Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 63 papers

Impact of molecular and clinical variables on survival outcome with immunotherapy for glioblastoma patients: A systematic review and meta-analysis.

  • Wentao Hu‎ et al.
  • CNS neuroscience & therapeutics‎
  • 2022‎

Given that only a subset of patients with glioblastoma multiforme (GBM) responds to immuno-oncology, this study aimed to assess the impact of multiple factors on GBM immunotherapy prognosis and investigate the potential predictors.


Integrated Analysis of Metabolomics and Lipidomics in Plasma of T2DM Patients with Diabetic Retinopathy.

  • Chun Ding‎ et al.
  • Pharmaceutics‎
  • 2022‎

Diabetic retinopathy (DR) is a major cause of blindness worldwide and may be non-proliferative (NPDR) or proliferative (PDR). To Investig.gate the metabolomic and lipidomic characteristics of plasma in DR patients, plasma samples were collected from patients with type 2 diabetes mellitus (DR group) with PDR (n = 27), NPDR (n = 18), or no retinopathy (controls, n = 21). Levels of 54 and 41 metabolites were significantly altered in the plasma of DR patients under positive and negative ion modes, respectively. By subgroup analysis, 74 and 29 significantly changed plasma metabolites were detected in PDR patients compared with NPDR patients under positive and negative ion modes, respectively. KEGG analysis indicated that pathways such as biosynthesis of amino acids and neuroactive ligand-receptor interaction were among the most enriched pathways in altered metabolites in the DR group and PDR subgroup. Moreover, a total of 26 and 41 lipids were significantly changed in the DR group and the PDR subgroup, respectively. The panel using the 29-item index could discriminate effectively between diabetic patients with and without retinopathy, and the panel of 22 items showed effective discrimination between PDR and NPDR. These results provide a basis for further research into the therapeutic targets associated with these metabolite and lipid alterations.


A Newly Identified lncBCAS1-4_1 Associated With Vitamin D Signaling and EMT in Ovarian Cancer Cells.

  • Yaqi Xue‎ et al.
  • Frontiers in oncology‎
  • 2021‎

Long noncoding RNAs (lncRNAs) were identified rapidly due to their important role in many biological processes and human diseases including cancer. 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] and its analogues are widely applied as preventative and therapeutic anticancer agents. However, the expression profile of lncRNAs regulated by 1α,25(OH)2D3 in ovarian cancer remains to be clarified. In the present study, we found 606 lncRNAs and 102 mRNAs that showed differential expression (DE) based on microarray data. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the DE genes were mainly enriched in TGF-β, MAPK, Ras, PI3K-Akt, and Hippo signaling pathways, as well as the vitamin D-related pathway. We further assessed the potential lncRNAs that linked vitamin D signaling with EMT, and lncBCAS1-4_1 was identified in the first time. Moreover, we found that the most upregulated lncBCAS1-4_1 showed 75% same transcripts with CYP24A1 (metabolic enzyme of 1α,25(OH)2D3). Finally, the lncBCAS1-4_1 gain-of-function cell model was established, which demonstrated that the knockdown of lncBCAS1-4_1 inhibited the proliferation and migration of ovarian cancer cells. Furthermore, lncBCAS1-4_1 could resist the antitumor effect of 1α,25(OH)2D3, which was associated with upregulated ZEB1. These data provide new evidences that lncRNAs served as a target for the antitumor effect of 1α,25(OH)2D3.


Regional biomechanical imaging of liver cancer cells.

  • Weiwei Pei‎ et al.
  • Journal of Cancer‎
  • 2019‎

Liver cancer is one of the leading cancers, especially in developing countries. Understanding the biomechanical properties of the liver cancer cells can not only help to elucidate the mechanisms behind the cancer progression, but also provide important information for diagnosis and treatment. At the cellular level, we used well-established atomic force microscopy (AFM) techniques to characterize the heterogeneity of mechanical properties of two different types of human liver cancer cells and a normal liver cell line. Stiffness maps with a resolution of 128x128 were acquired for each cell. The distributions of the indentation moduli of the cells showed significant differences between cancerous cells and healthy controls. Significantly, the variability was even greater amongst different types of cancerous cells. Fitting of the histogram of the effective moduli using a normal distribution function showed the Bel7402 cells were stiffer than the normal cells while HepG2 cells were softer. Morphological analysis of the cell structures also showed a higher cytoskeleton content among the cancerous cells. Results provided a foundation for applying knowledge of cell stiffness heterogeneity to search for tissue-level, early-stage indicators of liver cancer.


Histone demethylase KDM4A plays an oncogenic role in nasopharyngeal carcinoma by promoting cell migration and invasion.

  • Jingyi Zhao‎ et al.
  • Experimental & molecular medicine‎
  • 2021‎

Compelling evidence has indicated the vital role of lysine-specific demethylase 4 A (KDM4A), hypoxia-inducible factor-1α (HIF1α) and the mechanistic target of rapamycin (mTOR) signaling pathway in nasopharyngeal carcinoma (NPC). Therefore, we aimed to investigate whether KDM4A affects NPC progression by regulating the HIF1α/DDIT4/mTOR signaling pathway. First, NPC and adjacent tissue samples were collected, and KDM4A protein expression was examined by immunohistochemistry. Then, the interactions among KDM4A, HIF1α and DDIT4 were assessed. Gain- and loss-of-function approaches were used to alter KDM4A, HIF1α and DDIT4 expression in NPC cells. The mechanism of KDM4A in NPC was evaluated both in vivo and in vitro via RT-qPCR, Western blot analysis, MTT assay, Transwell assay, flow cytometry and tumor formation experiments. KDM4A, HIF1α, and DDIT4 were highly expressed in NPC tissues and cells. Mechanistically, KDM4A inhibited the enrichment of histone H3 lysine 9 trimethylation (H3K9me3) in the HIF1α promoter region and thus inhibited the methylation of HIF1α to promote HIF1α expression, thus upregulating DDIT4 and activating the mTOR signaling pathway. Overexpression of KDM4A, HIF1α, or DDIT4 or activation of the mTOR signaling pathway promoted SUNE1 cell proliferation, migration, and invasion but inhibited apoptosis. KDM4A silencing blocked the mTOR signaling pathway by inhibiting the HIF1α/DDIT4 axis to inhibit the growth of SUNE1 cells in vivo. Collectively, KDM4A silencing could inhibit NPC progression by blocking the activation of the HIF1α/DDIT4/mTOR signaling pathway by increasing H3K9me3, highlighting a promising therapeutic target for NPC.


m6A modifications of circular RNAs in ischemia-induced retinal neovascularization.

  • Yedi Zhou‎ et al.
  • International journal of medical sciences‎
  • 2023‎

Ischemia-induced pathological neovascularization in the retina is a leading cause of blindness in various age groups. The purpose of the current study was to identify the involvement of circular RNAs (circRNAs) methylated by N6-methyladenosine (m6A), and predict their potential roles in oxygen-induced retinopathy (OIR) in mice. Methylation assessment via microarray analysis indicated that 88 circRNAs were differentially modified by m6A methylation, including 56 hyper-methylated circRNAs and 32 hypo-methylated circRNAs. Gene ontology enrichment analysis predicted that the enriched host genes of the hyper-methylated circRNAs were involved in cellular process, cellular anatomical entity, and protein binding. Host genes of the hypo-methylated circRNAs were enriched in the regulation of cellular biosynthetic process, the nucleus, and binding. According to the Kyoto Encyclopedia of Genes and Genomes analysis, those host genes were involved in the pathways of selenocompound metabolism, salivary secretion, and lysine degradation. MeRIP-qPCR verified significant alterations in m6A methylation levels of mmu_circRNA_33363, mmu_circRNA_002816, and mmu_circRNA_009692. In conclusion, the study revealed the m6A modification alterations in OIR retinas, and the findings above shed light on the potential roles of m6A methylation in circRNA regulatory functions in the pathogenesis of ischemia-induced pathological retinal neovascularization.


Ionizing radiation-induced long noncoding RNA CRYBG3 regulates YAP/TAZ through mechanotransduction.

  • Lijun Zheng‎ et al.
  • Cell death & disease‎
  • 2022‎

Mechanotransduction sensing of tissue architecture and cellular microenvironment is a fundamental regulator of cell fate, including cancer. Meanwhile, long noncoding RNAs (lncRNAs) play multifunctions during cancer development and treatment. However, the link between lncRNAs and cellular mechanotransduction in the context of cancer progression has not yet been elucidated. In this study, using atomic force microscopy (AFM), we find that ionizing radiation reduces tumor stiffness. Ionizing radiation-induced lncRNA CRYBG3 can blunt YAP/TAZ activity through interference with mechanotransduction, resulting in the inhibition of cell proliferation, invasion, and metastasis of lung cancer cells. In vivo, we found that loss of lncRNA CRYBG3 could power the tumor initiation and metastasis ability, but this was abolished by concomitant deplete TAZ. At the molecular level, lncRNA CRYBG3 that in turn dysregulates F-actin organization, activates the LATS1/2 kinase, all in all resulting in YAP/TAZ nuclear exclusion. Our research proposes that lncRNA CRYBG3 is a mediator of radiotherapy through its control of cancer-tissue mechanotransduction and wiring YAP/TAZ activity to control tumor growth and metastasis.


Photoacoustic and magnetic resonance imaging-based gene and photothermal therapy using mesoporous nanoagents.

  • Hao Huang‎ et al.
  • Bioactive materials‎
  • 2022‎

The integration of photothermal therapy (PTT) with gene therapy (GT) in a single nanoscale platform demonstrates great potential in cancer therapy. Porous iron oxide nanoagents (PIONs) are widely used as magnetic nanoagents in the drug delivery field and also serve as a photothermal nanoagent for photothermal therapy. However, the therapeutic efficacy of PIONs-mediated GT has not been studied. The long noncoding RNA (lncRNA) CRYBG3 (LNC CRYBG3), a lncRNA induced by heavy ion irradiation in lung cancer cells, has been reported to directly bind to globular actin (G-actin) and cause degradation of cytoskeleton and blocking of cytokinesis, thus indicating its potential for use in GT by simulating the effect of heavy ion irradiation and functioning as an antitumor drug. In the present study, we investigated the possibility of combining PIONs-mediated PTT and LNC CRYBG3-mediated GT to destroy non-small cell lung cancer (NSCLC) cells both in vitro and in vivo. The combination therapy showed a high cancer cell killing efficacy, and the cure rate was better than that achieved using PTT or GT alone. Moreover, as a type of magnetic nanoagent, PIONs can be used for magnetic resonance imaging (MRI) and photoacoustic imaging (PAI) both in vitro and in vivo. These findings indicate that the new combination therapy has high potential for cancer treatment.


Identification of a Three-Gene Signature Based on Epithelial-Mesenchymal Transition of Lung Adenocarcinoma Through Construction and Validation of a Risk-Prediction Model.

  • Jianguang Shi‎ et al.
  • Frontiers in oncology‎
  • 2021‎

Epithelial-mesenchymal transition (EMT) process, which is regulated by genes of inducible factors and transcription factor family of signaling pathways, transforms epithelial cells into mesenchymal cells and is involved in tumor invasion and progression and increases tumor tolerance to clinical interventions. This study constructed a multigene marker for lung predicting the prognosis of lung adenocarcinoma (LUAD) patients by bioinformatic analysis based on EMT-related genes. Gene sets associated with EMT were downloaded from the EMT-gene database, and RNA-seq of LUAD and clinical information of patients were downloaded from the TCGA database. Differentially expressed genes were screened by difference analysis. Survival analysis was performed to identify genes associated with LUAD prognosis, and overlapping genes were taken for all the three. Prognosis-related genes were further determined by combining LASSO regression analysis for establishing a prediction signature, and the risk score equation for the prognostic model was established using multifactorial COX regression analysis to construct a survival prognostic model. The model accuracy was evaluated using subject working characteristic curves. According to the median value of risk score, samples were divided into a high-risk group and low-risk group to observe the correlation with the clinicopathological characteristics of patients. Combined with the results of one-way COX regression analysis, HGF, PTX3, and S100P were considered as independent predictors of LUAD prognosis. In lung cancer tissues, HGF and PTX3 expression was downregulated and S100P expression was upregulated. Kaplan-Meier, COX regression analysis showed that HGF, PTX3, and S100P were prognostic independent predictors of LUAD, and high expressions of all the three were all significantly associated with immune cell infiltration. The present study provided potential prognostic predictive biological markers for LUAD patients, and confirmed EMT as a key mechanism in LUAD progression.


Altered Fecal Microbiome and Metabolome in a Mouse Model of Choroidal Neovascularization.

  • Yun Li‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Choroidal neovascularization (CNV) is the defining feature of neovascular age-related macular degeneration (nAMD). Gut microbiota might be deeply involved in the pathogenesis of nAMD. This study aimed to reveal the roles of the gut microbiome and fecal metabolome in a mouse model of laser-induced CNV.


Chromosome-level genome assembly of the aphid parasitoid Aphidius gifuensis using Oxford Nanopore sequencing and Hi-C technology.

  • Bingyan Li‎ et al.
  • Molecular ecology resources‎
  • 2021‎

Aphidius gifuensis is a parasitoid wasp that has been commercially bred and released in large scale as a biocontrol agent for the management of aphid pests. As a highly efficient endoparasitoid, it is also an important model for exploring mechanisms of parasitism. Currently, artificially bred populations of this wasp are facing rapid decline with undetermined cause, and mechanisms underlying its parasitoid strategy remain poorly understood. Exploring the mechanism behind its population decline and the host-parasitoid relationship is impeded partly due to the lack of a comprehensive genome data for this species. In this study, we constructed a high-quality reference genome of A. gifuensis using Oxford Nanopore sequencing and Hi-C (proximity ligation chromatin conformation capture) technology. The final genomic assembly was 156.9 Mb, with a contig N50 length of 3.93 Mb, the longest contig length of 10.4 Mb and 28.89% repetitive sequences. 99.8% of genome sequences were anchored onto six linkage groups. A total of 11,535 genes were predicted, of which 90.53% were functionally annotated. Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis showed the completeness of assembled genome is 98.3%. We found significantly expanded gene families involved in metabolic processes, transmembrane transport, cell signal communication and oxidoreductase activity, in particular ATP-binding cassette (ABC) transporter, Cytochrome P450 and venom proteins. The olfactory receptors (ORs) showed significant contraction, which may be associated with the decrease in host recognition. Our study provides a solid foundation for future studies on the molecular mechanisms of population decline as well as host-parasitoid relationship for parasitoid wasps.


Long non-coding RNA CRYBG3 regulates glycolysis of lung cancer cells by interacting with lactate dehydrogenase A.

  • Huaiyuan Chen‎ et al.
  • Journal of Cancer‎
  • 2018‎

Cancer cells usually utilize glucose as a carbon source for aerobic glycolysis, a phenomenon known as the Warburg effect. And a high rate of glycolysis has been observed in lung cancer cells. The growing evidence indicates that long non-coding RNAs (lncRNAs) are important players in lung cancer initiation and progression. However, the correlation between lncRNAs and glycolysis remains unclear. In this study, we recognized a lncRNA, LNC CRYBG3, which can interact with lactate dehydrogenase A (LDHA), a vital enzyme of glycolysis, is highly upregulated in both clinical lung cancer tissues and in vitro cultured lung cancer cell lines. A positive correlation between the expression level of LNC CRYBG3 and LDHA expression levels is observed. In another hand, LNC CRYBG3 is a regulator of glycolysis and its overexpression promoted the uptake of glucose and the production of lactate whereas the knockdown of LNC CRYBG3 led to opposite results and suppressed cell proliferation. These results indicated that LNC CRYBG3 might be a novel target for lung cancer treatment.


Danhong Injection Protects Hemorrhagic Brain by Increasing Peroxiredoxin 1 in Aged Rats.

  • Shang Wang‎ et al.
  • Frontiers in pharmacology‎
  • 2020‎

Intracerebral hemorrhage (ICH) is a severe cerebrovascular disease with a high incidence, mortality and disability rate. Danhong injection (DHI) is beneficial for ischemic stroke, but is prohibited for ICH due to risk of bleeding. The present study aims to explore the potential therapeutic time window and molecular mechanism of DHI in a collagenase-induced ICH model in aged rats. DHI administration after ICH could significantly improve body weight and neurological deficits, and reduce the hematoma volume and brain water content when compared to the vehicle control. Furthermore, the protective effect of DHI administration on days 1-3 after ICH was superior to those on days 3-5 or 7-9 after ICH. DHI remarkably increased the Peroxiredoxin 1 (Prx1) expression in astrocytes and reduced the expression of inflammatory factors tumor necrosis factor-α (TNF-α) and interleukin-β (IL-1β) after ICH. The immediate treatment of Prx1 inhibiter chelerythrine (Che) after ICH abolished the protective effect of DHI. Furthermore, the Che treatment reduced the expression of Prx1 in astrocytes, but increased the expression of TNF-α and IL-1β after ICH. DHI treatment could not reverse these changes. Therefore, the earlier DHI is administered, the better the neuroprotective effect. DHI exerts antioxidative and anti-inflammatory function by increasing Prx1 in astrocytes. These present results may change the established understanding of DHI, and reveal a novel treatment approach for ICH.


Comprehensive Analysis of lncRNA-mRNA Expression Profiles in Depression-like Responses of Mice Related to Polystyrene Nanoparticle Exposure.

  • Qingping Liu‎ et al.
  • Toxics‎
  • 2023‎

Plastics in the environment can break down into nanoplastics (NPs), which pose a potential threat to public health. Studies have shown that the nervous system constitutes a significant target for nanoplastics. However, the potential mechanism behind nanoplastics' neurotoxicity remains unknown. This study aimed to investigate the role of lncRNA in the depressive-like responses induced by exposure to 25 nm polystyrene nanoplastics (PS NPs). Forty mice were divided into four groups administered doses of 0, 10, 25, and 50 mg/kg via gavage for 6 months. After conducting behavioral tests, RNA sequencing was used to detect changes in mRNAs, miRNAs, and lncRNAs in the prefrontal cortex of the mice in the 0 and 50 mg/kg PS NPs groups. The results revealed that mice exposed to chronic PS NPs developed depressive-like responses in a dose-dependent manner. It was demonstrated that 987 mRNAs, 29 miRNAs, and 116 lncRNAs were significantly different between the two groups. Then, a competing endogenous RNA (ceRNA) network containing 6 lncRNAs, 18 miRNAs, and 750 mRNAs was constructed. Enrichment results suggested that PS NPs may contribute to the onset of depression-like responses through the activation of axon guidance, neurotrophin-signaling pathways, and dopaminergic synapses. This study provided evidence of the molecular relationship between PS NPs and depression-like responses.


The Tumorigenic Effect of lncRNA AFAP1-AS1 is Mediated by Translated Peptide ATMLP Under the Control of m6 A Methylation.

  • Hailong Pei‎ et al.
  • Advanced science (Weinheim, Baden-Wurttemberg, Germany)‎
  • 2023‎

Long noncoding RNAs (lncRNAs) in eukaryotic transcripts have long been believed to regulate various aspects of cellular processes, including carcinogenesis. Herein, it is found that lncRNA AFAP1-AS1 encodes a conserved 90-amino acid peptide located on mitochondria, named lncRNA AFAP1-AS1 translated mitochondrial-localized peptide (ATMLP), and it is not the lncRNA but the peptide that promotes the malignancy of nonsmall cell lung cancer (NSCLC). As the tumor progresses, the serum level of ATMLP increases. NSCLC patients with high levels of ATMLP display poorer prognosis. Translation of ATMLP is controlled by m6 A methylation at the 1313 adenine locus of AFAP1-AS1. Mechanistically, ATMLP binds to the 4-nitrophenylphosphatase domain and non-neuronal SNAP25-like protein homolog 1 (NIPSNAP1) and inhibits its transport from the inner to the outer mitochondrial membrane, which antagonizes the NIPSNAP1-mediated regulation of cell autolysosome formation. The findings uncover a complex regulatory mechanism of NSCLC malignancy orchestrated by a peptide encoded by a lncRNA. A comprehensive judgment of the application prospects of ATMLP as an early diagnostic biomarker for NSCLC is also made.


Host- and virus-induced gene silencing of HOG1-MAPK cascade genes in Rhizophagus irregularis inhibit arbuscule development and reduce resistance of plants to drought stress.

  • Sijia Wang‎ et al.
  • Plant biotechnology journal‎
  • 2023‎

Arbuscular mycorrhizal (AM) fungi can form beneficial associations with the most terrestrial vascular plant species. AM fungi not only facilitate plant nutrient acquisition but also enhance plant tolerance to various environmental stresses such as drought stress. However, the molecular mechanisms by which AM fungal mitogen-activated protein kinase (MAPK) cascades mediate the host adaptation to drought stimulus remains to be investigated. Recently, many studies have shown that virus-induced gene silencing (VIGS) and host-induced gene silencing (HIGS) strategies are used for functional studies of AM fungi. Here, we identify the three HOG1 (High Osmolarity Glycerol 1)-MAPK cascade genes RiSte11, RiPbs2 and RiHog1 from Rhizophagus irregularis. The expression levels of the three HOG1-MAPK genes are significantly increased in mycorrhizal roots of the plant Astragalus sinicus under severe drought stress. RiHog1 protein was predominantly localized in the nucleus of yeast in response to 1 M sorbitol treatment, and RiPbs2 interacts with RiSte11 or RiHog1 directly by pull-down assay. Importantly, VIGS or HIGS of RiSte11, RiPbs2 or RiHog1 hampers arbuscule development and decreases relative water content in plants during AM symbiosis. Moreover, silencing of HOG1-MAPK cascade genes led to the decreased expression of drought-resistant genes (RiAQPs, RiTPSs, RiNTH1 and Ri14-3-3) in the AM fungal symbiont in response to drought stress. Taken together, this study demonstrates that VIGS or HIGS of AM fungal HOG1-MAPK cascade inhibits arbuscule development and expression of AM fungal drought-resistant genes under drought stress.


Vitamin D postpones the progression of epithelial ovarian cancer induced by 7, 12-dimethylbenz [a] anthracene both in vitro and in vivo.

  • Lizhi Liu‎ et al.
  • OncoTargets and therapy‎
  • 2016‎

Ovarian cancer is the most lethal malignancy of the female reproductive system, and the prevention and treatment of ovarian carcinoma are still far from optimal. Epidemiological studies reported that ovarian cancer risk was inversely associated with low level of 25-hydroxy vitamin D [25(OH)]. Therefore, this study focuses on exploring the chemoprevention of vitamin D on epithelial ovarian cancer induced by 7, 12-dimethylbenz [a] anthracene (DMBA).


LNC CRYBG3 inhibits tumor growth by inducing M phase arrest.

  • Weidong Mao‎ et al.
  • Journal of Cancer‎
  • 2019‎

Long noncoding RNAs (lncRNAs) are usually associated with tumor development and progression and some of them are dysregulated in various human cancers. The mechanisms underlying their dysregulation are worth further study. Here, we demonstrate that the expression level of LNC CRYBG3 is correlated with 1501 aberrantly expressed proteins in A549 cells (non-small cell lung cancer (NSCLC) cells). LNC CRYBG3 overexpression results in M phase arrest and promoted cell death, whereas LNC CRYBG3 knockdown did not elicit the opposite effects. The overexpression of LNC CRYBG3 inhibits cell proliferation both in vitro and in vivo. Moreover, it upregulates the expression of cyclin B1 and the phosphorylation of H3, whereas it inhibited the expression of cyclin-dependent kinase 6 and cyclin D1. Taken together, these findings suggest that LNC CRYBG3 regulates the cell cycle process of A549 cells, suggesting its potential application for the treatment of this disease.


Deferoxamine inhibits iron-uptake stimulated osteoclast differentiation by suppressing electron transport chain and MAPKs signaling.

  • Jian Zhang‎ et al.
  • Toxicology letters‎
  • 2019‎

Iron overload causes osteoporosis by enhancing osteoclastic bone resorption. During differentiation, osteoclasts demand high energy and contain abundant mitochondria. In mitochondria, iron is used for the synthesis of Fe-S clusters to support mitochondria biogenesis and electron transport chain. Moreover, mitochondrial reactive oxygen species (ROS) play an important role in osteoclastogenesis. Activation of MAPKs (ERK1/2, JNK, and p38) by ROS is essential and contribute to osteoclast differentiation. How iron chelation impairs electron transport chain and ROS dependent MAPKs activation during osteoclast differentiation is unknown. This study aimed to determine the direct effects of iron chelation on osteoclast differentiation, electron transport chain and MAPKs activation. In the present study, we found that when iron chelator, deferoxamine (DFO), was added, a dose-dependent inhibition of osteoclast differentiation and bone resorption was observed. Supplementation of transferrin-bound iron recovered osteoclastogenesis. Iron chelation resulted in a marked decrease in ferritin level, and increased expression of transferrin receptor 1 and ferroportin. As an iron chelator, DFO negatively affected mitochondrial function through decreasing activities of all the complexes. Expressions of mitochondrial subunits encoded both by mitochondrial and nuclear DNA were decreased. DFO augmented production of mitochondrial ROS, but inhibited the phosphorylation of ERK1/2, JNK, and p38, even in the presence of hydrogen peroxide. These results suggest that iron chelation directly inhibits iron-uptake stimulated osteoclast differentiation and suppresses electron transport chain. Iron chelation negatively regulates MAPKs activation, and this negative regulation is independent on ROS stimulation.


The role of TGFBI in mesothelioma and breast cancer: association with tumor suppression.

  • Bingyan Li‎ et al.
  • BMC cancer‎
  • 2012‎

Transforming growth factor β induced (TGFBI) product, an extracellular matrix (ECM) protein, has been implicated as a putative tumor suppressor in recent studies. Our previous findings revealed that expression of TGFBI gene is down-regulated in a variety of cancer cell lines and clinical tissue samples. In this study, ectopic expression of TGFBI was used to ascertain its role as a tumor suppressor and to determine the underlying mechanism of mesothelioma and breast cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: