Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 41 papers

Adenosine deaminase acting on RNA-1 is essential for early B lymphopoiesis.

  • Wenjing Chen‎ et al.
  • Cell reports‎
  • 2022‎

Adenosine deaminase acting on RNA-1 (ADAR1) is a ubiquitously expressed RNA deaminase catalyzing adenosine-to-inosine editing to prevent hyperactivated cytosolic double-stranded RNA (dsRNA) response mediated by MDA5. Here, we demonstrate that ADAR1 is essential for early B lymphopoiesis from late pro-B and large pre-B cell stages onward. ADAR1 exerts its requisite role via both MDA5-dependent and -independent pathways. Interestingly, the MDA5-dependent mechanisms regulate early pro-B to large pre-B cell transition by promoting early B cell survival. In contrast, the MDA5-independent mechanisms control large pre-B to small pre-B cell transition by regulating pre-B cell receptor (pre-BCR) expression. Moreover, we show that protein kinase R (PKR) and oligoadenylate synthetase/ribonuclease (OAS/RNase) L pathways are dispensable for ADAR1's role in early B lymphopoiesis. Importantly, we demonstrate that p150 isoform of ADAR1 exclusively accounts for ADAR1's function in early B lymphopoiesis, and its conventional dsRNA-binding, but not the Z-DNA/RNA-binding or the RNA-editing, activity is required for ADAR1's function in B cell development. Thus, our findings suggest that ADAR1 regulates early B lymphopoiesis through various mechanisms.


Tcf4 Regulates Synaptic Plasticity, DNA Methylation, and Memory Function.

  • Andrew J Kennedy‎ et al.
  • Cell reports‎
  • 2016‎

Human haploinsufficiency of the transcription factor Tcf4 leads to a rare autism spectrum disorder called Pitt-Hopkins syndrome (PTHS), which is associated with severe language impairment and development delay. Here, we demonstrate that Tcf4 haploinsufficient mice have deficits in social interaction, ultrasonic vocalization, prepulse inhibition, and spatial and associative learning and memory. Despite learning deficits, Tcf4(+/-) mice have enhanced long-term potentiation in the CA1 area of the hippocampus. In translationally oriented studies, we found that small-molecule HDAC inhibitors normalized hippocampal LTP and memory recall. A comprehensive set of next-generation sequencing experiments of hippocampal mRNA and methylated DNA isolated from Tcf4-deficient and WT mice before or shortly after experiential learning, with or without administration of vorinostat, identified "memory-associated" genes modulated by HDAC inhibition and dysregulated by Tcf4 haploinsufficiency. Finally, we observed that Hdac2 isoform-selective knockdown was sufficient to rescue memory deficits in Tcf4(+/-) mice.


Periostin Promotes Colorectal Tumorigenesis through Integrin-FAK-Src Pathway-Mediated YAP/TAZ Activation.

  • Handong Ma‎ et al.
  • Cell reports‎
  • 2020‎

Periostin is a multifunctional extracellular matrix protein involved in various inflammatory diseases and tumor metastasis; however, evidence regarding whether and how periostin actively contributes to inflammation-associated tumorigenesis remains elusive. Here, we demonstrate that periostin deficiency significantly inhibits the occurrence of colorectal cancer in azoxymethane/dextran sulfate sodium-treated mice and in ApcMin/+ mice. Moreover, periostin deficiency attenuates the severity of colitis and reduces the proliferation of tumor cells. Mechanistically, stromal fibroblast-derived periostin activates FAK-Src kinases through integrin-mediated outside-in signaling, which results in the activation of YAP/TAZ and, subsequently, IL-6 expression in tumor cells. Conversely, IL-6 induces periostin expression in fibroblasts by activating STAT3, which ultimately facilitates colorectal tumor development. These findings provide the evidence that periostin promotes colorectal tumorigenesis, and identify periostin- and IL-6-mediated tumor-stroma interaction as a promising target for treating colitis-associated colorectal cancer.


The Anti-Warburg Effect Elicited by the cAMP-PGC1α Pathway Drives Differentiation of Glioblastoma Cells into Astrocytes.

  • Fan Xing‎ et al.
  • Cell reports‎
  • 2017‎

Glioblastoma multiforme (GBM) is among the most aggressive of human cancers. Although differentiation therapy has been proposed as a potential approach to treat GBM, the mechanisms of induced differentiation remain poorly defined. Here, we established an induced differentiation model of GBM using cAMP activators that specifically directed GBM differentiation into astroglia. Transcriptomic and proteomic analyses revealed that oxidative phosphorylation and mitochondrial biogenesis are involved in induced differentiation of GBM. Dibutyryl cyclic AMP (dbcAMP) reverses the Warburg effect, as evidenced by increased oxygen consumption and reduced lactate production. Mitochondrial biogenesis induced by activation of the CREB-PGC1α pathway triggers metabolic shift and differentiation. Blocking mitochondrial biogenesis using mdivi1 or by silencing PGC1α abrogates differentiation; conversely, overexpression of PGC1α elicits differentiation. In GBM xenograft models and patient-derived GBM samples, cAMP activators also induce tumor growth inhibition and differentiation. Our data show that mitochondrial biogenesis and metabolic switch to oxidative phosphorylation drive the differentiation of tumor cells.


Scaling Up Cortical Control Inhibits Pain.

  • Jahrane Dale‎ et al.
  • Cell reports‎
  • 2018‎

Acute pain evokes protective neural and behavioral responses. Chronic pain, however, disrupts normal nociceptive processing. The prefrontal cortex (PFC) is known to exert top-down regulation of sensory inputs; unfortunately, how individual PFC neurons respond to an acute pain signal is not well characterized. We found that neurons in the prelimbic region of the PFC increased firing rates of the neurons after noxious stimulations in free-moving rats. Chronic pain, however, suppressed both basal spontaneous and pain-evoked firing rates. Furthermore, we identified a linear correlation between basal and evoked firing rates of PFC neurons, whereby a decrease in basal firing leads to a nearly 2-fold reduction in pain-evoked response in chronic pain states. In contrast, enhancing basal PFC activity with low-frequency optogenetic stimulation scaled up prefrontal outputs to inhibit pain. These results demonstrate a cortical gain control system for nociceptive regulation and establish scaling up prefrontal outputs as an effective neuromodulation strategy to inhibit pain.


The Cyclopeptide Astin C Specifically Inhibits the Innate Immune CDN Sensor STING.

  • Senlin Li‎ et al.
  • Cell reports‎
  • 2018‎

cGAS-STING signaling is essential for innate immunity. Its misregulation promotes cancer or autoimmune and autoinflammatory diseases, and it is imperative to identify effective lead compounds that specifically downregulate the pathway. We report here that astin C, a cyclopeptide isolated from the medicinal plant Aster tataricus, inhibits cGAS-STING signaling and the innate inflammatory responses triggered by cytosolic DNAs. Moreover, mice treated with astin C are more susceptible to HSV-1 infection. Consistently, astin C markedly attenuates the autoinflammatory responses in Trex1-/- BMDM cells and in Trex1-/- mouse autoimmune disease model. Mechanistically, astin C specifically blocks the recruitment of IRF3 onto the STING signalosome. Collectively, this study characterizes a STING-specific small-molecular inhibitor that may be applied for potentially manipulating the STING-mediated clinical diseases.


NSD2 methylates AROS to promote SIRT1 activation and regulates fatty acid metabolism-mediated cancer radiotherapy.

  • Xun Li‎ et al.
  • Cell reports‎
  • 2023‎

Fatty acid metabolism plays a critical role in both tumorigenesis and cancer radiotherapy. However, the regulatory mechanism of fatty acid metabolism has not been fully elucidated. NSD2, a histone methyltransferase that catalyzes di-methylation of histone H3 at lysine 36, has been shown to play an essential role in tumorigenesis and cancer progression. Here, we show that NSD2 promotes fatty acid oxidation (FAO) by methylating AROS (active regulator of SIRT1) at lysine 27, facilitating the physical interaction between AROS and SIRT1. The mutation of lysine 27 to arginine weakens the interaction between AROS and SIRT1 and impairs AROS-SIRT1-mediated FAO. Additionally, we examine the effect of NSD2 inhibition on radiotherapy efficacy and find an enhanced effectiveness of radiotherapy. Together, our findings identify a NSD2-dependent methylation regulation pattern of the AROS-SIRT1 axis, suggesting that NSD2 inhibition may be a potential adjunct for tumor radiotherapy.


HERC5-catalyzed ISGylation potentiates cGAS-mediated innate immunity.

  • Lei Chu‎ et al.
  • Cell reports‎
  • 2024‎

The cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) is essential to elicit type I interferon cascade response; thus, the activity of cGAS must be strictly regulated to boost the antiviral innate immunity. Here, we report that cGAS is responsible for the DNA-induced ISG15 conjugation system. The E3 HERC5 catalyzes the ISGylation of cytoplasmic cGAS at lysine 21, 187, 219, and 458, whereas Ubl carboxy-terminal hydrolase 18 removes the ISGylation of cGAS. The interaction of cGAS and HERC5 depends on the cGAS C-terminal domain and the RRC1-4 and RRC1-5 domains of HERC5. Mechanically, HERC5-catalyzed ISGylation promotes DNA-induced cGAS oligomerization and enhances cGAS enzymatic activity. Deficiency of ISGylation attenuates the downstream inflammatory gene expression induced by the cGAS-STING axis and the antiviral ability in mouse and human cells. Mice deficient in Isg15 or Herc6 are more vulnerable to herpes simplex virus 1 infection. Collectively, our study shows a positive feedback regulation of the cGAS-mediated innate immune pathway by ISGylation.


Displacement of WDR5 from Chromatin by a WIN Site Inhibitor with Picomolar Affinity.

  • Erin R Aho‎ et al.
  • Cell reports‎
  • 2019‎

The chromatin-associated protein WDR5 is a promising target for pharmacological inhibition in cancer. Drug discovery efforts center on the blockade of the "WIN site" of WDR5, a well-defined pocket that is amenable to small molecule inhibition. Various cancer contexts have been proposed to be targets for WIN site inhibitors, but a lack of understanding of WDR5 target genes and of the primary effects of WIN site inhibitors hampers their utility. Here, by the discovery of potent WIN site inhibitors, we demonstrate that the WIN site links WDR5 to chromatin at a small cohort of loci, including a specific subset of ribosome protein genes. WIN site inhibitors rapidly displace WDR5 from chromatin and decrease the expression of associated genes, causing translational inhibition, nucleolar stress, and p53 induction. Our studies define a mode by which WDR5 engages chromatin and forecast that WIN site blockade could have utility against multiple cancer types.


Nuclear cGAS Functions Non-canonically to Enhance Antiviral Immunity via Recruiting Methyltransferase Prmt5.

  • Shufang Cui‎ et al.
  • Cell reports‎
  • 2020‎

Cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS), upon sensing cytosolic DNA, catalyzes the production of cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), which activates STING-TBK1-IRF3 signaling. cGAS is also present in the nucleus, but the relevant nuclear function or mechanism remains largely unknown. Here, we report that nuclear cGAS is indispensable for inducing cytokines and chemokines triggered by RNA/DNA viruses. Unexpectedly, the DNA-binding/nucleotidyltransferase activity of cGAS is dispensable for RNA-virus-induced genes expression. cGAS deficiency does not affect the phosphorylation, dimerization, or nuclear translocation of IRF3 induced by double-stranded RNA (dsRNA). Mechanistically, nuclear-localized cGAS interacts with protein arginine methyltransferase 5 (Prmt5), which catalyzes the symmetric dimethylation of histone H3 arginine 2 at Ifnb and Ifna4 promoters, thus facilitating the access of IRF3. Deficiency of Prmt5 or disrupting its catalytic activity suppresses the production of type I interferons (IFNs), impairing the host defenses against RNA/DNA virus infections. Taken together, our study uncovers a non-canonical function of nuclear-localized cGAS in innate immunity via regulating histone arginine modification.


Comparing HD knockin pigs and mice reveals the pathological role of IL-17.

  • Qingqing Jia‎ et al.
  • Cell reports‎
  • 2023‎

Our previous work has established a knockin (KI) pig model of Huntington's disease (HD) that can replicate the typical pathological features of HD, including selective striatal neuronal loss, reactive gliosis, and axonal degeneration. However, HD KI mice exhibit milder neuropathological phenotypes and lack overt neurodegeneration. By performing RNA sequencing to compare the gene expression profiles between HD KI pigs and mice, we find that genes related to interleukin-17 (IL-17) signaling are upregulated in the HD pig brains compared to the mouse brains. Delivery of IL-17 into the brain striatum of HD KI mice causes greater reactive gliosis and synaptic deficiency compared to HD KI mice that received PBS. These findings suggest that the upregulation of genes related to IL-17 signaling in HD pig brains contributes to severe glial pathology in HD and identify this as a potential therapeutic target for treating HD.


Downregulation of hepatic ceruloplasmin ameliorates NAFLD via SCO1-AMPK-LKB1 complex.

  • Liping Xie‎ et al.
  • Cell reports‎
  • 2022‎

Copper deficiency has emerged to be associated with various lipid metabolism diseases, including non-alcoholic fatty liver disease (NAFLD). However, the mechanisms that dictate the association between copper deficiency and metabolic diseases remain obscure. Here, we reveal that copper restoration caused by hepatic ceruloplasmin (Cp) ablation enhances lipid catabolism by promoting the assembly of copper-load SCO1-LKB1-AMPK complex. Overnutrition-mediated Cp elevation results in hepatic copper loss, whereas Cp ablation restores copper content to the normal level without eliciting detectable hepatotoxicity and ameliorates NAFLD in mice. Mechanistically, SCO1 constitutively interacts with LKB1 even in the absence of copper, and copper-loaded SCO1 directly tethers LKB1 to AMPK, thereby activating AMPK and consequently promoting mitochondrial biogenesis and fatty acid oxidation. Therefore, this study reveals a mechanism by which copper, as a signaling molecule, improves hepatic lipid catabolism, and it indicates that targeting copper-SCO1-AMPK signaling pathway ameliorates NAFLD development by modulating AMPK activity.


Haplotype mapping of H3K27me3-associated chromatin interactions defines topological regulation of gene silencing in rice.

  • Weizhi Ouyang‎ et al.
  • Cell reports‎
  • 2023‎

Histone modification H3K27me3 is an important chromatin mark that plays vital roles in repressing expression of developmental genes. Here, we construct high-resolution 3D genome maps using long-read chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) and characterize H3K27me3-associated chromatin interactions in an elite rice hybrid, Shanyou 63. We find that many H3K27me3-marked regions may function as silencer-like regulatory elements. The silencer-like elements can come into proximity with distal target genes via forming chromatin loops in 3D space of the nuclei, regulating gene silencing and plant traits. Natural and induced deletion of silencers upregulate expression of distal connected genes. Furthermore, we identify extensive allele-specific chromatin loops. We find that genetic variations alter allelic chromatin topology, thus modulating allelic gene imprinting in rice hybrids. In conclusion, the characterization of silencer-like regulatory elements and haplotype-resolved chromatin interaction maps provide insights into the understanding of molecular mechanisms underlying allelic gene silencing and plant trait controlling.


Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas.

  • Theo A Knijnenburg‎ et al.
  • Cell reports‎
  • 2018‎

DNA damage repair (DDR) pathways modulate cancer risk, progression, and therapeutic response. We systematically analyzed somatic alterations to provide a comprehensive view of DDR deficiency across 33 cancer types. Mutations with accompanying loss of heterozygosity were observed in over 1/3 of DDR genes, including TP53 and BRCA1/2. Other prevalent alterations included epigenetic silencing of the direct repair genes EXO5, MGMT, and ALKBH3 in ∼20% of samples. Homologous recombination deficiency (HRD) was present at varying frequency in many cancer types, most notably ovarian cancer. However, in contrast to ovarian cancer, HRD was associated with worse outcomes in several other cancers. Protein structure-based analyses allowed us to predict functional consequences of rare, recurrent DDR mutations. A new machine-learning-based classifier developed from gene expression data allowed us to identify alterations that phenocopy deleterious TP53 mutations. These frequent DDR gene alterations in many human cancers have functional consequences that may determine cancer progression and guide therapy.


Tethering Piezo channels to the actin cytoskeleton for mechanogating via the cadherin-β-catenin mechanotransduction complex.

  • Jing Wang‎ et al.
  • Cell reports‎
  • 2022‎

The mechanically activated Piezo channel plays a versatile role in conferring mechanosensitivity to various cell types. However, how it incorporates its intrinsic mechanosensitivity and cellular components to effectively sense long-range mechanical perturbation across a cell remains elusive. Here we show that Piezo channels are biochemically and functionally tethered to the actin cytoskeleton via the cadherin-β-catenin mechanotransduction complex, whose perturbation significantly impairs Piezo-mediated responses. Mechanistically, the adhesive extracellular domain of E-cadherin interacts with the cap domain of Piezo1, which controls the transmembrane gate, while its cytosolic tail might interact with the cytosolic domains of Piezo1, which are in close proximity to its intracellular gates, allowing a direct focus of adhesion-cytoskeleton-transmitted force for gating. Specific disruption of the intermolecular interactions prevents cytoskeleton-dependent gating of Piezo1. Thus, we propose a force-from-filament model to complement the previously suggested force-from-lipids model for mechanogating of Piezo channels, enabling them to serve as versatile and tunable mechanotransducers.


Autism-associated chromatin remodeler CHD8 regulates erythroblast cytokinesis and fine-tunes the balance of Rho GTPase signaling.

  • Zhaowei Tu‎ et al.
  • Cell reports‎
  • 2022‎

CHD8 is an ATP-dependent chromatin-remodeling factor whose monoallelic mutation defines a subtype of autism spectrum disorders (ASDs). Previous work found that CHD8 is required for the maintenance of hematopoiesis by integrating ATM-P53-mediated survival of hematopoietic stem/progenitor cells (HSPCs). Here, by using Chd8F/FMx1-Cre combined with a Trp53F/F mouse model that suppresses apoptosis of Chd8-/- HSPCs, we identify CHD8 as an essential regulator of erythroid differentiation. Chd8-/-P53-/- mice exhibited severe anemia conforming to congenital dyserythropoietic anemia (CDA) phenotypes. Loss of CHD8 leads to drastically decreased numbers of orthochromatic erythroblasts and increased binucleated and multinucleated basophilic erythroblasts with a cytokinesis failure in erythroblasts. CHD8 binds directly to the gene bodies of multiple Rho GTPase signaling genes in erythroblasts, and loss of CHD8 results in their dysregulated expression, leading to decreased RhoA and increased Rac1 and Cdc42 activities. Our study shows that autism-associated CHD8 is essential for erythroblast cytokinesis.


Paired Related Homeobox Protein 1 Regulates Quiescence in Human Oligodendrocyte Progenitors.

  • Jing Wang‎ et al.
  • Cell reports‎
  • 2018‎

Human oligodendrocyte progenitor cells (hOPCs) persist into adulthood as an abundant precursor population capable of division and differentiation. The transcriptional mechanisms that regulate hOPC homeostasis remain poorly defined. Herein, we identify paired related homeobox protein 1 (PRRX1) in primary PDGFαR+ hOPCs. We show that enforced PRRX1 expression results in reversible G1/0 arrest. While both PRRX1 splice variants reduce hOPC proliferation, only PRRX1a abrogates migration. hOPC engraftment into hypomyelinated shiverer/rag2 mouse brain is severely impaired by PRRX1a, characterized by reduced cell proliferation and migration. PRRX1 induces a gene expression signature characteristic of stem cell quiescence. Both IFN-γ and BMP signaling upregulate PRRX1 and induce quiescence. PRRX1 knockdown modulates IFN-γ-induced quiescence. In mouse brain, PRRX1 mRNA was detected in non-dividing OPCs and is upregulated in OPCs following demyelination. Together, these data identify PRRX1 as a regulator of quiescence in hOPCs and as a potential regulator of pathological quiescence.


Disrupted population coding in the prefrontal cortex underlies pain aversion.

  • Anna Li‎ et al.
  • Cell reports‎
  • 2021‎

The prefrontal cortex (PFC) regulates a wide range of sensory experiences. Chronic pain is known to impair normal neural response, leading to enhanced aversion. However, it remains unknown how nociceptive responses in the cortex are processed at the population level and whether such processes are disrupted by chronic pain. Using in vivo endoscopic calcium imaging, we identify increased population activity in response to noxious stimuli and stable patterns of functional connectivity among neurons in the prelimbic (PL) PFC from freely behaving rats. Inflammatory pain disrupts functional connectivity of PFC neurons and reduces the overall nociceptive response. Interestingly, ketamine, a well-known neuromodulator, restores the functional connectivity among PL-PFC neurons in the inflammatory pain model to produce anti-aversive effects. These results suggest a dynamic resource allocation mechanism in the prefrontal representations of pain and indicate that population activity in the PFC critically regulates pain and serves as an important therapeutic target.


Activation of parabrachial nucleus - ventral tegmental area pathway underlies the comorbid depression in chronic neuropathic pain in mice.

  • Ludi Zhang‎ et al.
  • Cell reports‎
  • 2021‎

Depression symptoms are often found in patients suffering from chronic pain, a phenomenon that is yet to be understood mechanistically. Here, we systematically investigate the cellular mechanisms and circuits underlying the chronic-pain-induced depression behavior. We show that the development of chronic pain is accompanied by depressive-like behaviors in a mouse model of trigeminal neuralgia. In parallel, we observe increased activity of the dopaminergic (DA) neuron in the midbrain ventral tegmental area (VTA), and inhibition of this elevated VTA DA neuron activity reverses the behavioral manifestations of depression. Further studies establish a pathway of glutamatergic projections from the spinal trigeminal subnucleus caudalis (Sp5C) to the lateral parabrachial nucleus (LPBN) and then to the VTA. These glutamatergic projections form a direct circuit that controls the development of the depression-like behavior under the state of the chronic neuropathic pain.


Aberrant serotonergic signaling contributes to the hyperexcitability of CA1 pyramidal neurons in a mouse model of Alzheimer's disease.

  • Jing Wang‎ et al.
  • Cell reports‎
  • 2023‎

Hyperactivity of pyramidal neurons (PNs) in CA1 is an early event in Alzheimer's disease. However, factors accounting for the hyperactivity of CA1 PNs remain to be completely investigated. In the present study, we report that the serotonergic signaling is abnormal in the hippocampus of hAPP-J20 mice. Interestingly, chemogenetic activation of serotonin (5-hydroxytryptamine; 5-HT) neurons in the median raphe nucleus (MRN) attenuates the activity of CA1 PNs in hAPP-J20 mice by regulating the intrinsic properties or inhibitory synaptic transmission of CA1 PNs through 5-HT3aR and/or 5-HT1aR. Furthermore, activating MRN 5-HT neurons improves memory in hAPP-J20 mice, and this effect is mediated by 5-HT3aR and 5-HT1aR. Direct activation of 5-HT3aR and 5-HT1aR with their selective agonists also improves the memory of hAPP-J20 mice. Together, we identify the impaired 5-HT/5-HT3aR and/or 5-HT/5-HT1aR signaling as pathways contributing to the hyperexcitability of CA1 PNs and the impaired cognition in hAPP-J20 mice.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: