Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 2,999 papers

Altered Hepa1-6 cells by dimethyl sulfoxide (DMSO)-treatment induce anti-tumor immunity in vivo.

  • Zhengyu Jiang‎ et al.
  • Oncotarget‎
  • 2016‎

Cancer immunotherapy is the use of the immune system to treat cancer. Our current research proposed an optional strategy of activating immune system involving in cancer immunotherapy. When being treated with 2% DMSO in culture medium, Hepa1-6 cells showed depressed proliferation with no significant apoptosis or decreased viability. D-hep cells, Hepa1-6 cells treated with DMSO for 7 days, could restore to the higher proliferation rate in DMSO-free medium, but alteration of gene expression profile was irreversible. Interestingly, tumors from D-hep cells, not Hepa1-6 cells, regressed in wild-type C57BL/6 mice whereas D-hep cells exhibited similar tumorigenesis as Hep1-6 cells in immunodeficient mice. As expected, additional Hepa1-6 cells failed to form tumors in the D-hep-C57 mice in which D-hep cells were eliminated. Further research confirmed that D-hep-C57 mice established anti-tumor immunity against Hepa1-6 cells. Our research proposed viable tumor cells with altered biological features by DMSO-treatment could induce anti-tumor immunity in vivo.


Genetic Abrogation of Adenosine A3 Receptor Prevents Uninephrectomy and High Salt-Induced Hypertension.

  • Ting Yang‎ et al.
  • Journal of the American Heart Association‎
  • 2016‎

Early-life reduction in nephron number (uninephrectomy [UNX]) and chronic high salt (HS) intake increase the risk of hypertension and chronic kidney disease. Adenosine signaling via its different receptors has been implicated in modulating renal, cardiovascular, and metabolic functions as well as inflammatory processes; however, the specific role of the A3 receptor in cardiovascular diseases is not clear. In this study, gene-modified mice were used to investigate the hypothesis that lack of A3 signaling prevents the development of hypertension and attenuates renal and cardiovascular injuries following UNX in combination with HS (UNX-HS) in mice.


Organic nitrogen uptake is a significant contributor to nitrogen economy of subtropical epiphytic bryophytes.

  • Liang Song‎ et al.
  • Scientific reports‎
  • 2016‎

Without any root contact with the soil, epiphytic bryophytes must experience and explore poor, patchy, and heterogeneous habitats; while, the nitrogen (N) uptake and use strategies of these organisms remain uncharacterized, which obscures their roles in the N cycle. To investigate the N sources, N preferences, and responses to enhanced N deposition in epiphytic bryophytes, we carried out an in situ manipulation experiment via the (15)N labelling technique in an Asian cloud forest. Epiphytic bryophytes obtained more N from air deposition than from the bark, but the contribution of N from the bark was non-negligible. Glycine accounted for 28.4% to 44.5% of the total N in bryophyte tissue, which implies that organic N might serve as an important N source. Increased N deposition increased the total N uptake, but did not alter the N preference of the epiphytic bryophytes. This study provides sound evidence that epiphytic bryophytes could take up N from the bark and wet deposition in both organic and inorganic N forms. It is thus important to consider organic N and bark N sources, which were usually neglected, when estimating the role of epiphytic bryophytes in N cycling and the impacts of N deposition on epiphytic bryophytes in cloud forests.


Environmental Enrichment Potently Prevents Microglia-Mediated Neuroinflammation by Human Amyloid β-Protein Oligomers.

  • Huixin Xu‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2016‎

Microglial dysfunction is increasingly recognized as a key contributor to the pathogenesis of Alzheimer's disease (AD). Environmental enrichment (EE) is well documented to enhance neuronal form and function, but almost nothing is known about whether and how it alters the brain's innate immune system. Here we found that prolonged exposure of naive wild-type mice to EE significantly altered microglial density and branching complexity in the dentate gyrus of hippocampus. In wild-type mice injected intraventricularly with soluble Aβ oligomers (oAβ) from hAPP-expressing cultured cells, EE prevented several morphological features of microglial inflammation and consistently prevented oAβ-mediated mRNA changes in multiple inflammatory genes both in vivo and in primary microglia cultured from the mice. Microdialysis in behaving mice confirmed that EE normalized increases in the extracellular levels of the key cytokines (CCL3, CCL4, TNFα) identified by the mRNA analysis. Moreover, EE prevented the changes in microglial gene expression caused by ventricular injection of oAβ extracted directly from AD cerebral cortex. We conclude that EE potently alters the form and function of microglia in a way that prevents their inflammatory response to human oAβ, suggesting that prolonged environmental enrichment could protect against AD by modulating the brain's innate immune system.


Histone acetylation is involved in TCDD‑induced cleft palate formation in fetal mice.

  • Xingang Yuan‎ et al.
  • Molecular medicine reports‎
  • 2016‎

The aim of the present was to evaluate the effects of DNA methylation and histone acetylation on 2,3,7,8‑tetrachlorodibenzo‑p‑dioxin (TCDD)‑induced cleft palate in fetal mice. Pregnant mice (n=10) were randomly divided into two groups: i) TCDD group, mice were treated with 28 µg/kg TCDD on gestation day (GD) 10 by oral gavage; ii) control group, mice were treated with an equal volume of corn oil. On GD 16.5, the fetal mice were evaluated for the presence of a cleft palate. An additional 36 pregnant mice were divided into the control and TCDD groups, and palate samples were collected on GD 13.5, GD 14.5 and GD 15.5, respectively. Transforming growth factor‑β3 (TGF‑β3) mRNA expression, TGF‑β3 promoter methylation, histone acetyltransferase (HAT) activity and histone H3 (H3) acetylation in the palates were evaluated in the two groups. The incidence of a cleft palate in the TCDD group was 93.55%, and no cases of cleft palate were identified in the control group. On GD 13.5 and GD 14.5, TGF‑β3 mRNA expression, HAT activity and acetylated H3 levels were significantly increased in the TCDD group compared with the control. Methylated bands were not observed in the TCDD or control groups. In conclusion, at the critical period of palate fusion (GD 13.5‑14.5), TCDD significantly increased TGF‑β3 gene expression, HAT activity and H3 acetylation. Therefore, histone acetylation may be involved in TCDD‑induced cleft palate formation in fetal mice.


Genome-wide association study identifies 8p21.3 associated with persistent hepatitis B virus infection among Chinese.

  • Yuanfeng Li‎ et al.
  • Nature communications‎
  • 2016‎

Hepatitis B virus (HBV) infection is a common infectious disease. Here we perform a genome-wide association study (GWAS) among Chinese populations to identify novel genetic loci involved in persistent HBV infection. GWAS scan is performed in 1,251 persistently HBV infected subjects (PIs, cases) and 1,057 spontaneously recovered subjects (SRs, controls), followed by replications in four independent populations totally consisting of 3,905 PIs and 3,356 SRs. We identify a novel locus at 8p21.3 (index rs7000921, odds ratio=0.78, P=3.2 × 10(-12)). Furthermore, we identify significant expression quantitative trait locus associations for INTS10 gene at 8p21.3. We demonstrate that INST10 suppresses HBV replication via IRF3 in liver cells. In clinical plasma samples, we confirm that INST10 levels are significantly decreased in PIs compared with SRs, and negatively correlated with the HBV load. These findings highlight a novel antiviral gene INTS10 at 8p21.3 in the clearance of HBV infection.


Similar Responses of Circulating MicroRNAs to Acute High-Intensity Interval Exercise and Vigorous-Intensity Continuous Exercise.

  • Shu F Cui‎ et al.
  • Frontiers in physiology‎
  • 2016‎

High-intensity interval exercise (HIIE) has been reported to be more beneficial for physical adaptation than low-to-moderate exercise intensity. Recently, it is becoming increasingly evident that circulating miRNAs (c-miRNAs) may distinguish between specific stress signals imposed by variations in the duration, modality, and type of exercise. The aim of this study is to investigate whether or not HIIE is superior to vigorous-intensity continuous exercise (VICE), which is contributing to develop effective fitness assessment. Twenty-six young males were enrolled, and plasma samples were collected prior to exercise and immediately after HIIE or distance-matched VICE. The miRNA level profiles in HIIE were initially determined using TaqMan Low Density Array (TLDA). And the differentially miRNAs levels were validated by stem-loop quantitative reverse-transcription PCR (RT-qPCR). Furthermore, these selective c-miRNAs were measured for VICE. Our results showed that some muscle-related miRNAs levels in the plasma, such as miR-1, miR-133a, miR-133b, and miR-206 significantly increased following HIIE or VICE compared to those at rest (P < 0.05), and there was only a significant reduction in miR-1 level for HIIE compared to VICE (P < 0.05), while no significant differences were observed for other muscle-related miRNAs between both exercises (P > 0.05). In addition, some tissue-related or unknown original miRNA levels, such as miR-485-5p, miR-509-5p, miR-517a, miR-518f, miR-520f, miR-522, miR-553, and miR-888, also significantly increased (P < 0.05) in both exercises compared to rest. However, no significant differences were found between both exercises (P > 0.05). Overall, endurance exercise assessed in this study both led to significant increases in selective c-miRNAs of comparable magnitude, suggesting that both types of endurance exercise have general stress processes. Accordingly, the similar responses to both acute exercises likely indicate both exercises can be used interchangeably. Further work is needed to reveal the functional significance and signaling mechanisms behind changes in c-miRNA turnover during exercise.


A Novel Brain Network Construction Method for Exploring Age-Related Functional Reorganization.

  • Wei Li‎ et al.
  • Computational intelligence and neuroscience‎
  • 2016‎

The human brain undergoes complex reorganization and changes during aging. Using graph theory, scientists can find differences in topological properties of functional brain networks between young and elderly adults. However, these differences are sometimes significant and sometimes not. Several studies have even identified disparate differences in topological properties during normal aging or in age-related diseases. One possible reason for this issue is that existing brain network construction methods cannot fully extract the "intrinsic edges" to prevent useful signals from being buried into noises. This paper proposes a new subnetwork voting (SNV) method with sliding window to construct functional brain networks for young and elderly adults. Differences in the topological properties of brain networks constructed from the classic and SNV methods were consistent. Statistical analysis showed that the SNV method can identify much more statistically significant differences between groups than the classic method. Moreover, support vector machine was utilized to classify young and elderly adults; its accuracy, based on the SNV method, reached 89.3%, significantly higher than that with classic method. Therefore, the SNV method can improve consistency within a group and highlight differences between groups, which can be valuable for the exploration and auxiliary diagnosis of aging and age-related diseases.


Tumor-suppressive miR-218-5p inhibits cancer cell proliferation and migration via EGFR in non-small cell lung cancer.

  • Kegan Zhu‎ et al.
  • Oncotarget‎
  • 2016‎

Lung cancer remains the leading cause of cancer-related death worldwide, and non-small cell lung cancer (NSCLC) accounts for approximately 80% of lung cancer cases. Recently, microRNAs (miRNAs) have been consistently demonstrated to be involved in NSCLC and to act as either tumor oncogenes or tumor suppressors. In this study, we identified a specific binding site for miR-218-5p in the 3'-untranslated region of the epidermal growth factor receptor (EGFR). We further experimentally validated miR-218-5p as a direct regulator of EGFR. We also identified an inverse correlation between miR-218-5p and EGFR protein levels in NSCLC tissue samples. Moreover, we demonstrated that miR-218-5p plays a critical role in suppressing the proliferation and migration of lung cancer cells probably by binding to EGFR. Finally, we examined the function of miR-218-5p in vivo and revealed that miR-218-5p exerts an anti-tumor effect by negatively regulating EGFR in a xenograft mouse model. Taken together, the results of this study highlight an important role for miR-218-5p in the regulation of EGFR in NSCLC and may open new avenues for future lung cancer therapies.


Have GRACE satellites overestimated groundwater depletion in the Northwest India Aquifer?

  • Di Long‎ et al.
  • Scientific reports‎
  • 2016‎

The Northwest India Aquifer (NWIA) has been shown to have the highest groundwater depletion (GWD) rate globally, threatening crop production and sustainability of groundwater resources. Gravity Recovery and Climate Experiment (GRACE) satellites have been emerging as a powerful tool to evaluate GWD with ancillary data. Accurate GWD estimation is, however, challenging because of uncertainties in GRACE data processing. We evaluated GWD rates over the NWIA using a variety of approaches, including newly developed constrained forward modeling resulting in a GWD rate of 3.1 ± 0.1 cm/a (or 14 ± 0.4 km(3)/a) for Jan 2005-Dec 2010, consistent with the GWD rate (2.8 cm/a or 12.3 km(3)/a) from groundwater-level monitoring data. Published studies (e.g., 4 ± 1 cm/a or 18 ± 4.4 km(3)/a) may overestimate GWD over this region. This study highlights uncertainties in GWD estimates and the importance of incorporating a priori information to refine spatial patterns of GRACE signals that could be more useful in groundwater resource management and need to be paid more attention in future studies.


CK19 mRNA in blood can predict non-sentinel lymph node metastasis in breast cancer.

  • Xing-Fei Yu‎ et al.
  • Oncotarget‎
  • 2016‎

Reverse-transcription polymerase chain reaction (RT-PCR) is used to detect CK19 mRNA in sentinel lymph node biopsy (SLNB) tissues from breast cancer patients. We examined whether CK19 mRNA in peripheral blood is predictive of non-sentinel lymph node (nSLN) metastasis. Breast cancer cases diagnosed with clinical stage cT1-3cN0 and registered in our medical biobank were identified retrospectively. This study then included 120 breast cancer cases treated at Zhejiang Cancer Hospital from Aug 2014 to Aug 2015, including 60 SLN-positive and 60 SLN-negative cases. CK19 mRNA levels in peripheral blood samples were assessed using RT-PCR prior to tumor removal. During surgery, if SLNB tissue showed evidence of metastasis, axillary lymph node dissection (ALND) was performed. No ALND was performed if SLNB and nSLN tissues were both negative for metastasis. CK19 expression was higher in nSLN-positive patients than in nSLN-negative patients (p < 0.05). Logistic regression indicated that lymphatic vessel invasion and CK19 levels were predictive of nSLN status (p < 0.05). The area under the ROC curve for CK19 was 0.878 (p < 0.05). We conclude that high CK19 levels in peripheral blood may independently predict nSLN metastasis in breast cancer patients.


Improving chemotherapeutic efficiency in acute myeloid leukemia treatments by chemically synthesized peptide interfering with CXCR4/CXCL12 axis.

  • Xiaojin Li‎ et al.
  • Scientific reports‎
  • 2015‎

Bone marrow stroma can protect acute myeloid leukemia (AML) cells against chemotherapeutic agents and provide anti-apoptosis and chemoresistance signals through secreting chemokine CXCL12 to activate its receptor CXCR4 on AML cells, resulting in minimal residual leukemia and relapse. Therefore disrupting the CXCR4/CXCL12 axis with antagonists is of great significance for improving chemosensitivity and decreasing relapse rate. In a previous study, we reported a novel synthetic peptide E5 with its remarkable effect on inhibiting CXCR4/CXCL12-mediated adhesion and migration of AML cells. Here we presented E5's capacity of enhancing the therapeutic efficiency of various chemotherapeutics on AML in vitro and in vivo. Results showed that E5 can diminish bone marrow stromal cell-provided protection to leukemia cells, significantly increasing the apoptosis induced by various chemotherapeutics in multiple AML cell lines. In an AML mouse xenograft model, E5 induced 1.84-fold increase of circulating AML cells out of protective stroma niche. Combined with vincristine or cyclophosphamide, E5 inhibited infiltration of AML cells into bone marrow, liver and spleen, as well as prolonged the lifespan of AML mice compared with mice treated with chemotherapy alone. In addition, E5 presented no toxicity in vivo according to the histological analysis and routine clinical parameters of serum analysis.


Quantitative proteomics study of the neuroprotective effects of B12 on hydrogen peroxide-induced apoptosis in SH-SY5Y cells.

  • Lijun Zhong‎ et al.
  • Scientific reports‎
  • 2016‎

B12 belongs to the coumarin class of compounds that have been shown to have various physiological and pharmacological activities including anti-inflammatory, antibacterial, and antioxidant. In the present study, we characterised the neuroprotective effects of B12 against H2O2-induced neuronal cell damage in SH-SY5Y cells. Protein expression profiling in combination with pathway analysis was deployed to investigate the molecular events associated with the neuroprotective effects in human neuronal cells using a label-free quantitative proteomics approach. A total of 22 proteins were significantly differentially expressed in H2O2-damaged cells with or without B12 treatment. Bioinformatics analysis using the Cytoscape platform indicated that poly pyrimidine tract binding protein 1 (PTBP1) was highly associated with the protective effect, and western blotting verified that PTBP1 was up-regulated in H2O2 + B12 treatment group, compared with the H2O2 treated group. PTBP RNAi experiments knocked down PTBP expression, which cancelled out the protective effect of B12 on cell viability. Thus, we infer that B12 neuroprotective activity involves up-regulation of PTBP1 and its associated signalling networks following H2O2-induced apoptosis in SH-SY5Y cells. B12 or related compounds may prove to be useful therapeutic agents for the treatment of neurodegenerative diseases such as Alzheimer's and Parkinson's.


Smoking cessation in Asians: focus on varenicline.

  • Dan Xiao‎ et al.
  • Patient preference and adherence‎
  • 2015‎

Smoking is a modifiable risk factor for morbidity and mortality caused by cancer, cardiovascular diseases, respiratory diseases, and many other diseases. Given the large population size and high prevalence of smoking in Asia, successful smoking cessation could potentially prevent the large number of premature deaths in Asians. However, most dependent smokers cannot successfully quit smoking due to nicotine addiction, and they need professional help and smoking cessation therapies. Varenicline is a highly selective partial agonist for the nicotinic acetylcholine receptor α4β2 subtype, which is believed to be responsible for mediating the reinforcing properties of nicotine. This article is a narrative review, which summarizes the smoking cessation efficacy, side effects, and cost utilities of varenicline in Asians. From this review, we conclude that varenicline is an effective medication that could assist smoking cessation in the Asian populations. The adverse events of varenicline are tolerable, and the most common events were nausea and abnormal dreams. Both the efficacy and tolerance of varenicline in Asians are similar to that in Western populations. Considering the cost utilities, varenicline should be recommended for use in smoking cessation and be covered by medical insurance in most Asian countries.


Crystal structures of sialyltransferase from Photobacterium damselae.

  • Nhung Huynh‎ et al.
  • FEBS letters‎
  • 2014‎

Sialyltransferase structures fall into either GT-A or GT-B glycosyltransferase fold. Some sialyltransferases from the Photobacterium genus have been shown to contain an additional N-terminal immunoglobulin (Ig)-like domain. Photobacterium damselae α2-6-sialyltransferase has been used efficiently in enzymatic and chemoenzymatic synthesis of α2-6-linked sialosides. Here we report three crystal structures of this enzyme. Two structures with and without a donor substrate analog CMP-3F(a)Neu5Ac contain an immunoglobulin (Ig)-like domain and adopt the GT-B sialyltransferase fold. The binary structure reveals a non-productive pre-Michaelis complex, which are caused by crystal lattice contacts that prevent the large conformational changes. The third structure lacks the Ig-domain. Comparison of the three structures reveals small inherent flexibility between the two Rossmann-like domains of the GT-B fold.


Prenatal lead levels, plasma amyloid β levels, and gene expression in young adulthood.

  • Maitreyi Mazumdar‎ et al.
  • Environmental health perspectives‎
  • 2012‎

Animal studies suggest that early-life lead exposure influences gene expression and production of proteins associated with Alzheimer's disease (AD).


Identification of common genetic modifiers of neurodegenerative diseases from an integrative analysis of diverse genetic screens in model organisms.

  • Xi Chen‎ et al.
  • BMC genomics‎
  • 2012‎

An array of experimental models have been developed in the small model organisms C. elegans, S. cerevisiae and D. melanogaster for the study of various neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and expanded polyglutamine diseases as exemplified by Huntington's disease (HD) and related ataxias. Genetic approaches to determine the nature of regulators of the disease phenotypes have ranged from small scale to essentially whole genome screens. The published data covers distinct models in all three organisms and one important question is the extent to which shared genetic factors can be uncovered that affect several or all disease models. Surprisingly it has appeared that there may be relatively little overlap and that many of the regulators may be organism or disease-specific. There is, however, a need for a fully integrated analysis of the available genetic data based on careful comparison of orthologues across the species to determine the real extent of overlap.


miR-19b downregulates intestinal SOCS3 to reduce intestinal inflammation in Crohn's disease.

  • Xiuqin Cheng‎ et al.
  • Scientific reports‎
  • 2015‎

Although aberrant microRNA (miRNA) expression has frequently been observed in inflammatory bowel disease (IBD), its biological functions and targets remain largely unknown. Present study found that miR-19b was significantly downregulated in active Crohn's disease (CD). Using bioinformatics analysis, suppressor of cytokine signalling 3 (SOCS3), a physiological regulator of innate and adaptive immunity that controls several immuno-inflammatory diseases, was predicted to be a potential target of miR-19b. An inverse correlation between miR-19b and SOCS3 protein levels, but not mRNA, was identified in active-CD intestinal tissue samples. By overexpressing or knocking down miR-19b in Caco2 cells and HT29 cells, it was experimentally validated that miR-19b is a direct regulator of SOCS3. Using a luciferase reporter assay, it was confirmed that miR-19b directly recognizes the 3'-untranslated region (3'-UTR) of SOCS3. Furthermore, overexpression of miR-19b decreased SOCS3 expression, leading to increased production of macrophage-inflammatory protein-3α (MIP-3α) in Caco2 cells. In contrast, knockdown of miR-19b increased SOCS3 and decreased MIP-3α. Finally, intracolonically delivered miR-19b decreased the severity of colitis induced with 2,4,6-trinitrobenzene sulphonic acid (TNBS). Taken together, our findings suggest that miR-19b suppresses the inflammatory response by inhibiting SOCS3 to modulate chemokine production in intestinal epithelial cells (IECs) and thereby prevents the pathogenesis of CD.


Association Study of IL-12B Polymorphisms Susceptibility with Ankylosing Spondylitis in Mainland Han Population.

  • Li Zhang‎ et al.
  • PloS one‎
  • 2015‎

This study aims to determine whether the genetic polymorphisms of IL-12B gene is a susceptibility factor to Ankylosing spondylitis (AS) in mainland Han Chinese population.


Chamaejasmin B exerts anti-MDR effect in vitro and in vivo via initiating mitochondria-dependant intrinsic apoptosis pathway.

  • Ya Jie Wang‎ et al.
  • Drug design, development and therapy‎
  • 2015‎

Multidrug resistance (MDR) is the main obstacle limiting the efficacy of cancer chemotherapy. Looking for novel anti-MDR agents is an important way to conquer cancer drug resistance. We recently established that chamaejasmin B (CHB), a natural biflavone from Stellera chamaejasme L., is the major active component. However, its anti-MDR activity is still unknown. This study investigated the anti-MDR effect of CHB and the underlying mechanisms. First, it was found that CHB inhibited the growth of both sensitive and resistant cell lines in vitro, and the average resistant factor (RF) of CHB was only 1.26. Furthermore, CHB also displayed favorable anti-MDR activity in KB and KBV200 cancer cells xenograft mice. Subsequent study showed that CHB induced G0/G1 cell cycle arrest as well as apoptosis both in KB and in resistant KBV200 cancer cells. Further studies showed that CHB had no influence on the level of Fas/FasL and activation of procaspase 8. However, CHB-induced apoptosis was dependent on the activation of caspase 9 and caspase 3. Moreover, CHB treatment resulted in the elevation of the Bax/Bcl-2 ratio, attenuation of mitochondrial membrane potential (ΔΨm), and release of cytochrome c and apoptosis-inducing factor from mitochondria into cytoplasm both in KB and KBV200 cells. In conclusion, CHB exhibited good anti-MDR activity in vitro and in vivo, and the underlying mechanisms may be related to the activation of mitochondrial-dependant intrinsic apoptosis pathway. These findings provide a new leading compound for MDR therapy and supply a new evidence for the potential of CHB to be employed in clinical trial of MDR therapy in cancers.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: