalling‎
  • 2015‎

MicroRNAs (miRNAs) are key regulators of many cellular pathways. However, the picture for components or regulators involved in the process of miRNA biogenesis and function remains to be further elucidated. Early growth response gene 1 (Egr1) has long been considered as tumor suppressor and transcriptional factor involved in cell proliferation and regulation of apoptosis.


TIGAR regulates DNA damage and repair through pentosephosphate pathway and Cdk5-ATM pathway.

  • Hong-Pei Yu‎ et al.
  • Scientific reports‎
  • 2015‎

Previous study revealed that the protective effect of TIGAR in cell survival is mediated through the increase in PPP (pentose phosphate pathway) flux. However, it remains unexplored if TIGAR plays an important role in DNA damage and repair. This study investigated the role of TIGAR in DNA damage response (DDR) induced by genotoxic drugs and hypoxia in tumor cells. Results showed that TIGAR was increased and relocated to the nucleus after epirubicin or hypoxia treatment in cancer cells. Knockdown of TIGAR exacerbated DNA damage and the effects were partly reversed by the supplementation of PPP products NADPH, ribose, or the ROS scavenger NAC. Further studies with pharmacological and genetic approaches revealed that TIGAR regulated the phosphorylation of ATM, a key protein in DDR, through Cdk5. The Cdk5-AMT signal pathway involved in regulation of DDR by TIGAR defines a new role of TIGAR in cancer cell survival and it suggests that TIGAR may be a therapeutic target for cancers.


Gβ1 is required for neutrophil migration in zebrafish.

  • Wenfan Ke‎ et al.
  • Developmental biology‎
  • 2017‎

Signaling mediated by G protein-coupled receptors (GPCRs) is essential for the migration of cells toward chemoattractants. The recruitment of neutrophils to injured tissues in zebrafish larvae is a useful model for studying neutrophil migration and trafficking in vivo. Indeed, the study of this process led to the discovery that PI3Kγ is required for the polarity and motility of neutrophils, features that are necessary for the directed migration of these cells to wounds. However, the mechanism by which PI3Kγ is activated remains to be determined. Here we show that signaling by specifically the heterotrimeric G protein subunit Gβ1 is critical for neutrophil migration in response to wounding. In embryos treated with small-molecule inhibitors of Gβγ signaling, neutrophils failed to migrate to wound sites. Although both the Gβ1 and Gβ4 isoforms are expressed in migrating neutrophils, only deficiency for the former (morpholino-based knockdown) interfered with the directed migration of neutrophils towards wounds. The Gβ1 deficiency also impaired the ability of cells to change cell shape and reduced their general motility, defects that are similar to those in neutrophils deficient for PI3Kγ. Transplantation assays showed that the requirement for Gβ1 in neutrophil migration is cell autonomous. Finally, live imaging revealed that Gβ1 is required for polarized activation of PI3K, and for the actin dynamics that enable neutrophil migration. Collectively, our data indicate that Gβ1 signaling controls proper neutrophil migration by activating PI3K and modulating actin dynamics. Moreover, they illustrate a role for a specific Gβ isoform in chemotaxis in vivo.


Induction of a high-titered antibody response using HIV gag-EV71 VP1-based virus-like particles with the capacity to protect newborn mice challenged with a lethal dose of enterovirus 71.

  • Xi Wang‎ et al.
  • Archives of virology‎
  • 2018‎

Enterovirus 71 (EV71) is the most frequently detected causative agent in hand, foot, and mouth disease (HFMD) and is a serious threat to public health in the Asia-Pacific region. Many EV71 vaccines are under development worldwide, and although both inactivated virus vaccines and virus-like particles (VLPs) are considered to be effective, the main focus has been on inactivated EV71vaccines. There have been very few studies on EV71 VLPs. In this study, using a strategy based on HIV gag VLPs, we constructed a gag-VP1 fusion gene to generate a recombinant baculovirus expressing the EV71 structural protein VP1 together with gag, which was then used to infect TN5 cells to form VLPs. The VLPs were characterized using transmission electron microscopy, electrophoresis and staining with Coomassie blue, and Western blotting. Mice immunized with gag-VP1 VLPs showed strong humoral and cellular immune responses. Finally, immunization of female mice with gag-VP1 VLPs provided effective protection of their newborn offspring against challenge with a lethal dose EV71. These results demonstrate a successful approach for producing EV71 VP1 VLPs based on the ability of HIV gag to self-assemble, thus providing a good foundation for producing high-titered anti-EV71 antibody by immunization with VLP-based gag EV71 VP1 protein.


Peptide SA12 inhibits proliferation of breast cancer cell lines MCF-7 and MDA-MB-231 through G0/G1 phase cell cycle arrest.

  • Longfei Yang‎ et al.
  • OncoTargets and therapy‎
  • 2018‎

Targeted therapies have been proven as promising in the treatment of breast cancer and have improved survival and quality of life in advanced breast cancer. We previously identified a novel peptide SA12 which showed significant activity in the inhibition of proliferation and induction of apoptosis in SKBr-3 cells.


Identification and expression patterns of members of the protease-activated receptor (PAR) gene family during zebrafish development.

  • Hui Xu‎ et al.
  • Developmental dynamics : an official publication of the American Association of Anatomists‎
  • 2011‎

Protease-activated receptors (PARs) play critical roles in hemostasis in vertebrates including zebrafish. However, the zebrafish gene classification appears to be complex, and the expression patterns of par genes are not established. Based on analyses of genomic organization, phylogenetics, protein primary structure, and protein internalization, we report the identification of four zebrafish PARs: par1, par2a, par2b, and par3. This classification differs from one reported previously. We also show that these genes have distinct spatiotemporal expression profiles in embryos and larvae, with par1, par2a, and par2b expressed maternally and ubiquitously during gastrula stages and their expression patterns refined at later stages, and par3 expressed only in 3-day-old larvae. Notably, the expression patterns of zebrafish par1 and par2b resemble those of their mammalian counterparts, suggesting that receptor function is conserved among vertebrates. This conservation is supported by our findings that Par1 and Par2b are internalized following exposure to thrombin and trypsin, respectively.


Comparative morphological and transcriptomic analyses reveal chemosensory genes in the poultry red mite, Dermanyssus gallinae.

  • Biswajit Bhowmick‎ et al.
  • Scientific reports‎
  • 2020‎

Detection of chemical cues via chemosensory receptor proteins are essential for most animals, and underlies critical behaviors, including location and discrimination of food resources, identification of sexual partners and avoidance of predators. The current knowledge of how chemical cues are detected is based primarily on data acquired from studies on insects, while our understanding of the molecular basis for chemoreception in acari, mites in particular, remains limited. The poultry red mite (PRM), Dermanyssus gallinae, is one of the most important blood-feeding ectoparasites of poultry. PRM are active at night which suck the birds' blood during periods of darkness and hide themselves in all kinds of gaps and cracks during the daytime. The diversity in habitat usage, as well as the demonstrated host finding and avoidance behaviors suggest that PRM relies on their sense of smell to orchestrate complex behavioral decisions. Comparative transcriptome analyses revealed the presence of candidate variant ionotropic receptors, odorant binding proteins, niemann-pick proteins type C2 and sensory neuron membrane proteins. Some of these proteins were highly and differentially expressed in the forelegs of PRM. Rhodopsin-like G protein-coupled receptors were also identified, while insect-specific odorant receptors and odorant co-receptors were not detected. Furthermore, using scanning electron microscopy, the tarsomeres of all leg pairs were shown to be equipped with sensilla chaetica with or without tip pores, while wall-pored olfactory sensilla chaetica were restricted to the distal-most tarsomeres of the forelegs. This study is the first to describe the presence of chemosensory genes in any Dermanyssidae family. Our findings make a significant step forward in understanding the chemosensory abilities of D. gallinae.


Intramyocardial injected human umbilical cord-derived mesenchymal stem cells (HucMSCs) contribute to the recovery of cardiac function and the migration of CD4+ T cells into the infarcted heart via CCL5/CCR5 signaling.

  • Jing Liu‎ et al.
  • Stem cell research & therapy‎
  • 2022‎

Human umbilical cord-derived mesenchymal stem cells (HucMSCs) have been recognized as a promising cell for treating myocardial infarction (MI). Inflammatory response post MI is critical in determining the cardiac function and subsequent adverse left ventricular remodeling. However, the local inflammatory effect of HucMSCs after intramyocardial injection in murine remains unclear.


Arabidopsis COP1 SUPPRESSOR 2 Represses COP1 E3 Ubiquitin Ligase Activity through Their Coiled-Coil Domains Association.

  • Dongqing Xu‎ et al.
  • PLoS genetics‎
  • 2015‎

CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) functions as an E3 ubiquitin ligase and mediates a variety of developmental processes in Arabidopsis by targeting a number of key regulators for ubiquitination and degradation. Here, we identify a novel COP1 interacting protein, COP1 SUPPRESSOR 2 (CSU2). Loss of function mutations in CSU2 suppress the constitutive photomorphogenic phenotype of cop1-6 in darkness. CSU2 directly interacts with COP1 via their coiled-coil domains and is recruited by COP1 into nuclear speckles in living plant cells. Furthermore, CSU2 inhibits COP1 E3 ubiquitin ligase activity in vitro, and represses COP1 mediated turnover of HY5 in cell-free extracts. We propose that in csu2 cop1-6 mutants, the lack of CSU2's repression of COP1 allows the low level of COP1 to exhibit higher activity that is sufficient to prevent accumulation of HY5 in the dark, thus restoring the etiolated phenotype. In addition, CSU2 is required for primary root development under normal light growth condition.


CD73 promotes proliferation and migration of human cervical cancer cells independent of its enzyme activity.

  • Zhao-Wei Gao‎ et al.
  • BMC cancer‎
  • 2017‎

CD73 has both enzymatic and non-enzymatic functions in cells. As a nucleotidase, CD73 plays its enzymatic function by catalyzing the hydrolysis of AMP into adenosine and phosphate. In addition to this, accumulating data have shown that CD73 is a key regulatory molecule involved in cancer growth and metastasis, but this non-enzymatic function of CD73 in cervical cancer cells has not been well studied.


Myocardial ischemia-reperfusion induced cardiac extracellular vesicles harbour proinflammatory features and aggravate heart injury.

  • Xinyu Ge‎ et al.
  • Journal of extracellular vesicles‎
  • 2021‎

Extracellular vesicles (EVs) curb important biological functions. We previously disclosed that ischemia-reperfusion (IR) induces increased release of EVs (IR-EVs) in the heart. However, the role of IR-EVs in IR pathological process remains poorly understood. Here we found that adoptive transfer of IR-EVs aggravated IR induced heart injury, and EV inhibition by GW4869 reduced the IR injury. Our in vivo and in vitro investigations substantiated that IR-EVs facilitated M1-like polarization of macrophages with increased expression of proinflammatory cytokines. Further, we disclosed the miRNA profile in cardiac EVs and confirmed the enrichment of miRNAs, such as miR-155-5p in IR-EVs compared to EVs from the sham heart (S-EVs). In particular, IR-EVs transferred miR-155-5p to macrophages and enhanced the inflammatory response through activating JAK2/STAT1 pathway. Interestingly, IR-EVs not only boosted the local inflammation in the heart, but even triggered systemic inflammation in distant organs. Taken together, we newly identify an IR-EVs-miR-155-5p-M1 polarization axis in the heart post IR. The EVs derived from IR-injured heart contribute to both local and systemic inflammation. Importantly, EV inhibition by GW4869 is supposed to be a promising therapeutic strategy for IR injury.


Apelin-13 Pretreatment Promotes the Cardioprotective Effect of Mesenchymal Stem Cells against Myocardial Infarction by Improving Their Survival.

  • Guona Chen‎ et al.
  • Stem cells international‎
  • 2022‎

Although mesenchymal stem cell- (MSC-) based therapy has shown promising results for myocardial infarction (MI), low cell survival heavily limits its beneficial effects. Apelin plays an essential regulatory role in cell proliferation. This study was aimed at determining whether Apelin-13 pretreatment could improve the survival of MSCs in the ischemic heart and enhance their cardioprotective efficacy against MI. MSCs were pretreated with or without Apelin-13 for 24 hours and then exposed to serum deprivation and hypoxia (SD/H) for 48 hours. The mitochondrial morphology of MSCs was assessed by MitoTracker staining. The apoptosis of MSCs was determined by TUNEL staining. The level of mitochondrial reactive oxygen species (ROS) of MSCs was detected by Mito-Sox staining. MSCs and Apelin-13-pretreated MSCs were transplanted into the peri-infarct region in a mouse MI model. Apelin-13 pretreatment protected MSCs against SD/H-induced mitochondrial fragmentation and apoptosis. Apelin-13 pretreatment reduced ROS generation induced by SD/H in MSCs. Furthermore, Apelin-13 pretreatment enhanced the angiogenesis of MSCs under SD/H conditions. Mechanistically, Apelin-13 pretreatment inhibited SD/H-induced MSC apoptosis by downregulating mitochondrial fission via activation of the ERK pathway, and these effects were partially abrogated by ERK inhibitor U0126. Apelin-13 pretreatment promoted the survival of MSCs in the ischemic heart. Moreover, transplantation with Apelin-13-pretreated MSCs improved heart function and increased angiogenesis accompanied by decreased fibrosis compared with MSC transplantation at 28 days following MI. These findings reveal that pretreatment with Apelin-13 improves MSCs survival and enhances their therapeutic efficacy for MI. Our study provides a novel approach to improve MSC-based therapy for cardiovascular disease.


A novel small molecule compound VCP979 improves ventricular remodeling in murine models of myocardial ischemia/reperfusion injury.

  • Jing Liu‎ et al.
  • International journal of molecular medicine‎
  • 2020‎

Persistent ventricular remodeling following myocardial ischemia/reperfusion (MI/R) injury results in functional decompensation and eventual progression to heart failure. VCP979, a novel small‑molecule compound developed in‑house, possesses anti‑inflammatory and anti‑fibrotic activities. In the present study, no significant pathological effect was observed following the administration of VCP979 on multiple organs in mice and no difference of aspartate transaminase/alanine aminotransferase/lactate dehydrogenase levels was found in murine serum. Treatment with VCP979 ameliorated cardiac dysfunction, pathological myocardial fibrosis and hypertrophy in murine MI/R injury models. The administration of VCP979 also inhibited the infiltration of inflammatory cells and the pro‑inflammatory cytokine expression in hearts post MI/R injury. Further results revealed that the addition of VCP979 prevented the primary neonatal cardiac fibroblasts (NCFs) from Angiotensin II (Ang II)‑induced collagen synthesis and neonatal cardiac myocytes (NCMs) hypertrophy. In addition, VCP979 attenuated the activation of p38‑mitogen‑activated protein kinase in both Ang II‑induced NCFs and hearts subjected to MI/R injury. These findings indicated that the novel small‑molecule compound VCP979 can improve ventricular remodeling in murine hearts against MI/R injury, suggesting its potential therapeutic function in patients subjected to MI/R injury.


Circulating miR-30c as a predictive biomarker of type 2 diabetes mellitus with coronary heart disease by regulating PAI-1/VN interactions.

  • Mao Luo‎ et al.
  • Life sciences‎
  • 2019‎

Type 2 diabetes mellitus (DM2) is associated with coronary heart disease (CHD) and is characterized by high levels of plasminogen activator inhibitor (PAI)-1. Circulating microRNAs have been reported as potential diagnostic biomarkers for DM2 and CHD. However, the underlying mechanisms have largely remained unclear.


Distinct Circulating Expression Profiles of Long Noncoding RNAs in Heart Failure Patients With Ischemic and Nonischemic Dilated Cardiomyopathy.

  • Fang Lin‎ et al.
  • Frontiers in genetics‎
  • 2019‎

Ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM), with distinct long-term prognosis and responses to treatment, are two major problems that lead to heart failure (HF) ultimately. In this study, we investigated the long noncoding RNA (lncRNA) and messenger RNA (mRNA) expressions in the plasma of patients with DCM and ICM and analyzed the different lncRNA profile between the two groups. The microarray analysis identified 3,222 and 1,911 significantly differentially expressed lncRNAs and mRNAs between DCM and ICM group. The most enriched upregulated functional terms included positive regulation of I-kappaB kinase/nuclear factor-kappaB signaling and regulation of cellular localization, while the top 10 downregulated genes mainly consisted of acid secretion and myosin heavy chain binding. Furthermore, the Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the differentially expressed lncRNA-coexpressed mRNAs between DCM and ICM group were significantly enriched in the natural killer cell mediated cytotoxicity and ras signaling pathway respectively. Quantitative real-time PCR confirmed 8 of 12 lncRNAs were upregulated in DCM group compared to ICM group which was consistent with the initial microarray results. The lncRNA/mRNA coexpression network indicated the possible functions of the validated lncRNAs. These findings revealed for the first time the specific expression pattern of both protein-coding RNAs and lncRNAs in plasma of HF patients due to DCM and ICM which may provide some important evidence to conveniently identify the etiology of myocardial dysfunctions and help to explore a better strategy for future HF prognosis evaluation.


Preparation and Evaluation of Sustained Release Platelet-Rich Plasma-Loaded Gelatin Microspheres Using an Emulsion Method.

  • Jing Yang‎ et al.
  • ACS omega‎
  • 2020‎

The management and treatment of chronic wounds or acute wounds remain a major challenge in modern medicine. The application of autologous platelet-rich plasma (PRP) has become a promising adjuvant therapy to promote wound healing. PRP is derived from centrifuged whole blood to extract concentrated platelets, and a large amount of cytokines and growth factors are released upon activation. These bioactive molecules can enhance angiogenesis and tissue regeneration. Herein, PRP-loaded gelatin microspheres were prepared by the emulsion cross-linking method. Scanning electron microscopy results showed that the prepared microspheres are completely spherical, with an average particle size of 15.95 ± 3.79 μm and having a uniform particle size. Among them, the surface of a single microsphere is smooth and has a microporous structure, which may be the main channel for drug diffusion. Results of drug release measurements show that the prepared microspheres can slowly release the vascular endothelial growth factor for more than 7 days. In vitro cell experiments show that the prepared microspheres can promote proliferation and migration of L929 mouse fibroblast cells. In summary, the prepared PRP-loaded gelatin microspheres with high and long-term activity can provide experimental and theoretical knowledge for the development of the clinical long-acting injectable formulations.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: