Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 130 papers

Progression-Free but No Overall Survival Benefit for Adult Patients with Bevacizumab Therapy for the Treatment of Newly Diagnosed Glioblastoma: A Systematic Review and Meta-Analysis.

  • Nagham Kaka‎ et al.
  • Cancers‎
  • 2019‎

Glioblastoma (GBM) is the most common high-grade primary brain tumor in adults. Standard multi-modality treatment of glioblastoma with surgery, temozolomide chemotherapy, and radiation results in transient tumor control but inevitably gives way to disease progression. The need for additional therapeutic avenues for patients with GBM led to interest in anti-angiogenic therapies, and in particular, bevacizumab. We sought to determine the efficacy of bevacizumab as a treatment for newly diagnosed GBM. We conducted a literature search using the PubMed database and Google Scholar to identify randomized controlled trials (RCTs) since 2014 investigating the safety and efficacy of bevacizumab in the treatment of adult patients (18 years and older) with newly diagnosed GBM. Only Level Ι data that reported progression-free survival (PFS) and overall survival (OS) were included for analysis. Random effects meta-analyses on studies with newly diagnosed glioblastoma were conducted in R to estimate the pooled hazard ratio (HR) for PFS and OS. Six RCTs met requirements for meta-analysis, revealing a pooled estimate of PFS HR suggesting a 33% decreased risk of disease progression (HR 0.67, 95% CI, 0.58-0.78; p < 0.001) with bevacizumab therapy, but no effect on OS (HR = 1, 95% CI, 0.85-1.18; p = 0.97). A pooled estimate of the mean difference in OS months of -0.13 predicts little difference in time of survival between treatment groups (95% CI, -1.87-1.61). The pooled estimate for the mean difference in PFS months was 2.70 (95% CI, 1.89-3.50; p < 0.001). Meta-analysis shows that bevacizumab therapy is associated with a longer PFS in adult patients with newly diagnosed glioblastoma, but had an inconsistent effect on OS in this patient population.


Discovery of a chemical probe for PRDM9.

  • Abdellah Allali-Hassani‎ et al.
  • Nature communications‎
  • 2019‎

PRDM9 is a PR domain containing protein which trimethylates histone 3 on lysine 4 and 36. Its normal expression is restricted to germ cells and attenuation of its activity results in altered meiotic gene transcription, impairment of double-stranded breaks and pairing between homologous chromosomes. There is growing evidence for a role of aberrant expression of PRDM9 in oncogenesis and genome instability. Here we report the discovery of MRK-740, a potent (IC50: 80 ± 16 nM), selective and cell-active PRDM9 inhibitor (Chemical Probe). MRK-740 binds in the substrate-binding pocket, with unusually extensive interactions with the cofactor S-adenosylmethionine (SAM), conferring SAM-dependent substrate-competitive inhibition. In cells, MRK-740 specifically and directly inhibits H3K4 methylation at endogenous PRDM9 target loci, whereas the closely related inactive control compound, MRK-740-NC, does not. The discovery of MRK-740 as a chemical probe for the PRDM subfamily of methyltransferases highlights the potential for exploiting SAM in targeting SAM-dependent methyltransferases.


Assessment of Effectiveness and Safety of Osimertinib for Patients With Intracranial Metastatic Disease: A Systematic Review and Meta-analysis.

  • Anders W Erickson‎ et al.
  • JAMA network open‎
  • 2020‎

Intracranial metastatic disease (IMD) is a serious and life-altering complication for many patients with cancer. Targeted therapy may address the limitations of current treatments as an additional agent to achieve intracranial disease control in some patients with IMD. Given the paucity of evidence regarding effectiveness, current guidelines have not made recommendations on the use of targeted therapy. Osimertinib mesylate is a mutant epidermal growth factor receptor (EGFR) inhibitor that can penetrate the blood-brain barrier and inhibit tumor cell survival and proliferation in patients with non-small cell lung cancer (NSCLC) with specific EGFR alterations.


MYC Interacts with the G9a Histone Methyltransferase to Drive Transcriptional Repression and Tumorigenesis.

  • William B Tu‎ et al.
  • Cancer cell‎
  • 2018‎

MYC is an oncogenic driver that regulates transcriptional activation and repression. Surprisingly, mechanisms by which MYC promotes malignant transformation remain unclear. We demonstrate that MYC interacts with the G9a H3K9-methyltransferase complex to control transcriptional repression. Inhibiting G9a hinders MYC chromatin binding at MYC-repressed genes and de-represses gene expression. By identifying the MYC box II region as essential for MYC-G9a interaction, a long-standing missing link between MYC transformation and gene repression is unveiled. Across breast cancer cell lines, the anti-proliferative response to G9a pharmacological inhibition correlates with MYC sensitivity and gene signatures. Consistently, genetically depleting G9a in vivo suppresses MYC-dependent tumor growth. These findings unveil G9a as an epigenetic regulator of MYC transcriptional repression and a therapeutic vulnerability in MYC-driven cancers.


The dual methyltransferase METTL13 targets N terminus and Lys55 of eEF1A and modulates codon-specific translation rates.

  • Magnus E Jakobsson‎ et al.
  • Nature communications‎
  • 2018‎

Eukaryotic elongation factor 1 alpha (eEF1A) delivers aminoacyl-tRNA to the ribosome and thereby plays a key role in protein synthesis. Human eEF1A is subject to extensive post-translational methylation, but several of the responsible enzymes remain unknown. Using a wide range of experimental approaches, we here show that human methyltransferase (MTase)-like protein 13 (METTL13) contains two distinct MTase domains targeting the N terminus and Lys55 of eEF1A, respectively. Our biochemical and structural analyses provide detailed mechanistic insights into recognition of the eEF1A N terminus by METTL13. Moreover, through ribosome profiling, we demonstrate that loss of METTL13 function alters translation dynamics and results in changed translation rates of specific codons. In summary, we here unravel the function of a human MTase, showing that it methylates eEF1A and modulates mRNA translation in a codon-specific manner.


The dynamic conformational landscape of the protein methyltransferase SETD8.

  • Shi Chen‎ et al.
  • eLife‎
  • 2019‎

Elucidating the conformational heterogeneity of proteins is essential for understanding protein function and developing exogenous ligands. With the rapid development of experimental and computational methods, it is of great interest to integrate these approaches to illuminate the conformational landscapes of target proteins. SETD8 is a protein lysine methyltransferase (PKMT), which functions in vivo via the methylation of histone and nonhistone targets. Utilizing covalent inhibitors and depleting native ligands to trap hidden conformational states, we obtained diverse X-ray structures of SETD8. These structures were used to seed distributed atomistic molecular dynamics simulations that generated a total of six milliseconds of trajectory data. Markov state models, built via an automated machine learning approach and corroborated experimentally, reveal how slow conformational motions and conformational states are relevant to catalysis. These findings provide molecular insight on enzymatic catalysis and allosteric mechanisms of a PKMT via its detailed conformational landscape.


Dual- versus single-agent HER2 inhibition and incidence of intracranial metastatic disease: a systematic review and meta-analysis.

  • Anders Wilder Erickson‎ et al.
  • NPJ breast cancer‎
  • 2021‎

Observational studies have suggested that HER2 inhibition with trastuzumab may be associated with an increased incidence of intracranial metastatic disease (IMD) due to its ability to prolong survival. We hypothesized that prolonged survival associated with dual-agent HER2 inhibition may be associated with an even higher incidence of IMD. This study pooled estimates of IMD incidence and survival among patients with HER2-positive breast cancer receiving dual- versus single-agent HER2 targeted therapy, as well as trastuzumab versus chemotherapy, observation, or another HER2-targeted agent. We searched PubMed, EMBASE, and CENTRAL from inception to 25 March 2020. We included randomized controlled trials that reported IMD incidence for patients with HER2-positive breast cancer receiving trastuzumab as the experimental or control arm irrespective of disease stage. Among 465 records identified, 19 randomized controlled trials (32,572 patients) were included. Meta-analysis of four studies showed that dual HER2-targeted therapy was associated with improved overall survival (HR 0.76; 95% CI, 0.66-0.87) and progression-free survival (HR 0.77; 95% CI, 0.68-0.87) compared to single HER2-targeted therapy, but the risk of IMD was similar (RR 1.03; 95% CI, 0.83-1.27). Our study challenges the hypothesis that prolonged survival afforded by improved extracranial disease control is associated with increased IMD incidence.


A small molecule antagonist of SMN disrupts the interaction between SMN and RNAP II.

  • Yanli Liu‎ et al.
  • Nature communications‎
  • 2022‎

Survival of motor neuron (SMN) functions in diverse biological pathways via recognition of symmetric dimethylarginine (Rme2s) on proteins by its Tudor domain, and deficiency of SMN leads to spinal muscular atrophy. Here we report a potent and selective antagonist with a 4-iminopyridine scaffold targeting the Tudor domain of SMN. Our structural and mutagenesis studies indicate that both the aromatic ring and imino groups of compound 1 contribute to its selective binding to SMN. Various on-target engagement assays support that compound 1 specifically recognizes SMN in a cellular context and prevents the interaction of SMN with the R1810me2s of RNA polymerase II subunit POLR2A, resulting in transcription termination and R-loop accumulation mimicking SMN depletion. Thus, in addition to the antisense, RNAi and CRISPR/Cas9 techniques, potent SMN antagonists could be used as an efficient tool to understand the biological functions of SMN.


PRMT inhibition induces a viral mimicry response in triple-negative breast cancer.

  • Qin Wu‎ et al.
  • Nature chemical biology‎
  • 2022‎

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype with the worst prognosis and few effective therapies. Here we identified MS023, an inhibitor of type I protein arginine methyltransferases (PRMTs), which has antitumor growth activity in TNBC. Pathway analysis of TNBC cell lines indicates that the activation of interferon responses before and after MS023 treatment is a functional biomarker and determinant of response, and these observations extend to a panel of human-derived organoids. Inhibition of type I PRMT triggers an interferon response through the antiviral defense pathway with the induction of double-stranded RNA, which is derived, at least in part, from inverted repeat Alu elements. Together, our results represent a shift in understanding the antitumor mechanism of type I PRMT inhibitors and provide a rationale and biomarker approach for the clinical development of type I PRMT inhibitors.


Phosphorylation of the DNA repair scaffold SLX4 drives folding of the SAP domain and activation of the MUS81-EME1 endonuclease.

  • Brandon J Payliss‎ et al.
  • Cell reports‎
  • 2022‎

The DNA repair scaffold SLX4 has multifaceted roles in genome stability, many of which depend on structure-selective endonucleases. SLX4 coordinates the cell cycle-regulated assembly of SLX1, MUS81-EME1, and XPF-ERCC1 into a tri-nuclease complex called SMX. Mechanistically, how the mitotic kinase CDK1 regulates the interaction between SLX4 and MUS81-EME1 remains unclear. Here, we show that CDK1-cyclin B phosphorylates SLX4 residues T1544, T1561, and T1571 in the MUS81-binding region (SLX4MBR). Phosphorylated SLX4MBR relaxes the substrate specificity of MUS81-EME1 and stimulates cleavage of replication and recombination structures, providing a biochemical explanation for the chromosome pulverization that occurs when SLX4 binds MUS81 in S-phase. Remarkably, phosphorylation of SLX4MBR drives folding of an SAP domain, which underpins the high-affinity interaction with MUS81. We also report the structure of phosphorylated SLX4MBR and identify the MUS81-binding interface. Our work provides mechanistic insights into how cell cycle-regulated phosphorylation of SLX4 drives the recruitment and activation of MUS81-EME1.


Recruitment of FBXO22 for Targeted Degradation of NSD2.

  • David Y Nie‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Targeted protein degradation (TPD) is an emerging therapeutic strategy that would benefit from new chemical entities with which to recruit a wider variety of ubiquitin E3 ligases to target proteins for proteasomal degradation. Here, we describe a TPD strategy involving the recruitment of FBXO22 to induce degradation of the histone methyltransferase and oncogene NSD2. UNC8732 facilitates FBXO22-mediated degradation of NSD2 in acute lymphoblastic leukemia cells harboring the NSD2 gain of function mutation p.E1099K, resulting in growth suppression, apoptosis, and reversal of drug resistance. The primary amine of UNC8732 is metabolized to an aldehyde species, which engages C326 of FBXO22 in a covalent and reversible manner to recruit the SCF FBXO22 Cullin complex. We further demonstrate that a previously reported alkyl amine-containing degrader targeting XIAP is similarly dependent on SCF FBXO22 . Overall, we present a highly potent NSD2 degrader for the exploration of NSD2 disease phenotypes and a novel FBXO22-dependent TPD strategy.


The co-crystal structure of Cbl-b and a small-molecule inhibitor reveals the mechanism of Cbl-b inhibition.

  • Serah W Kimani‎ et al.
  • Communications biology‎
  • 2023‎

Cbl-b is a RING-type E3 ubiquitin ligase that is expressed in several immune cell lineages, where it negatively regulates the activity of immune cells. Cbl-b has specifically been identified as an attractive target for cancer immunotherapy due to its role in promoting an immunosuppressive tumor environment. A Cbl-b inhibitor, Nx-1607, is currently in phase I clinical trials for advanced solid tumor malignancies. Using a suite of biophysical and cellular assays, we confirm potent binding of C7683 (an analogue of Nx-1607) to the full-length Cbl-b and its N-terminal fragment containing the TKBD-LHR-RING domains. To further elucidate its mechanism of inhibition, we determined the co-crystal structure of Cbl-b with C7683, revealing the compound's interaction with both the TKBD and LHR, but not the RING domain. Here, we provide structural insights into a novel mechanism of Cbl-b inhibition by a small-molecule inhibitor that locks the protein in an inactive conformation by acting as an intramolecular glue.


A chemical toolbox for the study of bromodomains and epigenetic signaling.

  • Qin Wu‎ et al.
  • Nature communications‎
  • 2019‎

Bromodomains (BRDs) are conserved protein interaction modules which recognize (read) acetyl-lysine modifications, however their role(s) in regulating cellular states and their potential as targets for the development of targeted treatment strategies is poorly understood. Here we present a set of 25 chemical probes, selective small molecule inhibitors, covering 29 human bromodomain targets. We comprehensively evaluate the selectivity of this probe-set using BROMOscan and demonstrate the utility of the set identifying roles of BRDs in cellular processes and potential translational applications. For instance, we discovered crosstalk between histone acetylation and the glycolytic pathway resulting in a vulnerability of breast cancer cell lines under conditions of glucose deprivation or GLUT1 inhibition to inhibition of BRPF2/3 BRDs. This chemical probe-set will serve as a resource for future applications in the discovery of new physiological roles of bromodomain proteins in normal and disease states, and as a toolset for bromodomain target validation.


Discovery of selective activators of PRC2 mutant EED-I363M.

  • Junghyun L Suh‎ et al.
  • Scientific reports‎
  • 2019‎

Many common disease-causing mutations result in loss-of-function (LOF) of the proteins in which they occur. LOF mutations have proven recalcitrant to pharmacologic intervention, presenting a challenge for the development of targeted therapeutics. Polycomb repressive complex 2 (PRC2), which contains core subunits (EZH2, EED, and SUZ12), regulates gene activity by trimethylation of histone 3 lysine 27. The dysregulation of PRC2 catalytic activity by mutations has been implicated in cancer and other diseases. Among the mutations that cause PRC2 malfunction, an I363M LOF mutation of EED has been identified in myeloid disorders, where it prevents allosteric activation of EZH2 catalysis. We describe structure-based design and computational simulations of ligands created to ameliorate this LOF. Notably, these compounds selectively stimulate the catalytic activity of PRC2-EED-I363M over wildtype-PRC2. Overall, this work demonstrates the feasibility of developing targeted therapeutics for PRC2-EED-I363M that act as allosteric agonists, potentially correcting this LOF mutant phenotype.


Targeting bivalency de-represses Indian Hedgehog and inhibits self-renewal of colorectal cancer-initiating cells.

  • Evelyne Lima-Fernandes‎ et al.
  • Nature communications‎
  • 2019‎

In embryonic stem cells, promoters of key lineage-specific differentiation genes are found in a bivalent state, having both activating H3K4me3 and repressive H3K27me3 histone marks, making them poised for transcription upon loss of H3K27me3. Whether cancer-initiating cells (C-ICs) have similar epigenetic mechanisms that prevent lineage commitment is unknown. Here we show that colorectal C-ICs (CC-ICs) are maintained in a stem-like state through a bivalent epigenetic mechanism. Disruption of the bivalent state through inhibition of the H3K27 methyltransferase EZH2, resulted in decreased self-renewal of patient-derived C-ICs. Epigenomic analyses revealed that the promoter of Indian Hedgehog (IHH), a canonical driver of normal colonocyte differentiation, exists in a bivalent chromatin state. Inhibition of EZH2 resulted in de-repression of IHH, decreased self-renewal, and increased sensitivity to chemotherapy in vivo. Our results reveal an epigenetic block to differentiation in CC-ICs and demonstrate the potential for epigenetic differentiation therapy of a solid tumour through EZH2 inhibition.


Discovery of a selective, substrate-competitive inhibitor of the lysine methyltransferase SETD8.

  • Anqi Ma‎ et al.
  • Journal of medicinal chemistry‎
  • 2014‎

The lysine methyltransferase SETD8 is the only known methyltransferase that catalyzes monomethylation of histone H4 lysine 20 (H4K20). Monomethylation of H4K20 has been implicated in regulating diverse biological processes including the DNA damage response. In addition to H4K20, SETD8 monomethylates non-histone substrates including proliferating cell nuclear antigen (PCNA) and promotes carcinogenesis by deregulating PCNA expression. However, selective inhibitors of SETD8 are scarce. The only known selective inhibitor of SETD8 to date is nahuoic acid A, a marine natural product, which is competitive with the cofactor. Here, we report the discovery of the first substrate-competitive inhibitor of SETD8, UNC0379 (1). This small-molecule inhibitor is active in multiple biochemical assays. Its affinity to SETD8 was confirmed by ITC (isothermal titration calorimetry) and SPR (surface plasmon resonance) studies. Importantly, compound 1 is selective for SETD8 over 15 other methyltransferases. We also describe structure-activity relationships (SAR) of this series.


Solution NMR structure and histone binding of the PHD domain of human MLL5.

  • Alexander Lemak‎ et al.
  • PloS one‎
  • 2013‎

Mixed Lineage Leukemia 5 (MLL5) is a histone methyltransferase that plays a key role in hematopoiesis, spermatogenesis and cell cycle progression. In addition to its catalytic domain, MLL5 contains a PHD finger domain, a protein module that is often involved in binding to the N-terminus of histone H3. Here we report the NMR solution structure of the MLL5 PHD domain showing a variant of the canonical PHD fold that combines conserved H3 binding features from several classes of other PHD domains (including an aromatic cage) along with a novel C-terminal α-helix, not previously seen. We further demonstrate that the PHD domain binds with similar affinity to histone H3 tail peptides di- and tri-methylated at lysine 4 (H3K4me2 and H3K4me3), the former being the putative product of the MLL5 catalytic reaction. This work establishes the PHD domain of MLL5 as a bone fide 'reader' domain of H3K4 methyl marks suggesting that it may guide the spreading or further methylation of this site on chromatin.


A cellular chemical probe targeting the chromodomains of Polycomb repressive complex 1.

  • Jacob I Stuckey‎ et al.
  • Nature chemical biology‎
  • 2016‎

We report the design and characterization of UNC3866, a potent antagonist of the methyllysine (Kme) reading function of the Polycomb CBX and CDY families of chromodomains. Polycomb CBX proteins regulate gene expression by targeting Polycomb repressive complex 1 (PRC1) to sites of H3K27me3 via their chromodomains. UNC3866 binds the chromodomains of CBX4 and CBX7 most potently, with a K(d) of ∼100 nM for each, and is 6- to 18-fold selective as compared to seven other CBX and CDY chromodomains while being highly selective over >250 other protein targets. X-ray crystallography revealed that UNC3866's interactions with the CBX chromodomains closely mimic those of the methylated H3 tail. UNC4195, a biotinylated derivative of UNC3866, was used to demonstrate that UNC3866 engages intact PRC1 and that EED incorporation into PRC1 is isoform dependent in PC3 prostate cancer cells. Finally, UNC3866 inhibits PC3 cell proliferation, consistent with the known ability of CBX7 overexpression to confer a growth advantage, whereas UNC4219, a methylated negative control compound, has negligible effects.


Coordination of stress signals by the lysine methyltransferase SMYD2 promotes pancreatic cancer.

  • Nicolas Reynoird‎ et al.
  • Genes & development‎
  • 2016‎

Pancreatic ductal adenocarcinoma (PDAC) is a lethal form of cancer with few therapeutic options. We found that levels of the lysine methyltransferase SMYD2 (SET and MYND domain 2) are elevated in PDAC and that genetic and pharmacological inhibition of SMYD2 restricts PDAC growth. We further identified the stress response kinase MAPKAPK3 (MK3) as a new physiologic substrate of SMYD2 in PDAC cells. Inhibition of MAPKAPK3 impedes PDAC growth, identifying a potential new kinase target in PDAC. Finally, we show that inhibition of SMYD2 cooperates with standard chemotherapy to treat PDAC cells and tumors. These findings uncover a pivotal role for SMYD2 in promoting pancreatic cancer.


SETD7 Controls Intestinal Regeneration and Tumorigenesis by Regulating Wnt/β-Catenin and Hippo/YAP Signaling.

  • Menno J Oudhoff‎ et al.
  • Developmental cell‎
  • 2016‎

Intestinal tumorigenesis is a result of mutations in signaling pathways that control cellular proliferation, differentiation, and survival. Mutations in the Wnt/β-catenin pathway are associated with the majority of intestinal cancers, while dysregulation of the Hippo/Yes-Associated Protein (YAP) pathway is an emerging regulator of intestinal tumorigenesis. In addition, these closely related pathways play a central role during intestinal regeneration. We have previously shown that methylation of the Hippo transducer YAP by the lysine methyltransferase SETD7 controls its subcellular localization and function. We now show that SETD7 is required for Wnt-driven intestinal tumorigenesis and regeneration. Mechanistically, SETD7 is part of a complex containing YAP, AXIN1, and β-catenin, and SETD7-dependent methylation of YAP facilitates Wnt-induced nuclear accumulation of β-catenin. Collectively, these results define a methyltransferase-dependent regulatory mechanism that links the Wnt/β-catenin and Hippo/YAP pathways during intestinal regeneration and tumorigenesis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: