Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 30 papers out of 30 papers

Propagating acoustic waves on a culture substrate regulate the directional collective cell migration.

  • Chikahiro Imashiro‎ et al.
  • Microsystems & nanoengineering‎
  • 2021‎

Collective cell migration plays a critical role in physiological and pathological processes such as development, wound healing, and metastasis. Numerous studies have demonstrated how various types of chemical, mechanical, and electrical cues dictate the collective migratory behaviors of cells. Although an acoustic cue can be advantageous because of its noninvasiveness and biocompatibility, cell migration in response to acoustic stimulation remains poorly understood. In this study, we developed a device that is able to apply surface acoustic waves to a cell culture substrate and investigated the effect of propagating acoustic waves on collective cell migration. The migration distance estimated at various wave intensities revealed that unidirectional cell migration was enhanced at a critical wave intensity and that it was suppressed as the intensity was further increased. The increased migration might be attributable to cell orientation alignment along the direction of the propagating wave, as characterized by nucleus shape. Thicker actin bundles indicative of a high traction force were observed in cells subjected to propagating acoustic waves at the critical intensity. Our device and technique can be useful for regulating cellular functions associated with cell migration.


Collective cell migration of fibroblasts is affected by horizontal vibration of the cell culture dish.

  • Umi Enomoto‎ et al.
  • Engineering in life sciences‎
  • 2020‎

Regulating the collective migration of cells is an important issue in bioengineering. Enhancing or suppressing cell migration and controlling the migration direction is useful for various physiological phenomena such as wound healing. Several methods of migration regulation based on different mechanical stimuli have been reported. While vibrational stimuli, such as sound waves, show promise for regulating migration, the effect of the vibration direction on collective cell migration has not been studied in depth. Therefore, we fabricated a vibrating system that can apply horizontal vibration to a cell culture dish. Here, we evaluated the effect of the vibration direction on the collective migration of fibroblasts in a wound model comprising two culture areas separated by a gap. Results showed that the vibration direction affects the cell migration distance: vibration orthogonal to the gap enhances the collective cell migration distance while vibration parallel to the gap suppresses it. Results also showed that conditions leading to enhanced migration distance were also associated with elevated glucose consumption. Furthermore, under conditions promoting cell migration, the cell nuclei become elongated and oriented orthogonal to the gap. In contrast, under conditions that reduce the migration distance, cell nuclei were oriented to the direction parallel to the gap.


Two pathways are required for ultrasound-evoked behavioral changes in Caenorhabditis elegans.

  • Uri Magaram‎ et al.
  • PloS one‎
  • 2022‎

Ultrasound has been shown to affect the function of both neurons and non-neuronal cells, but, the underlying molecular machinery has been poorly understood. Here, we show that at least two mechanosensitive proteins act together to generate C. elegans behavioral responses to ultrasound stimuli. We first show that these animals generate reversals in response to a single 10 msec pulse from a 2.25 MHz ultrasound transducer. Next, we show that the pore-forming subunit of the mechanosensitive channel TRP-4, and a DEG/ENaC/ASIC ion channel MEC-4, are both required for this ultrasound-evoked reversal response. Further, the trp-4;mec-4 double mutant shows a stronger behavioral deficit compared to either single mutant. Finally, overexpressing TRP-4 in specific chemosensory neurons can rescue the ultrasound-triggered behavioral deficit in the mec-4 null mutant, suggesting that both TRP-4 and MEC-4 act together in affecting behavior. Together, we demonstrate that multiple mechanosensitive proteins likely cooperate to transform ultrasound stimuli into behavioral changes.


Onset of Visible Capillary Waves from High-Frequency Acoustic Excitation.

  • Shuai Zhang‎ et al.
  • Langmuir : the ACS journal of surfaces and colloids‎
  • 2023‎

Remarkably, the interface of a fluid droplet will produce visible capillary waves when exposed to acoustic waves. For example, a small (∼1 μL) sessile droplet will oscillate at a low ∼102 Hz frequency when weakly driven by acoustic waves at ∼106 Hz frequency and beyond. We measured such a droplet's interfacial response to 6.6 MHz ultrasound to gain insight into the energy transfer mechanism that spans these vastly different time scales, using high-speed microscopic digital transmission holography, a unique method to capture three-dimensional surface dynamics at nanometer space and microsecond time resolutions. We show that low-frequency capillary waves are driven into existence via a feedback mechanism between the acoustic radiation pressure and the evolving shape of the fluid interface. The acoustic pressure is distributed in the standing wave cavity of the droplet, and as the shape of the fluid interface changes in response to the distributed pressure present on the interface, the standing wave field also changes shape, feeding back to produce changes in the acoustic radiation pressure distribution in the cavity. A physical model explicitly based upon this proposed mechanism is provided, and simulations using it were verified against direct observations of both the microscale droplet interface dynamics from holography and internal pressure distributions using microparticle image velocimetry. The pressure-interface feedback model accurately predicts the vibration amplitude threshold at which capillary waves appear, the subsequent amplitude and frequency of the capillary waves, and the distribution of the standing wave pressure field within the sessile droplet responsible for the capillary waves.


High-resolution acoustophoretic 3D cell patterning to construct functional collateral cylindroids for ischemia therapy.

  • Byungjun Kang‎ et al.
  • Nature communications‎
  • 2018‎

The fabrication of functional tissues is essential for clinical applications such as disease treatment and drug discovery. Recent studies have revealed that the mechanical environments of tissues, determined by geometric cell patterns, material composition, or mechanical properties, play critical roles in ensuring proper tissue function. Here, we propose an acoustophoretic technique using surface acoustic waves to fabricate therapeutic vascular tissue containing a three-dimensional collateral distribution of vessels. Co-aligned human umbilical vein endothelial cells and human adipose stem cells that are arranged in a biodegradable catechol-conjugated hyaluronic acid hydrogel exhibit enhanced cell-cell contacts, gene expression, and secretion of angiogenic and anti-inflammatory paracrine factors. The therapeutic effects of the fabricated vessel constructs are demonstrated in experiments using an ischemia mouse model by exhibiting the remarkable recovery of damaged tissue. Our study can be referenced to fabricate various types of artificial tissues that mimic the original functions as well as structures.


Quantifying cell adhesion through forces generated by acoustic streaming.

  • Chikahiro Imashiro‎ et al.
  • Ultrasonics sonochemistry‎
  • 2022‎

The strength of cell adhesion is important in understanding the cell's health and in culturing them. Quantitative measurement of cell adhesion strength is a significant challenge in bioengineering research. For this, the present study describes a system that can measure cell adhesion strength using acoustic streaming induced by Lamb waves. Cells are cultured on an ultrasound transducer using a range of preculture and incubation times with phosphate-buffered saline (PBS) just before the measurement. Acoustic streaming is then induced using several Lamb wave intensities, exposing the cells to shear flows and eventually detaching them. By relying upon a median detachment rate of 50 %, the corresponding detachment force, or force of cell adhesion, was determined to be on the order of several nN, consistent with previous reports. The stronger the induced shear flow, the more cells were detached. Further, we employed a preculture time of 8 to 24 h and a PBS incubation time of 0 to 60 min, producing cell adhesion forces that varied from 1.2 to 13 nN. Hence, the developed system can quantify cell adhesion strength over a wide range, possibly offering a fundamental tool for cell-based bioengineering.


Medical Devices for Low- and Middle-Income Countries: A Review and Directions for Development.

  • Aditya Vasan‎ et al.
  • Journal of medical devices‎
  • 2020‎

The development of diagnostics and medical devices has historically been concentrated in high-income countries, despite a significant need to expand healthcare services to low- and middle-income countries (LMIC). Poor quality healthcare extends beyond LMIC to underserved communities in developed countries. This paper reviews diseases and conditions that have not received much attention in the past despite imposing a significant burden on healthcare systems in these circumstances. We review the underlying mechanism of action of these conditions and current technology in use for diagnosis or surgical intervention. We aim to identify areas for technological development and review policy considerations that will enable real-world adoption. Specifically, this review focuses on diseases prevalent in sub-Saharan Africa and south Asia: melioidosis, infant and maternal mortality, schistosomiasis, and heavy metal and pesticide poisoning. Our aim with this review is to identify problems facing the world that require the attention of the medical device community and provide recommendations for research directions for groups interested in this field.


An effective detachment system for human induced pluripotent stem cells cultured on multilayered cultivation substrates using resonance vibrations.

  • Yusuke Terao‎ et al.
  • Scientific reports‎
  • 2019‎

Clinical application of human induced pluripotent stem cells (hiPSCs) has been hampered by the lack of a practical, scalable culture system. Stacked culture plates (SCPs) have recently attracted attention. However, final cell yields depend on the efficiency of cell detachment, and inefficient cell recovery from SCPs presents a major challenge to their use. We have developed an effective detachment method using resonance vibrations (RVs) of substrates with sweeping driving frequency. By exciting RVs that have 1-3 antinodes with ultra-low-density enzyme spread on each substrate of SCPs, 87.8% of hiPSCs were successfully detached from a 5-layer SCP compared to 30.8% detached by the conventional enzymatic method. hiPSC viability was similar after either method. Moreover, hiPSCs detached by the RV method maintained their undifferentiated state. Additionally, hiPSCs after long-term culture (10 passages) kept excellent detachment efficiency, had the normal karyotypes, and maintained the undifferentiated state and pluripotency. These results indicated that the RV method has definite advantages over the conventional enzymatic method in the scalable culture of hiPSCs using SCPs.


Pulsed Low-Frequency Magnetic Fields Induce Tumor Membrane Disruption and Altered Cell Viability.

  • Christopher P Ashdown‎ et al.
  • Biophysical journal‎
  • 2020‎

Tumor cells express a unique cell surface glycocalyx with upregulation of sulfated glycosaminoglycans and charged glycoproteins. Little is known about how electromagnetic fields interact with this layer, particularly with regard to harnessing unique properties for therapeutic benefit. We applied a pulsed 20-millitesla (mT) magnetic field with rate of rise (dB/dt) in the msec range to cultured tumor cells to assess whether this affects membrane integrity as measured using cytolytic assays. A 10-min exposure of A549 human lung cancer cells to sequential 50- and 385-Hz oscillating magnetic fields was sufficient to induce intracellular protease release, suggesting altered membrane integrity after the field exposure. Heparinase treatment, which digests anionic sulfated glycan polymers, before exposure rendered cells insensitive to this effect. We further examined a non-neoplastic human primary cell line (lung lymphatic endothelial cells) as a typical normal host cell from the lung cancer microenvironment and found no effect of field exposure on membrane integrity. The field exposure was also sufficient to alter proliferation of tumor cells in culture, but not that of normal lymphatic cells. Pulsed magnetic field exposure of human breast cancer cells that express a sialic-acid rich glycocalyx also induced protease release, and this was partially abrogated by sialidase pretreatment, which removes cell surface anionic sialic acid. Scanning electron microscopy showed that field exposure may induce unique membrane "rippling" along with nanoscale pores on A549 cells. These effects were caused by a short exposure to pulsed 20-mT magnetic fields, and future work may examine greater magnitude effects. The proof of concept herein points to a mechanistic basis for possible applications of pulsed magnetic fields in novel anticancer strategies.


Inducing Mild Traumatic Brain Injury in C. elegans via Cavitation-Free Surface Acoustic Wave-Driven Ultrasonic Irradiation.

  • Morteza Miansari‎ et al.
  • Scientific reports‎
  • 2019‎

Mild traumatic brain injury is an all-too-common outcome from modern warfare and sport, and lacks a reproducible model for assessment of potential treatments and protection against it. Here we consider the use of surface acoustic wave (SAW) irradiation of C. elegans worms-without cavitation-as a potential, ethically reasonable animal-on-a-chip model for inducing traumatic brain injury in an animal, producing significant effects on memory and learning that could prove useful in a model that progress from youth to old age in but a few weeks. We show a significant effect by SAW on the ability of worms to learn post-exposure through associative learning chemotaxis. At higher SAW intensity, we find immediate, thorough, but temporary paralysis of the worms. We further explore the importance of homogeneous exposure of the worms to the SAW-driven ultrasound, an aspect poorly controlled in past efforts, if at all, and demonstrate the absence of cavitation through a change in fluids from a standard media for the worms to the exceedingly viscous polyvinyl alcohol. Likewise, we demonstrate that acoustic streaming, when present, is not directly responsible for paralysis nor learning disabilities induced in the worm, but is beneficial at low amplitudes to ensuring homogeneous ultrasound exposure.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: