Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 134 papers

The complete chloroplast genome sequence of Styrax wuyuanensis S. M. Hwang (Styracaceae) from Jiangxi Province, China.

  • Rui Zhang‎ et al.
  • Mitochondrial DNA. Part B, Resources‎
  • 2021‎

Styrax wuyuanensis S. M. Hwang is an endemic species distributed in China. In this study, we characterized its complete chloroplast genome. The circular genome of S. wuyuanensis is 157,969 bp in length, and includes two inverted repeat (IRa and IRb) regions of 25,954 bp in length separated by a large single copy (LSC) region of 87,575 bp and a small single copy (SSC) region of 18,486 bp. The total GC content of the S. wuyuanensis chloroplast genome is 37.0%, and a total of 132 functional genes are encoded, including 87 protein-coding genes, 37 tRNA, and eight rRNA. The phylogenetic analysis has shown that S. wuyuanensis is positioned in the Styracaceae clade, as a sister taxon to S. faberi and S. fortunei, confirming the close relationship of S. wuyuanensis with the latter two species.


GLP-catalyzed H4K16me1 promotes 53BP1 recruitment to permit DNA damage repair and cell survival.

  • Xiaopeng Lu‎ et al.
  • Nucleic acids research‎
  • 2019‎

The binding of p53-binding protein 1 (53BP1) to damaged chromatin is a critical event in non-homologous DNA end joining (NHEJ)-mediated DNA damage repair. Although several molecular pathways explaining how 53BP1 binds damaged chromatin have been described, the precise underlying mechanisms are still unclear. Here we report that a newly identified H4K16 monomethylation (H4K16me1) mark is involved in 53BP1 binding activity in the DNA damage response (DDR). During the DDR, H4K16me1 rapidly increases as a result of catalyzation by the histone methyltransferase G9a-like protein (GLP). H4K16me1 shows an increased interaction level with 53BP1, which is important for the timely recruitment of 53BP1 to DNA double-strand breaks. Differing from H4K16 acetylation, H4K16me1 enhances the 53BP1-H4K20me2 interaction at damaged chromatin. Consistently, GLP knockdown markedly attenuates 53BP1 foci formation, leading to impaired NHEJ-mediated repair and decreased cell survival. Together, these data support a novel axis of the DNA damage repair pathway based on H4K16me1 catalysis by GLP, which promotes 53BP1 recruitment to permit NHEJ-mediated DNA damage repair.


Gender Effects of Dioecious Plant Populus cathayana on Fungal Community and Mycorrhizal Distribution at Different Arid Zones in Qinghai, China.

  • Zhen Li‎ et al.
  • Microorganisms‎
  • 2023‎

Dioecious plants have a wide distribution in nature and gender effect may cause significant alterations in rhizosphere fungal community and soil properties. However, little is known regarding changes in response to dioecious plants. This study aimed to investigate the effects that the dioecious plant, Populus cathayana, and regions of different arid levels have on the fungal community, mycorrhizal distribution, soil enzymatic activities, and nutrient contents. This study characterized fungal and soil factors from the rhizosphere of the dioecious plant Populus cathayana located in the semi-humid regions (Chengguan), semi-arid regions (Sining, Haiyan) and arid regions (Ulan, Chaka). Rhizosphere soil was collected from each site and gender, and the total fungal genomic DNA was extracted. DNA amplicons from fungal ITS region were generated and subjected to Illumina Miseq sequencing. A total of 5 phyla, 28 classes, 92 orders, 170 families, and 380 genuses were observed. AMF distribution peaked at Chaka, which did not conform to the trend. Gender had significant effects on fungal communities: there were obvious differences in fungal OTUs between genders. Alpha diversity raised at first and then decreased. RDA results showed available P, available K, pH, ALP activity, ammonium N, EC, water content and catalase activity were the key contributors in sample areas. Our results suggested potential interaction effects between plant gender and fungal community.


Treatment of Asymptomatic Bacteriuria after Kidney Transplantation: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.

  • Zhengsheng Rao‎ et al.
  • Medicina (Kaunas, Lithuania)‎
  • 2023‎

Background and Objectives: Asymptomatic bacteriuria (ASB) is prevalent in kidney transplant recipients (KTRs) and is hypothesized to heighten the risk of subsequent urinary tract infections (UTIs). Whether antibiotic treatment of ASB in KTRs is beneficial has not been elucidated. Materials and Methods: We carried out a systematic review and meta-analysis of all randomized controlled trials (RCTs) and quasi-RCTs that examined the merits of managing asymptomatic bacteriuria in KTRs. The primary outcomes were rates of symptomatic urinary tract infections (UTIs) and antimicrobial resistance. Results: Five studies encompassing 566 patients were included. No significant difference in symptomatic UTI rates was found between antibiotics and no treatment groups (relative risk (RR) 1.05, 95% confidence interval (CI) = 0.78-1.41), with moderate heterogeneity (I2 = 36%). Antibiotic treatment was found to present an uncertain risk for the development of drug-resistant strains (RR = 1.51, 95% CI = 0.95-2.40, I2 = 0%). In all trials, no significant difference between study arms was demonstrated regarding patient and graft outcomes, such as graft function, graft loss, hospitalization due to UTI, all-cause mortality, or acute rejection. Conclusions: The practice of screening and treating kidney transplant patients for asymptomatic bacteriuria does not curtail the incidence of future symptomatic UTIs, increase antimicrobial resistance, or affect graft outcomes. Whether early treatment of ASB after kidney transplantation (<2 months) is beneficial requires more RCTs.


An excitable signal integrator couples to an idling cytoskeletal oscillator to drive cell migration.

  • Chuan-Hsiang Huang‎ et al.
  • Nature cell biology‎
  • 2013‎

It is generally believed that cytoskeletal activities drive random cell migration, whereas signal transduction events initiated by receptors regulate the cytoskeleton to guide cells. However, we find that the cytoskeletal network, involving SCAR/WAVE, Arp 2/3 and actin-binding proteins, is capable of generating only rapid oscillations and undulations of the cell boundary. The signal transduction network, comprising multiple pathways that include Ras GTPases, PI(3)K and Rac GTPases, is required to generate the sustained protrusions of migrating cells. The signal transduction network is excitable, exhibiting wave propagation, refractoriness and maximal response to suprathreshold stimuli, even in the absence of the cytoskeleton. We suggest that cell motility results from coupling of 'pacemaker' signal transduction and 'idling motor' cytoskeletal networks, and various guidance cues that modulate the threshold for triggering signal transduction events are integrated to control the mode and direction of migration.


Reinstatement of the Chinese endemic species Styrax zhejiangensis.

  • Yu-Qing Ruan‎ et al.
  • PhytoKeys‎
  • 2019‎

Styrax zhejiangensis has been treated as a synonym of S. macrocarpus. Examination of herbarium specimens and observation of wild living plants demonstrates that S. zhejiangensis is a distinct species and is clearly distinguishable from S. macrocarpus through its flowering phenology in which leaves and flowers open simultaneously, its smaller corolla lobes and filaments, and its white-stellate-pubescent seeds. On this basis, we reinstate S. zhejiangensis as an accepted species. Photographic images and a distribution map of the two species are provided. A lectotype of S. zhejiangensis is also designated.


Identifying Human SIRT1 Substrates by Integrating Heterogeneous Information from Various Sources.

  • Zichao Zhai‎ et al.
  • Scientific reports‎
  • 2017‎

Most proteins undergo different kinds of modification after translation. Protein acetylation is one of the most crucial post-translational modifications, which causes direct or indirect impact on various biological activities in vivo. As a member of Class III HDACs, SIRT1 was the closest one to the yeast sir2 and drew most attention, while a small number of known SIRT1 substrates caused difficulties to clarify its function. In this work, we designed a novel computational method to screen SIRT1 substrates based on manually collected data and Support Vector Machines (SVMs). Unlike other approaches, we took both primary sequence and protein functional features into consideration. Through integrating functional features, the Matthews correlation coefficient (MCC) for the prediction increased from 0.10 to 0.65. The prediction results were verified by independent dataset and biological experiments. The validation results demostrated that our classifier could effectively identify SIRT1 substrates and filter appropriate candidates for further research. Furthermore, we provide online tool to support SIRT1 substrates prediction, which is freely available at http://bioinfo.bjmu.edu.cn/huac/ .


Destabilization of linker histone H1.2 is essential for ATM activation and DNA damage repair.

  • Zhiming Li‎ et al.
  • Cell research‎
  • 2018‎

Linker histone H1 is a master regulator of higher order chromatin structure, but its involvement in the DNA damage response and repair is unclear. Here, we report that linker histone H1.2 is an essential regulator of ataxia telangiectasia mutated (ATM) activation. We show that H1.2 protects chromatin from aberrant ATM activation through direct interaction with the ATM HEAT repeat domain and inhibition of MRE11-RAD50-NBS1 (MRN) complex-dependent ATM recruitment. Upon DNA damage, H1.2 undergoes rapid PARP1-dependent chromatin dissociation through poly-ADP-ribosylation (PARylation) of its C terminus and further proteasomal degradation. Inhibition of H1.2 displacement by PARP1 depletion or an H1.2 PARylation-dead mutation compromises ATM activation and DNA damage repair, thus leading to impaired cell survival. Taken together, our findings suggest that linker histone H1.2 functions as a physiological barrier for ATM to target the chromatin, and PARylation-mediated active H1.2 turnover is required for robust ATM activation and DNA damage repair.


Phosphorus and Nitrogen Drive the Seasonal Dynamics of Bacterial Communities in Pinus Forest Rhizospheric Soil of the Qinling Mountains.

  • Hai H Wang‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

The temporal distribution patterns of bacterial communities, as an important group in mountain soil, are affected by various environmental factors. To improve knowledge regarding the successional seasonal dynamics of the mountain soil bacterial communities, the rhizospheric soil of a 30-year-old natural secondary Pinus tabulaeformis forest, located in the high-altitude (1900 m a.s.l.) of the temperate Qinling Mountains, was sampled and studied during four different seasons. The bacterial community composition and structure in the rhizospheric soil were studied using an Illumina MiSeq Sequencing platform. Furthermore, the edaphic properties and soil enzymatic activities (urease, phosphatase, and catalase) were measured in order to identify the main impact factors on the soil bacterial community. According to the results, all of the edaphic properties and soil enzymatic activities were significantly affected by the seasonal changes, except for the C/N ratio. Although the biomasses of soil bacterial communities increased during the summer and autumn (warm seasons), their Shannon diversity and Pielou's evenness were decreased. Proteobacteria, Acidobacteria, Actinobacteria, Planctomycetes, and Bacteroidetes were the predominant bacterial groups in all of the soil samples, and the genera of Ktedonobacter, Sphingobium as well as an unclassified member of the Ktedonobacteria were the keystone taxa. The composition and structure of soil bacterial communities were strongly impacted by the edaphic properties, especially the temperature, moisture, ammoniacal nitrogen, available phosphorus and total phosphorus which were the crucial factors to drive the temporal distribution of the soil bacterial community and diversity. In conclusion, the soil temperature, moisture and the nutrients N and P were the crucial edaphic factors for shaping the rhizospheric soil bacterial communities as season and climate change in a P. tabulaeformis forest of Qinling Mountains.


C5aR deficiency attenuates the breast cancer development via the p38/p21 axis.

  • Jian Chen‎ et al.
  • Aging‎
  • 2020‎

Emerging evidence has shown activation of the complement component C5 to C5a in cancer tissues and C5aR expression in breast cancer cells relates to the tumor development and poor prognosis, suggesting the involvement of complement C5a/C5aR pathway in the breast cancer pathogenesis. In this study, we found that as compared to the non-tumoral tissues, both C5aR and MAPK/p38 showed an elevated expression, but p21/p-p21 showed lower expression, in the tumoral tissues of breast cancer patients. Mice deficient in C5aR or mice treated with the C5aR antagonist exhibited attenuation of breast cancer growth and reduction in the p38/p-p38 expression, but increase in p21/p-p21 expression, in the tumor tissues. Pre-treatment of the breast cancer cells with recombinant C5a resulted in reduced p21 expression, and MAPK/p38 inhibitors prevented C5a-induced reduction in p21 expression, suggesting the involvement of the MAPK/p38 signaling pathway in the C5a/C5aR-mediated suppression of p21/p-p21 expression. These results provide evidence that breast cancer development may rely on C5a/C5aR interaction, for which MAPK/p38 pathway participate in down-regulating the p21 expression. Inhibition of C5a/C5aR pathway is expected to be helpful for the treatment of patients with breast cancer.


LATS kinase-mediated CTCF phosphorylation and selective loss of genomic binding.

  • Huacheng Luo‎ et al.
  • Science advances‎
  • 2020‎

Chromatin topological organization is instrumental in gene transcription. Gene-enhancer interactions are accommodated in the same CTCF-mediated insulated neighborhoods. However, it remains poorly understood whether and how the 3D genome architecture is dynamically restructured by external signals. Here, we report that LATS kinases phosphorylated CTCF in the zinc finger (ZF) linkers and disabled its DNA-binding activity. Cellular stress induced LATS nuclear translocation and CTCF ZF linker phosphorylation, and altered the landscape of CTCF genomic binding partly by dissociating it selectively from a small subset of its genomic binding sites. These sites were highly enriched for the boundaries of chromatin domains containing LATS signaling target genes. The stress-induced CTCF phosphorylation and locus-specific dissociation from DNA were LATS-dependent. Loss of CTCF binding disrupted local chromatin domains and down-regulated genes located within them. The study suggests that external signals may rapidly modulate the 3D genome by affecting CTCF genomic binding through ZF linker phosphorylation.


Arbuscular Mycorrhizal Symbiosis Alleviates Salt Stress in Black Locust through Improved Photosynthesis, Water Status, and K+/Na+ Homeostasis.

  • Jie Chen‎ et al.
  • Frontiers in plant science‎
  • 2017‎

Soil salinization and the associated land degradation are major and growing ecological problems. Excess salt in soil impedes plant photosynthetic processes and root uptake of water and nutrients such as K+. Arbuscular mycorrhizal (AM) fungi can mitigate salt stress in host plants. Although, numerous studies demonstrate that photosynthesis and water status are improved by mycorrhizae, the molecular mechanisms involved have received little research attention. In the present study, we analyzed the effects of AM symbiosis and salt stress on photosynthesis, water status, concentrations of Na+ and K+, and the expression of several genes associated with photosynthesis (RppsbA, RppsbD, RprbcL, and RprbcS) and genes coding for aquaporins or membrane transport proteins involved in K+ and/or Na+ uptake, translocation, or compartmentalization homeostasis (RpSOS1, RpHKT1, RpNHX1, and RpSKOR) in black locust. The results showed that salinity reduced the net photosynthetic rate, stomatal conductance, and relative water content in both non-mycorrhizal (NM) and AM plants; the reductions of these three parameters were less in AM plants compared with NM plants. Under saline conditions, AM fungi significantly improved the net photosynthetic rate, quantum efficiency of photosystem II photochemistry, and K+ content in plants, but evidently reduced the Na+ content. AM plants also displayed a significant increase in the relative water content and an evident decrease in the shoot/root ratio of Na+ in the presence of 200 mM NaCl compared with NM plants. Additionally, mycorrhizal colonization upregulated the expression of three chloroplast genes (RppsbA, RppsbD, and RprbcL) in leaves, and three genes (RpSOS1, RpHKT1, and RpSKOR) encoding membrane transport proteins involved in K+/Na+ homeostasis in roots. Expression of several aquaporin genes was regulated by AM symbiosis in both leaves and roots depending on soil salinity. This study suggests that the beneficial effects of AM symbiosis on the photosynthetic capacity, water status, and K+/Na+ homeostasis lead to the improved growth performance and salt tolerance of black locust exposed to salt stress.


Platinum covalent shell cross-linked micelles designed to deliver doxorubicin for synergistic combination cancer therapy.

  • Caiying Zhu‎ et al.
  • International journal of nanomedicine‎
  • 2017‎

The preparation of polymer therapeutics capable of controlled release of multiple chemotherapeutic drugs has remained a tough problem in synergistic combination cancer therapy. Herein, a novel dual-drug co-delivery system carrying doxorubicin (DOX) and platinum(IV) (Pt[IV]) was developed. An amphiphilic diblock copolymer, PCL-b-P(OEGMA-co-AzPMA), was synthesized and used as a nanoscale drug carrier in which DOX and Pt(IV) could be packaged together. The copolymers were shell cross-linked by Pt(IV) prodrug via a click reaction. Studies on the in vitro drug release and cellular uptake of the dual-drug co-delivery system showed that the micelles were effectively taken up by the cells and simultaneously released drugs in the cells. Futhermore, the co-delivery polymer nanoparticles caused much higher cell death in HeLa and A357 tumor cells than either the free drugs or single-drug-loaded micelles at the same dosage, exhibiting a synergistic combination of DOX and Pt(IV). The results obtained with the shell cross-linked micelles based on an anticancer drug used as a cross-linking linkage suggested a promising application of the micelles for multidrug delivery in combination cancer therapy.


USP12 downregulation orchestrates a protumourigenic microenvironment and enhances lung tumour resistance to PD-1 blockade.

  • Zhaojuan Yang‎ et al.
  • Nature communications‎
  • 2021‎

Oncogenic activation of KRAS and its surrogates is essential for tumour cell proliferation and survival, as well as for the development of protumourigenic microenvironments. Here, we show that the deubiquitinase USP12 is commonly downregulated in the KrasG12D-driven mouse lung tumour and human non-small cell lung cancer owing to the activation of AKT-mTOR signalling. Downregulation of USP12 promotes lung tumour growth and fosters an immunosuppressive microenvironment with increased macrophage recruitment, hypervascularization, and reduced T cell activation. Mechanistically, USP12 downregulation creates a tumour-promoting secretome resulting from insufficient PPM1B deubiquitination that causes NF-κB hyperactivation in tumour cells. Furthermore, USP12 inhibition desensitizes mouse lung tumour cells to anti-PD-1 immunotherapy. Thus, our findings propose a critical component downstream of the oncogenic signalling pathways in the modulation of tumour-immune cell interactions and tumour response to immune checkpoint blockade therapy.


Fast alignment and preprocessing of chromatin profiles with Chromap.

  • Haowen Zhang‎ et al.
  • Nature communications‎
  • 2021‎

As sequencing depth of chromatin studies continually grows deeper for sensitive profiling of regulatory elements or chromatin spatial structures, aligning and preprocessing of these sequencing data have become the bottleneck for analysis. Here we present Chromap, an ultrafast method for aligning and preprocessing high throughput chromatin profiles. Chromap is comparable to BWA-MEM and Bowtie2 in alignment accuracy and is over 10 times faster than traditional workflows on bulk ChIP-seq/Hi-C profiles and than 10x Genomics' CellRanger v2.0.0 pipeline on single-cell ATAC-seq profiles.


The Impact of Rare Human Variants on Barrier-To-Auto-Integration Factor 1 (Banf1) Structure and Function.

  • Maddison Rose‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2021‎

Barrier-to-Autointegration Factor 1 (Banf1/BAF) is a critical component of the nuclear envelope and is involved in the maintenance of chromatin structure and genome stability. Banf1 is a small DNA binding protein that is conserved amongst multicellular eukaryotes. Banf1 functions as a dimer, and binds non-specifically to the phosphate backbone of DNA, compacting the DNA in a looping process. The loss of Banf1 results in loss of nuclear envelope integrity and aberrant chromatin organisation. Significantly, mutations in Banf1 are associated with the severe premature ageing syndrome, Néstor-Guillermo Progeria Syndrome. Previously, rare human variants of Banf1 have been identified, however the impact of these variants on Banf1 function has not been explored. Here, using in silico modelling, biophysical and cell-based approaches, we investigate the effect of rare human variants on Banf1 structure and function. We show that these variants do not significantly alter the secondary structure of Banf1, but several single amino acid variants in the N- and C-terminus of Banf1 impact upon the DNA binding ability of Banf1, without altering Banf1 localisation or nuclear integrity. The functional characterisation of these variants provides further insight into Banf1 structure and function and may aid future studies examining the potential impact of Banf1 function on nuclear structure and human health.


Nicotine binds to the transthyretin-thyroxine complex and reduces its uptake by placental trophoblasts.

  • Melanie J Young‎ et al.
  • Molecular and cellular endocrinology‎
  • 2022‎

A supply of maternal thyroid hormone (thyroxine, T4) is essential for normal human fetal development. Human placental trophoblasts synthesize, secrete and take up the T4 binding protein transthyretin, providing a route for maternal T4 to enter the placenta. Transthyretin is also involved in T4 transport in other tissues such as the brain choroid plexus. Nicotine alters transthyretin synthesis and function in rat choroid plexus. If nicotine influences trophoblast turnover of transthyretin, then it may directly affect placental transfer of T4 to the developing fetus and contribute to the negative impacts of smoking on fetal growth, development and placental function.


Efficacy and safety of tuina for senile insomnia: A protocol for systematic review and meta-analysis.

  • Yangshengjie Liu‎ et al.
  • Medicine‎
  • 2022‎

Insomnia is a common diseases of the elderly, tuina is a widely used treatment. At present, there is a lack of supportive evidence on efficacy and safety of tuina for senile insomnia. The purpose of this systematic review is to assess the effectiveness and safety of tuina therapy in the treatment of senile insomnia.


Adaptive Reproductive Strategies of an Ectoparasitoid Sclerodermus guani under the Stress of Its Entomopathogenic Fungus Beauveria bassiana.

  • Yun Wei‎ et al.
  • Insects‎
  • 2023‎

Complex interspecific relationships between parasites and their insect hosts involve multiple factors and are affected by their ecological and evolutionary context. A parasitoid Sclerodermus guani (Hymenoptera: Bethylidae) and an entomopathogenic fungus Beauveria bassiana (Hypocreales: Cordycipitaceae) shared the same host in nature, Monochamus alternatus (Coleoptera: Cerambycidae). They often encountered the semi-enclosed microhabitat of the host larvae or pupae. We tested the survival and reproduction of the parasitoid's parent and its offspring fitness under different concentrations of B. bassiana suspension. The results show that S. guani parent females carrying higher concentrations of the pathogen shorten the pre-reproductive time and regulate their own fertility and their offspring's survival and development. This minimal model of the interspecific interactions contains three dimensionless parameters, vulnerability (θ), dilution ratio (δ), and PR, which were used to evaluate the mortality effect of the parasitoid S. guani on its host M. alternatus under the stress of the entomopathogenic fungus B. bassiana. We compared the infection and lethal effect of the fungus B. bassiana with different concentrations to the parasitoid S. guani and the host larvae M. alternatus. At higher concentrations of the pathogen, the parasitoid parent females shorten the pre-reproductive time and regulate their own fertility and their offspring's survival and development. At moderate concentrations of the pathogen, however, the ability of the parasitoid to exploit the host is more flexible and efficient, possibly reflecting the potential interspecific interactions between the two parasites which were able to coexist and communicate with their hosts in ecological contexts (with a high overlap in time and space) and cause interspecific competition and intraguild predation.


Sphingosine Kinase 1 Deficiency in Smooth Muscle Cells Protects against Hypoxia-Mediated Pulmonary Hypertension via YAP1 Signaling.

  • Jiwang Chen‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Sphingosine kinase 1 (SPHK1) and the sphingosine-1-phosphate (S1P) signaling pathway have been shown to play a role in pulmonary arterial hypertension (PAH). S1P is an important stimulus for pulmonary artery smooth muscle cell (PASMC) proliferation and pulmonary vascular remodeling. We aimed to examine the specific roles of SPHK1 in PASMCs during pulmonary hypertension (PH) progression. We generated smooth muscle cell-specific, Sphk1-deficient (Sphk1f/f TaglnCre+) mice and isolated Sphk1-deficient PASMCs from SPHK1 knockout mice. We demonstrated that Sphk1f/f TaglnCre+ mice are protected from hypoxia or hypoxia/Sugen-mediated PH, and pulmonary vascular remodeling and that Sphk1-deficient PASMCs are less proliferative compared with ones isolated from wild-type (WT) siblings. S1P or hypoxia activated yes-associated protein 1 (YAP1) signaling by enhancing its translocation to the nucleus, which was dependent on SPHK1 enzymatic activity. Further, verteporfin, a pharmacologic YAP1 inhibitor, attenuated the S1P-mediated proliferation of hPASMCs, hypoxia-mediated PH, and pulmonary vascular remodeling in mice and hypoxia/Sugen-mediated severe PH in rats. Smooth muscle cell-specific SPHK1 plays an essential role in PH via YAP1 signaling, and YAP1 inhibition may have therapeutic potential in treating PH.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: