Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 69 papers

Cholesterol diet counteracts repeated anesthesia/infusion-induced cognitive deficits in male Brown Norway rats.

  • Lindsay A Hohsfield‎ et al.
  • Neurobiology of learning and memory‎
  • 2013‎

A variety of cardiovascular and cerebrovascular diseases are associated with alterations in cholesterol levels and metabolism. Moreover, convincing evidence shows that high cholesterol diet can lead to learning and memory impairments. On the other hand, a significant body of research has also demonstrated that learning is improved by elevated dietary cholesterol. Despite these conflicting findings, it is clear that cholesterol plays an important role in these cognitive properties. However, it remains unclear how this blood-brain barrier (BBB)-impenetrable molecule affects the brain and under what circumstances it provides either detrimental or beneficial effects to learning and memory. The aim of this study was to characterize the effects of 5% cholesterol diet on six-month-old inbred Brown Norway rats. More important, we sought to examine the role that cholesterol can play when repeated anesthesia and intravenous infusion disrupts cognitive function. This present study supports previous work showing that enriched cholesterol diet leads to significant alterations in neuroinflammation and BBB disruption. Following repeated anesthesia and intravenous infusion of saline we observe that animals under normal diet conditions exhibit significant deficiencies in spatial learning and cholinergic neuron populations compared to animals under enriched cholesterol diet, which do not show such deficiencies. These findings indicate that cholesterol diet can protect against or counteract anesthesia/infusion-induced cognitive deficits. Ultimately, these results suggest that cholesterol homeostasis serves an important functional role in the brain and that altering this homeostasis can either exert positive or negative effects on cognitive properties.


Analysis of 27 vascular-related proteins reveals that NT-proBNP is a potential biomarker for Alzheimer's disease and mild cognitive impairment: a pilot-study.

  • Josef Marksteiner‎ et al.
  • Experimental gerontology‎
  • 2014‎

Alzheimer's disease (AD) is a severe neurodegenerative disease. Cerebrovascular changes often accompany AD-related pathology. Despite a considerable progress in the diagnostic accuracy of AD, no blood biomarkers have been established so far. The aim of the present study was to search for changes in plasma levels of 27 vascular-related proteins of healthy controls, patients with mild cognitive impairment (MCI) and AD. In a sample of 80 participants we showed that out of these 27 proteins, six proteins were slightly changed (up to 1.5×) in AD (alpha2-macroglobulin, apolipoprotein-A1, plasminogen activator inhibitor, RAGE, Tissue Inhibitors of Metalloproteinases-1 and Trombospondin-2) and one marker (serum amyloid A) was enhanced up to 6× but with a very high variance. However, N-terminal pro-brain natriuretic peptide (NT-proBNP) was significantly enhanced both in MCI and AD patients (1.9×). In a second analysis of a sample of 110 subjects including younger healthy controls, we confirmed that NT-proBNP has the potential to be a stable candidate protein for both diagnosis and AD disease progression.


Reciprocal interactions regulate targeting of calcium channel beta subunits and membrane expression of alpha1 subunits in cultured hippocampal neurons.

  • Gerald J Obermair‎ et al.
  • The Journal of biological chemistry‎
  • 2010‎

Auxiliary beta subunits modulate current properties and mediate the functional membrane expression of voltage-gated Ca(2+) channels in heterologous cells. In brain, all four beta isoforms are widely expressed, yet little is known about their specific roles in neuronal functions. Here, we investigated the expression and targeting properties of beta subunits and their role in membrane expression of Ca(V)1.2 alpha(1) subunits in cultured hippocampal neurons. Quantitative reverse transcription-PCR showed equal expression, and immunofluorescence showed a similar distribution of all endogenous beta subunits throughout dendrites and axons. High resolution microscopy of hippocampal neurons transfected with six different V5 epitope-tagged beta subunits demonstrated that all beta subunits were able to accumulate in synaptic terminals and to colocalize with postsynaptic Ca(V)1.2, thus indicating a great promiscuity in alpha(1)-beta interactions. In contrast, restricted axonal targeting of beta(1) and weak colocalization of beta(4b) with Ca(V)1.2 indicated isoform-specific differences in local channel complex formation. Membrane expression of external hemagglutinin epitope-tagged Ca(V)1.2 was strongly enhanced by all beta subunits in an isoform-specific manner. Conversely, mutating the alpha-interaction domain of Ca(V)1.2 (W440A) abolished membrane expression and targeting into dendritic spines. This demonstrates that in neurons the interaction of a beta subunit with the alpha-interaction domain is absolutely essential for membrane expression of alpha(1) subunits, as well as for the subcellular localization of beta subunits, which by themselves possess little or no targeting properties.


Differential neuronal targeting of a new and two known calcium channel β4 subunit splice variants correlates with their regulation of gene expression.

  • Solmaz Etemad‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2014‎

The β subunits of voltage-gated calcium channels regulate surface expression and gating of CaV1 and CaV2 α1 subunits and thus contribute to neuronal excitability, neurotransmitter release, and calcium-induced gene regulation. In addition, certain β subunits are targeted into the nucleus, where they interact directly with the epigenetic machinery. Whereas their involvement in this multitude of functions is reflected by a great molecular heterogeneity of β isoforms derived from four genes and abundant alternative splicing, little is known about the roles of individual β variants in specific neuronal functions. In the present study, an alternatively spliced β4 subunit lacking the variable N terminus (β4e) is identified. It is highly expressed in mouse cerebellum and cultured cerebellar granule cells (CGCs) and modulates P/Q-type calcium currents in tsA201 cells and CaV2.1 surface expression in neurons. Compared with the other two known full-length β4 variants (β4a and β4b), β4e is most abundantly expressed in the distal axon, but lacks nuclear-targeting properties. To determine the importance of nuclear targeting of β4 subunits for transcriptional regulation, we performed whole-genome expression profiling of CGCs from lethargic (β4-null) mice individually reconstituted with β4a, β4b, and β4e. Notably, the number of genes regulated by each β4 splice variant correlated with the rank order of their nuclear-targeting properties (β4b > β4a > β4e). Together, these findings support isoform-specific functions of β4 splice variants in neurons, with β4b playing a dual role in channel modulation and gene regulation, whereas the newly detected β4e variant serves exclusively in calcium-channel-dependent functions.


The juvenile myoclonic epilepsy mutant of the calcium channel β(4) subunit displays normal nuclear targeting in nerve and muscle cells.

  • Solmaz Etemad‎ et al.
  • Channels (Austin, Tex.)‎
  • 2014‎

Voltage-gated calcium channels regulate gene expression by controlling calcium entry through the plasma membrane and by direct interactions of channel fragments and auxiliary β subunits with promoters and the epigenetic machinery in the nucleus. Mutations of the calcium channel β(4) subunit gene (CACNB4) cause juvenile myoclonic epilepsy in humans and ataxia and epileptic seizures in mice. Recently a model has been proposed according to which failed nuclear translocation of the truncated β(4) subunit R482X mutation resulted in altered transcriptional regulation and consequently in neurological disease. Here we examined the nuclear targeting properties of the truncated β(4b(1–481)) subunit in tsA-201 cells, skeletal myotubes, and in hippocampal neurons. Contrary to expectation, nuclear targeting of β(4b(1–481)) was not reduced compared with full-length β(4b) in any one of the three cell systems. These findings oppose an essential role of the β(4) distal C-terminus in nuclear targeting and challenge the idea that the nuclear function of calcium channel β(4) subunits is critically involved in the etiology of epilepsy and ataxia in patients and mouse models with mutations in the CACNB4 gene.


Can mouse models mimic sporadic Alzheimer's disease?

  • Bettina M Foidl‎ et al.
  • Neural regeneration research‎
  • 2020‎

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia worldwide. As age is the main risk factor, > 97% of all AD cases are of sporadic origin, potentiated by various risk factors associated with life style and starting at an age > 60 years. Only < 3% of AD cases are of genetic origin caused by mutations in the amyloid precursor protein or Presenilins 1 or 2, and symptoms already start at an age < 30 years. In order to study progression of AD, as well as therapeutic strategies, mouse models are state-of-the-art. So far many transgenic mouse models have been developed and used, with mutations in the APP or presenilin or combinations (3×Tg, 5×Tg). However, such transgenic mouse models more likely mimic the genetic form of AD and no information can be given how sporadic forms develop. Several risk genes, such as Apolipoprotein E4 and TREM-2 enhance the risk of sporadic AD, but also many risk factors associated with life style (e.g., diabetes, hypercholesterolemia, stress) may play a role. In this review we discuss the current situation regarding AD mouse models, and the problems to develop a sporadic mouse model of AD.


Presynaptic α2δ-2 Calcium Channel Subunits Regulate Postsynaptic GABAA Receptor Abundance and Axonal Wiring.

  • Stefanie Geisler‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2019‎

Presynaptic α2δ subunits of voltage-gated calcium channels regulate channel abundance and are involved in glutamatergic synapse formation. However, little is known about the specific functions of the individual α2δ isoforms and their role in GABAergic synapses. Using primary neuronal cultures of embryonic mice of both sexes, we here report that presynaptic overexpression of α2δ-2 in GABAergic synapses strongly increases clustering of postsynaptic GABAARs. Strikingly, presynaptic α2δ-2 exerts the same effect in glutamatergic synapses, leading to a mismatched localization of GABAARs. This mismatching is caused by an aberrant wiring of glutamatergic presynaptic boutons with GABAergic postsynaptic positions. The trans-synaptic effect of α2δ-2 is independent of the prototypical cell-adhesion molecules α-neurexins (α-Nrxns); however, α-Nrxns together with α2δ-2 can modulate postsynaptic GABAAR abundance. Finally, exclusion of the alternatively spliced exon 23 of α2δ-2 is essential for the trans-synaptic mechanism. The novel function of α2δ-2 identified here may explain how abnormal α2δ subunit expression can cause excitatory-inhibitory imbalance often associated with neuropsychiatric disorders.SIGNIFICANCE STATEMENT Voltage-gated calcium channels regulate important neuronal functions such as synaptic transmission. α2δ subunits modulate calcium channels and are emerging as regulators of brain connectivity. However, little is known about how individual α2δ subunits contribute to synapse specificity. Here, we show that presynaptic expression of a single α2δ variant can modulate synaptic connectivity and the localization of inhibitory postsynaptic receptors. Our findings provide basic insights into the development of specific synaptic connections between nerve cells and contribute to our understanding of normal nerve cell functions. Furthermore, the identified mechanism may explain how an altered expression of calcium channel subunits can result in aberrant neuronal wiring often associated with neuropsychiatric disorders such as autism or schizophrenia.


RBP2 stabilizes slow Cav1.3 Ca2+ channel inactivation properties of cochlear inner hair cells.

  • Nadine J Ortner‎ et al.
  • Pflugers Archiv : European journal of physiology‎
  • 2020‎

Cav1.3 L-type Ca2+ channels (LTCCs) in cochlear inner hair cells (IHCs) are essential for hearing as they convert sound-induced graded receptor potentials into tonic postsynaptic glutamate release. To enable fast and indefatigable presynaptic Ca2+ signaling, IHC Cav1.3 channels exhibit a negative activation voltage range and uniquely slow inactivation kinetics. Interaction with CaM-like Ca2+-binding proteins inhibits Ca2+-dependent inactivation, while the mechanisms underlying slow voltage-dependent inactivation (VDI) are not completely understood. Here we studied if the complex formation of Cav1.3 LTCCs with the presynaptic active zone proteins RIM2α and RIM-binding protein 2 (RBP2) can stabilize slow VDI. We detected both RIM2α and RBP isoforms in adult mouse IHCs, where they co-localized with Cav1.3 and synaptic ribbons. Using whole-cell patch-clamp recordings (tsA-201 cells), we assessed their effect on the VDI of the C-terminal full-length Cav1.3 (Cav1.3L) and a short splice variant (Cav1.342A) that lacks the C-terminal RBP2 interaction site. When co-expressed with the auxiliary β3 subunit, RIM2α alone (Cav1.342A) or RIM2α/RBP2 (Cav1.3L) reduced Cav1.3 VDI to a similar extent as observed in IHCs. Membrane-anchored β2 variants (β2a, β2e) that inhibit inactivation on their own allowed no further modulation of inactivation kinetics by RIM2α/RBP2. Moreover, association with RIM2α and/or RBP2 consolidated the negative Cav1.3 voltage operating range by shifting the channel's activation threshold toward more hyperpolarized potentials. Taken together, the association with "slow" β subunits (β2a, β2e) or presynaptic scaffolding proteins such as RIM2α and RBP2 stabilizes physiological gating properties of IHC Cav1.3 LTCCs in a splice variant-dependent manner ensuring proper IHC function.


Densin-180 Controls the Trafficking and Signaling of L-Type Voltage-Gated Cav1.2 Ca2+ Channels at Excitatory Synapses.

  • Shiyi Wang‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2017‎

Voltage-gated Cav1.2 and Cav1.3 (L-type) Ca2+ channels regulate neuronal excitability, synaptic plasticity, and learning and memory. Densin-180 (densin) is an excitatory synaptic protein that promotes Ca2+-dependent facilitation of voltage-gated Cav1.3 Ca2+ channels in transfected cells. Mice lacking densin (densin KO) exhibit defects in synaptic plasticity, spatial memory, and increased anxiety-related behaviors-phenotypes that more closely match those in mice lacking Cav1.2 than Cav1.3. Therefore, we investigated the functional impact of densin on Cav1.2. We report that densin is an essential regulator of Cav1.2 in neurons, but has distinct modulatory effects compared with its regulation of Cav1.3. Densin binds to the N-terminal domain of Cav1.2, but not that of Cav1.3, and increases Cav1.2 currents in transfected cells and in neurons. In transfected cells, densin accelerates the forward trafficking of Cav1.2 channels without affecting their endocytosis. Consistent with a role for densin in increasing the number of postsynaptic Cav1.2 channels, overexpression of densin increases the clustering of Cav1.2 in dendrites of hippocampal neurons in culture. Compared with wild-type mice, the cell surface levels of Cav1.2 in the brain, as well as Cav1.2 current density and signaling to the nucleus, are reduced in neurons from densin KO mice. We conclude that densin is an essential regulator of neuronal Cav1 channels and ensures efficient Cav1.2 Ca2+ signaling at excitatory synapses.SIGNIFICANCE STATEMENT The number and localization of voltage-gated Cav Ca2+ channels are crucial determinants of neuronal excitability and synaptic transmission. We report that the protein densin-180 is highly enriched at excitatory synapses in the brain and enhances the cell surface trafficking and postsynaptic localization of Cav1.2 L-type Ca2+ channels in neurons. This interaction promotes coupling of Cav1.2 channels to activity-dependent gene transcription. Our results reveal a mechanism that may contribute to the roles of Cav1.2 in regulating cognition and mood.


Serpinin in the Skin.

  • Cristina Fraquelli‎ et al.
  • Biomedicines‎
  • 2022‎

The serpinins are relatively novel peptides generated by proteolytic processing of chromogranin A and they are comprised of free serpinin, serpinin-RRG and pGlu-serpinin. In this study, the presence and source of these peptides were studied in the skin. By Western blot analysis, a 40 kDa and a 50 kDa protein containing the sequence of serpinin were detected in the trigeminal ganglion and dorsal root ganglia in rats but none in the skin. RP-HPLC followed by EIA revealed that the three serpinins are present in similar, moderate amounts in rat dorsal root ganglia, whereas in the rat skin, free serpinin represents the predominant molecular form. There were abundant serpinin-positive cells in rat dorsal root ganglia and colocalization with substance P was evident. However, much more widespread distribution of the serpinins was found in dorsal root ganglia when compared with substance P. In the skin, serpinin immunoreactivity was found in sensory nerves and showed colocalization with substance P; as well, some was present in autonomic nerves. Thus, although not exclusively, there is evidence that serpinin is a constituent of the sensory innervation of the skin. The serpinins are biologically highly active and might therefore be of functional significance in the skin.


Spreading of Aggregated α-Synuclein in Sagittal Organotypic Mouse Brain Slices.

  • Buket Uçar‎ et al.
  • Biomolecules‎
  • 2022‎

The accumulation of α-synuclein (α-syn) in the brain plays a role in synucleinopathies and it is hypothesized to spread in a prion-like fashion between connected brain regions. In the present study, we aim to investigate this spreading in well-characterized sagittal organotypic whole brain slices taken from postnatal wild type (WT) and transgenic mice overexpressing human α-syn under the promoter of proteolipid protein (PLP). Collagen hydrogels were loaded with monomers of human α-syn, as well as human and mouse pre-formed fibrils (PFFs), to allow local application and slow release. The spreading of α-syn was evaluated in different brain regions by immunohistochemistry for total α-syn and α-syn phosphorylated at the serine129 position (α-syn-P). The application of human and mouse PFFs of α-syn caused the aggregation and spreading of α-syn-P in the brain slices, which was pronounced the most at the region of hydrogel application and surrounding striatum, as well as along the median forebrain bundle. The organotypic slices from transgenic mice showed significantly more α-syn pathology than those from WT mice. The present study demonstrates that seeding with α-syn PFFs but not monomers induced intracellular α-syn pathology, which was significantly more prominent in brain slices with α-syn overexpression. This is consistent with the prion-like spreading theory of α-syn aggregates. The sagittal whole brain slices characterized in this study carry the potential to be used as a novel model to study α-syn pathology.


Stabilization of negative activation voltages of Cav1.3 L-Type Ca2+-channels by alternative splicing.

  • Nadja T Hofer‎ et al.
  • Channels (Austin, Tex.)‎
  • 2021‎

-->Low voltage-activated Cav1.3 L-type Ca2+-channels are key regulators of neuronal excitability controlling neuronal development and different types of learning and memory. Their physiological functions are enabled by their negative activation voltage-range, which allows Cav1.3 to be active at subthreshold voltages. Alternative splicing in the C-terminus of their pore-forming α1-subunits gives rise to C-terminal long (Cav1.3L) and short (Cav1.3S) splice variants allowing Cav1.3S to activate at even more negative voltages than Cav1.3L. We discovered that inclusion of exons 8b, 11, and 32 in Cav1.3S further shifts activation (-3 to -4 mV) and inactivation (-4 to -6 mV) to more negative voltages as revealed by functional characterization in tsA-201 cells. We found transcripts of these exons in mouse chromaffin cells, the cochlea, and the brain. Our data further suggest that Cav1.3-containing exons 11 and 32 constitute a significant part of native channels in the brain. We therefore investigated the effect of these splice variants on human disease variants. Splicing did not prevent the gating defects of the previously reported human pathogenic variant S652L, which further shifted the voltage-dependence of activation of exon 11-containing channels by more than -12 mV. In contrast, we found no evidence for gating changes of the CACNA1D missense variant R498L, located in exon 11, which has recently been identified in a patient with an epileptic syndrome. Our data demonstrate that alternative splicing outside the C-terminus involving exons 11 and 32 contributes to channel fine-tuning by stabilizing negative activation and inactivation gating properties of wild-type and mutant Cav1.3 channels.


Intranasal Delivery of Collagen-Loaded Neprilysin Clears Beta-Amyloid Plaques in a Transgenic Alzheimer Mouse Model.

  • Christian Humpel‎
  • Frontiers in aging neuroscience‎
  • 2021‎

Alzheimer's disease (AD) is pathologically characterized by extracellular beta-amyloid (Aβ) plaques and intraneuronal tau tangles in the brain. A therapeutic strategy aims to prevent or clear these Aβ plaques and the Aβ-degrading enzyme neprilysin is a potent drug to degrade plaques. The major challenge is to deliver bioactive neprilysin into the brain via the blood-brain barrier. The aim of the present study is to explore if intranasal delivery of neprilysin can eliminate plaques in a transgenic AD mouse model (APP_SweDI). We will test if collagen or platelets are useful vehicles to deliver neprilysin into the brain. Using organotypic brain slices from adult transgenic APP_SweDI mice, we show that neprilysin alone or loaded in collagen hydrogels or in platelets cleared cortical plaques. Intransasal delivery of neprilysin alone increased small Aβ depositions in the middle and caudal cortex in transgenic mice. Platelets loaded with neprilysin cleared plaques in the frontal cortex after intranasal application. Intranasal delivery of collagen-loaded neprilysin was very potent to clear plaques especially in the middle and caudal parts of the cortex. Our data support that the Aβ degrading enzyme neprilysin delivered to the mouse brain can clear Aβ plaques and intranasal delivery (especially with collagen as a vehicle) is a fast and easy application. However, it must be considered that intranasal neprilysin may also activate more plaque production in the transgenic mouse brain as a side effect.


Western Agarose Native GeELution (WANGEL) with beta-amyloid and tau: Novel method to elute proteins or peptides using native agarose gels followed by Lumipulse assay.

  • Dhwani S Korde‎ et al.
  • MethodsX‎
  • 2022‎

Alzheimer´s disease is characterized by hyperphosphorylated tau neurofibrillary tangles and beta-amyloid plaques. Both molecules can be easily measured in human fluids or tissue extracts by immunoassays. However, the different molecular weight species can only be differentiated on Western Blot gels. Analysis of native proteins from polyacrylamide gels is also not well characterized. Hence, we developed a modified method to elute proteins or peptides from native agarose gels. Initially, full-length tau (60 kDa) and beta-amyloid(42) (4 kDa) were separated on a Western Blot gel and eluted from native agarose gels (WANGEL) using an elution system inside a polypropylene tube. The eluates were analyzed with the Lumipulse immunoassay. Both molecules were successfully eluted into 1% agarose gels to the cathode and were detected in the eluate. Additionally, tau was eluted from mouse cortical extracts, but was below the detection limit when eluted from human cerebrospinal fluid. Beta-amyloid(40) was eluted from CSF extracts and detected by Lumipulse. In cortical extracts taken from transgenic mice (APP_SweDI) beta-amyloid(42) was detectable as a native peptide and small oligomeric aggregates. Taken together, our novel WANGEL method enables fast, easy and cheap elution of protein/peptides from polyacrylamide/agarose gels with a subsequent analysis by Lumipulse immunoassay. Three bullet points:•Beta-amyloid and tau are major hallmarks in Alzheimer´s disease and are established cerebrospinal fluid biomarkers.•Lumipulse is a method to measure beta-amyloid and tau in cerebrospinal fluid in the pg/mL range.•Western Blot and our novel combined native agarose method (WANGEL) allows an easy and fast determination of the molecular size in combination with Lumipulse.


Effects of Ischemia on the Migratory Capacity of Microglia Along Collagen Microcontact Prints on Organotypic Mouse Cortex Brain Slices.

  • Katharina Steiner‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2022‎

Ischemic stroke is a severe insult in the brain causing cell death, inflammation, and activation of microglia. Microglia are the immune cells of the brain and play a role in any inflammatory process during neurodegeneration. Microglia are round ameboid and migrate to the lesion site, where they differentiate into ramified forms and activated phagocytic microglia. On the other hand, microglia can also release growth factors to repair degeneration. The aim of the present study is to explore the migratory capacity of microglia after ischemic insults. Organotypic brain slices of the mouse cortex (300 μm) were prepared. In order to study migration, the slices were connected to collagen-loaded microcontact prints (with or without monocyte chemoattractant protein-1, MCP-1) on the membranes. Slices were stimulated with lipopolysaccharide (LPS) for maximal microglial activation. Ischemic insults were simulated with oxygen-glucose deprivation (OGD) and acidosis (pH 6.5) for 3 days. After 3 weeks in culture, slices were fixed and immunohistochemically stained for the microglial markers Iba1, CD11b and macrophage-like antigen. Our data show that Iba1+ microglia migrated along the microcontact prints, differentiate and phagocyte 1.0 μm fluorescent microbeads. LPS significantly enhanced the number of round ameboid migrating microglia, while OGD and acidosis enhanced the number of ramified activated microglia. The effect was not visible on slices without any μCP and was most potent in μCP with MCP-1. We conclude that OGD and acidosis activate ramification and exhibit a similar mechanism, while LPS only activates round ameboid microglia. Collagen-loaded microcontact prints connected to mouse brain slices are a potent method to study activation and migration of microglia ex vivo.


Activity and calcium regulate nuclear targeting of the calcium channel beta4b subunit in nerve and muscle cells.

  • Prakash Subramanyam‎ et al.
  • Channels (Austin, Tex.)‎
  • 2009‎

Auxiliary beta subunits are critical determinants of membrane expression and gating properties of voltage-gated calcium channels. Mutations in the beta(4) subunit gene cause ataxia and epilepsy. However, the specific function of beta(4) in neurons and its causal relation to neurological diseases are unknown. Here we report the localization of the beta(4) subunit in the nuclei of cerebellar granule and Purkinje cells. beta(4b) was the only beta isoform showing nuclear targeting when expressed in neurons and skeletal myotubes. Its specific nuclear targeting property was mapped to an N-terminal double-arginine motif, which was necessary and sufficient for targeting beta subunits into the nucleus. Spontaneous electrical activity and calcium influx negatively regulated beta(4b) nuclear localization by a CRM-1-dependent nuclear export mechanism. The activity-dependent shuttling of beta(4b) into and out of the nucleus indicates a specific role of this beta subunit in neurons, in communicating the activity of calcium channels to the nucleus.


Modulation of Cav1.3 Ca2+ channel gating by Rab3 interacting molecule.

  • Mathias Gebhart‎ et al.
  • Molecular and cellular neurosciences‎
  • 2010‎

Neurotransmitter release and spontaneous action potentials during cochlear inner hair cell (IHC) development depend on the activity of Ca(v)1.3 voltage-gated L-type Ca(2+) channels. Their voltage- and Ca(2+)-dependent inactivation kinetics are slower than in other tissues but the underlying molecular mechanisms are not yet understood. We found that Rab3-interacting molecule-2alpha (RIM2alpha) mRNA is expressed in immature cochlear IHCs and the protein co-localizes with Ca(v)1.3 in the same presynaptic compartment of IHCs. Expression of RIM proteins in tsA-201 cells revealed binding to the beta-subunit of the channel complex and RIM-induced slowing of both Ca(2+)- and voltage-dependent inactivation of Ca(v)1.3 channels. By inhibiting inactivation, RIM induced a non-inactivating current component typical for IHC Ca(v)1.3 currents which should allow these channels to carry a substantial window current during prolonged depolarizations. These data suggest that RIM2 contributes to the stabilization of Ca(v)1.3 gating kinetics in immature IHCs.


Cav1.4 IT mouse as model for vision impairment in human congenital stationary night blindness type 2.

  • Dagmar Knoflach‎ et al.
  • Channels (Austin, Tex.)‎
  • 2013‎

Mutations in the CACNA1F gene encoding the Cav1.4 Ca (2+) channel are associated with X-linked congenital stationary night blindness type 2 (CSNB2). Despite the increasing knowledge about the functional behavior of mutated channels in heterologous systems, the pathophysiological mechanisms that result in vision impairment remain to be elucidated. This work provides a thorough functional characterization of the novel IT mouse line that harbors the gain-of-function mutation I745T reported in a New Zealand CSNB2 family. (1) Electroretinographic recordings in IT mice permitted a direct comparison with human data. Our data supported the hypothesis that a hyperpolarizing shift in the voltage-dependence of channel activation-as seen in the IT gain-of-function mutant (2)-may reduce the dynamic range of photoreceptor activity. Morphologically, the retinal outer nuclear layer in adult IT mutants was reduced in size and cone outer segments appeared shorter. The organization of the outer plexiform layer was disrupted, and synaptic structures of photoreceptors had a variable, partly immature, appearance. The associated visual deficiency was substantiated in behavioral paradigms. The IT mouse line serves as a specific model for the functional phenotype of human CSNB2 patients with gain-of-function mutations and may help to further understand the dysfunction in CSNB.


Nogo-A couples with Apg-1 through interaction and co-ordinate expression under hypoxic and oxidative stress.

  • Florian Kern‎ et al.
  • The Biochemical journal‎
  • 2013‎

Nogo-A is the largest isoform of the Nogo/RTN4 (reticulon 4) proteins and has been characterized as a major myelin-associated inhibitor of regenerative nerve growth in the adult CNS (central nervous system). Apart from the myelin sheath, Nogo-A is expressed at high levels in principal neurons of the CNS. The specificity of Nogo-A resides in its central domain, NiG. We identified Apg-1, a member of the stress-induced Hsp110 (heat-shock protein of 110 kDa) family, as a novel interactor of NiG/Nogo-A. The interaction is selective because Apg-1 interacts with Nogo-A/RTN4-A, but not with RTN1-A, the closest paralogue of Nogo-A. Conversely, Nogo-A binds to Apg-1, but not to Apg-2 or Hsp105, two other members of the Hsp110 family. We characterized the Nogo-A-Apg-1 interaction by affinity precipitation, co-immunoprecipitation and proximity ligation assay, using primary hippocampal neurons derived from Nogo-deficient mice. Under conditions of hypoxic and oxidative stress we found that Nogo-A and Apg-1 were tightly co-regulated in hippocampal neurons. Although both proteins were up-regulated under hypoxic conditions, their expression levels were reduced upon the addition of hydrogen peroxide. Taken together, we suggest that Nogo-A is closely involved in the neuronal response to hypoxic and oxidative stress, an observation that may be of relevance not only in stroke-induced ischaemia, but also in neuroblastoma formation.


Green-Fluorescent Protein(+) Astrocytes Attach to Beta-Amyloid Plaques in an Alzheimer Mouse Model and Are Sensitive for Clasmatodendrosis.

  • Nina Daschil‎ et al.
  • Frontiers in aging neuroscience‎
  • 2016‎

Alzheimer's disease (AD) is pathologically characterized by beta-amyloid (Aβ) plaques and Tau pathology. It is well-established that Aβ plaques are surrounded by reactive astrocytes, highly expressing glial fibrillary acidic protein (GFAP). In order to study the cellular interaction of reactive astrocytes with Aβ plaques, we crossbred mice overexpressing amyloid precursor protein (APP) with the Swedish-Dutch-Iowa mutations (APP-SweDI) with mice expressing green fluorescent protein (GFP) under the GFAP-promotor. Three-dimensional confocal microscopy revealed a tight association and intense sprouting of astrocytic finely branched processes towards Aβ plaques in 12 month old mice. In order to study phagocytosis, 110 μm thick brain slices from 12 month old crossbred mice were cultured overnight, however, we found that the GFP fluorescence faded, distal processes degenerated and a complete loss of astrocytic morphology was seen (clasmatodendrosis). In summary, our data show that GFP(+) reactive astrocytes make intense contact with Aβ plaques but these cells are highly vulnerable for degeneration.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: