Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 86 papers

MiR-362 suppresses cervical cancer progression via directly targeting BAP31 and activating TGFβ/Smad pathway.

  • Shuya Yang‎ et al.
  • Cancer medicine‎
  • 2021‎

BAP31 (B-cell receptor-associated protein 31) is an important regulator of intracellular signal transduction and highly expressed in several cancer tissues or testicular tissues. Our previous study had revealed that elevated BAP31 plays a crucial role in the progress and metastasis of cervical cancer. Even so, the precise mechanism of abnormal BAP31 elevation in cervical cancer has not been fully elucidated. We revealed that the expression of BAP31 was mainly regulated by microRNA-362 (miR-362), which was markedly downregulated in cervical cancer tissues and negatively correlated with clinical tumor staging. Overexpression of miR-362 inhibited cervical cancer cell proliferation and increased the proportion of apoptotic cells. Furthermore, miR-362 reduced the tumor sizes and prolonged mice survival time in xenograft nude mice model. Finally, we demonstrated that the BAP31/SPTBN1 complex regulated tumor progression through the Smad 2/3 pathway under the control of miR-362. Collectively, our findings demonstrated that miR-362 could work as an anti-oncomiR that inhibits proliferation and promotes apoptosis in cervical cancer cells via BAP31 and TGFβ/Smad pathway. Overexpression of miR-362 might be a potential therapeutic strategy for cervical cancer.


Genetic lineage tracing reveals poor angiogenic potential of cardiac endothelial cells.

  • Tea Kocijan‎ et al.
  • Cardiovascular research‎
  • 2021‎

Cardiac ischaemia does not elicit an efficient angiogenic response. Indeed, lack of surgical revascularization upon myocardial infarction results in cardiomyocyte death, scarring, and loss of contractile function. Clinical trials aimed at inducing therapeutic revascularization through the delivery of pro-angiogenic molecules after cardiac ischaemia have invariably failed, suggesting that endothelial cells in the heart cannot mount an efficient angiogenic response. To understand why the heart is a poorly angiogenic environment, here we compare the angiogenic response of the cardiac and skeletal muscle using a lineage tracing approach to genetically label sprouting endothelial cells.


Examining the Cellular Transport Pathway of Fusogenic Quantum Dots Conjugated With Tat Peptide.

  • Jie Dai‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2022‎

Understanding the underlying transport mechanism of biological delivery is important for developing delivery technologies for pharmaceuticals, imaging agents, and nanomaterials. Recently reported by our group, SDots are a novel class of nanoparticle delivery systems with distinct biointerface features and excellent fusogenic capabilities (i.e., strong ability to interact with the hydrophobic portions of biomembranes). In this study, we investigate the cellular transport mechanism of SDots conjugated with Tat peptide (SDots-Tat) by live-cell spinning-disk confocal microscopy combined with molecular biology methods. Mechanistic studies were conducted on the following stages of cellular transport of SDots-Tat in HeLa cells: cellular entry, endosomal escape, nucleus entry, and intranuclear transport. A key finding is that, after escaping endosomes, SDots-Tat enter the cell nucleus via an importin β-independent pathway, bypassing the usual nucleus entry mechanism used by Tat. This finding implies a new approach to overcome the nucleus membrane barrier for designing biological delivery technologies.


Phase separation in mixtures of ovalbumin and konjac glucomannan: physicochemical and microscopic investigations.

  • Bin Zhou‎ et al.
  • International journal of biological macromolecules‎
  • 2014‎

The phase behavior and microstructure of ovalbumin (OVA)/konjac glucomannan (KGM) mixtures were studied at pH 7.0. Phase diagrams were established by centrifugation and visual observation. Micro-phase separation of the OVA/KGM mixtures was quantified by measuring the turbidity. The microstructures of the phase separated mixtures were studied by measuring rheological property and confocal laser scanning microscopy (CLSM). The phase behavior of OVA/KGM mixtures appeared to be one single phase or two separated phases depending on the content of OVA and KGM. OVA had a pronounced effect on turbidity of OVA/KGM mixtures. The particle size of mixtures increased with increasing OVA and KGM concentration, which was the largest (119.1 μm) at 0.25 wt.% KGM and 5 wt.% OVA. The G' and G″ cross-over at a mixture of 0.20 wt.% KGM and 4 wt.% OVA demonstrated the buildup of microstructure during phase separation. The association of OVA aggregates could be observed under CLSM.


LPS-induced macrophage HMGB1-loaded extracellular vesicles trigger hepatocyte pyroptosis by activating the NLRP3 inflammasome.

  • Guozhen Wang‎ et al.
  • Cell death discovery‎
  • 2021‎

Extracellular vesicles (EVs) have emerged as important vectors of intercellular dialogue. High mobility group box protein 1 (HMGB1) is a typical damage-associated molecular pattern (DAMP) molecule, which is cytotoxic and leads to cell death and tissue injury. Whether EVs are involved in the release of HMGB1 in lipopolysaccharide (LPS)-induced acute liver injuries need more investigation. EVs were identified by transmission electron microscopy, nanoparticle tracking analysis (NTA), and western blotting. The co-localization of HMGB1, RAGE (receptor for advanced glycation end-products), EEA1, Rab5, Rab7, Lamp1 and transferrin were detected by confocal microscopy. The interaction of HMGB1 and RAGE were investigated by co-immunoprecipitation. EVs were labeled with the PKH67 and used for uptake experiments. The pyroptotic cell death was determined by FLICA 660-YVAD-FMK. The expression of NLRP3 (NOD-like receptor family pyrin domain containing 3) inflammasomes were analyzed by western-blot or immunohistochemistry. Serum HMGB1, ALT (alanine aminotransferase), AST (aspartate aminotransferase), LDH (lactate dehydrogenase) and MPO (myeloperoxidase) were measured using a commercial kit. The extracellular vesicle HMGB1 was detected in the serums of sepsis patients. Macrophages were found to contribute to HMGB1 release through the EVs. HMGB1-RAGE interactions participated in the loading of HMGB1 into the EVs. These EVs shuttled HMGB1 to target cells by transferrin-mediated endocytosis leading to hepatocyte pyroptosis by the activation of NLRP3 inflammasomes. Moreover, a positive correlation was verified between the sepsis serum EVs-HMGB1 level and clinical liver damage. This finding provides insights for the development of novel diagnostic and therapeutic strategies for acute liver injuries.


Identification of a clonally expanding haematopoietic compartment in bone marrow.

  • Lin Wang‎ et al.
  • The EMBO journal‎
  • 2013‎

In mammals, postnatal haematopoiesis occurs in the bone marrow (BM) and involves specialized microenvironments controlling haematopoietic stem cell (HSC) behaviour and, in particular, stem cell dormancy and self-renewal. While these processes have been linked to a number of different stromal cell types and signalling pathways, it is currently unclear whether BM has a homogenous architecture devoid of structural and functional partitions. Here, we show with genetic labelling techniques, high-resolution imaging and functional experiments in mice that the periphery of the adult BM cavity harbours previously unrecognized compartments with distinct properties. These units, which we have termed hemospheres, were composed of endothelial, haematopoietic and mesenchymal cells, were enriched in CD150+ CD48- putative HSCs, and enabled rapid haematopoietic cell proliferation and clonal expansion. Inducible gene targeting of the receptor tyrosine kinase VEGFR2 in endothelial cells disrupted hemospheres and, concomitantly, reduced the number of CD150+ CD48- cells. Our results identify a previously unrecognized, vessel-associated BM compartment with a specific localization and properties distinct from the marrow cavity.


Application of a combined cancellous lag screw enhances the stability of locking plate fixation of osteoporotic lateral tibial plateau fracture by providing interfragmentary compression force.

  • Jiang Jiang‎ et al.
  • Journal of orthopaedic surgery and research‎
  • 2024‎

Insufficient interfragmentary compression force (IFCF) frequently leads to unstable fixation of osteoporotic lateral tibial plateau fractures (OLTPFs). A combined cancellous lag screw (CCLS) enhances IFCF; however, its effect on OLTPF fixation stability remains unclear. Therefore, we investigated the effect of CCLS on OLTPF stability using locking plate fixation (LPF).


Mapping of individual sensory nerve axons from digits to spinal cord with the transparent embedding solvent system.

  • Yating Yi‎ et al.
  • Cell research‎
  • 2024‎

Achieving uniform optical resolution for a large tissue sample is a major challenge for deep imaging. For conventional tissue clearing methods, loss of resolution and quality in deep regions is inevitable due to limited transparency. Here we describe the Transparent Embedding Solvent System (TESOS) method, which combines tissue clearing, transparent embedding, sectioning and block-face imaging. We used TESOS to acquire volumetric images of uniform resolution for an adult mouse whole-body sample. The TESOS method is highly versatile and can be combined with different microscopy systems to achieve uniformly high resolution. With a light sheet microscope, we imaged the whole body of an adult mouse, including skin, at a uniform 0.8 × 0.8 × 3.5 μm3 voxel resolution within 120 h. With a confocal microscope and a 40×/1.3 numerical aperture objective, we achieved a uniform sub-micron resolution in the whole sample to reveal a complete projection of individual nerve axons within the central or peripheral nervous system. Furthermore, TESOS allowed the first mesoscale connectome mapping of individual sensory neuron axons spanning 5 cm from adult mouse digits to the spinal cord at a uniform sub-micron resolution.


Clonal Proliferation and Stochastic Pruning Orchestrate Lymph Node Vasculature Remodeling.

  • Isabelle Mondor‎ et al.
  • Immunity‎
  • 2016‎

Lymph node (LN) expansion during an immune response relies on the transient remodeling of its vasculature. Although the mechanisms driving LN endothelial cell division are beginning to be understood, a comprehensive view of LN endothelial cell dynamics at the single-cell level is lacking. Here, we used multicolored fluorescent fate-mapping models to track the behavior of blood endothelial cells during LN expansion upon inflammation and subsequent return to homeostasis. We found that expansion of the LN vasculature relied on the sequential assembly of endothelial cell proliferative units. This segmented growth was sustained by the clonal proliferation of high endothelial venule (HEV) cells, which act as local progenitors to create capillaries and HEV neo-vessels at the periphery of the LN. Return to homeostasis was accompanied by the stochastic death of pre-existing and neo-synthesized LN endothelial cells. Thus, our fate-mapping studies unravel-at a single-cell level-the complex dynamics of vascular-tree remodeling during LN expansion and contraction.


Cellular ESCRT components are recruited to regulate the endocytic trafficking and RNA replication compartment assembly during classical swine fever virus infection.

  • Chun-Chun Liu‎ et al.
  • PLoS pathogens‎
  • 2022‎

As the important molecular machinery for membrane protein sorting in eukaryotic cells, the endosomal sorting and transport complexes (ESCRT-0/I/II/III and VPS4) usually participate in various replication stages of enveloped viruses, such as endocytosis and budding. The main subunit of ESCRT-I, Tsg101, has been previously revealed to play a role in the entry and replication of classical swine fever virus (CSFV). However, the effect of the whole ESCRT machinery during CSFV infection has not yet been well defined. Here, we systematically determine the effects of subunits of ESCRT on entry, replication, and budding of CSFV by genetic analysis. We show that EAP20 (VPS25) (ESCRT-II), CHMP4B and CHMP7 (ESCRT-III) regulate CSFV entry and assist vesicles in transporting CSFV from Clathrin, early endosomes, late endosomes to lysosomes. Importantly, we first demonstrate that HRS (ESCRT-0), VPS28 (ESCRT-I), VPS25 (ESCRT-II) and adaptor protein ALIX play important roles in the formation of virus replication complexes (VRC) together with CHMP2B/4B/7 (ESCRT-III), and VPS4A. Further analyses reveal these subunits interact with CSFV nonstructural proteins (NS) and locate in the endoplasmic reticulum, but not Golgi, suggesting the role of ESCRT in regulating VRC assembly. In addition, we demonstrate that VPS4A is close to lipid droplets (LDs), indicating the importance of lipid metabolism in the formation of VRC and nucleic acid production. Altogether, we draw a new picture of cellular ESCRT machinery in CSFV entry and VRC formation, which could provide alternative strategies for preventing and controlling the diseases caused by CSFV or other Pestivirus.


Chronic alcohol drinking persistently suppresses thalamostriatal excitation of cholinergic neurons to impair cognitive flexibility.

  • Tengfei Ma‎ et al.
  • The Journal of clinical investigation‎
  • 2022‎

Exposure to addictive substances impairs flexible decision making. Cognitive flexibility is mediated by striatal cholinergic interneurons (CINs). However, how chronic alcohol drinking alters cognitive flexibility through CINs remains unclear. Here, we report that chronic alcohol consumption and withdrawal impaired reversal of instrumental learning. Chronic alcohol consumption and withdrawal also caused a long-lasting (21 days) reduction of excitatory thalamic inputs onto CINs and reduced pause responses of CINs in the dorsomedial striatum (DMS). CINs are known to inhibit glutamatergic transmission in dopamine D1 receptor-expressing medium spiny neurons (D1-MSNs) but facilitate this transmission in D2-MSNs, which may contribute to flexible behavior. We discovered that chronic alcohol drinking impaired CIN-mediated inhibition in D1-MSNs and facilitation in D2-MSNs. Importantly, in vivo optogenetic induction of long-term potentiation of thalamostriatal transmission in DMS CINs rescued alcohol-induced reversal learning deficits. These results demonstrate that chronic alcohol drinking reduces thalamic excitation of DMS CINs, compromising their regulation of glutamatergic transmission in MSNs, which may contribute to alcohol-induced impairment of cognitive flexibility. These findings provide a neural mechanism underlying inflexible drinking in alcohol use disorder.


Visualization and Characterization of the Brain Regional Heterogeneity of Astrocyte-Astrocyte Structural Interactions by Using Improved Iontophoresis with Dual-Fluorescent Dyes.

  • Qingran Li‎ et al.
  • Brain sciences‎
  • 2023‎

Astrocytes are morphologically intricate cells and actively modulate the function of the brain. Through numerous fine processes, astrocytes come into contact with neurons, blood vessels, and other glia cells. Emerging evidence has shown that astrocytes exhibit brain regional diversity in their morphology, transcriptome, calcium signaling, and functions. However, little is known about the brain regional heterogeneity of astrocyte-astrocyte structural interaction. So far, the visualization and characterization of the morphological features of adjacent astrocytes have been difficult, and as a result, it is still well-accepted that astrocytes in the adult brain share non-overlapped territory. In contrast, employing an approach that combines viral labeling with dual-fluorescent dyes iontophoresis under brightfield and imaging using confocal microscopy allows for the efficient and specific labeling of adjacent astrocytes, enabling a comprehensive visualization of their fine processes and the degree of their territorial overlap. Our study in the hypothalamic regions of the brain revealed a marked spatial overlap among adjacent astrocytes, which differs from the conventional understanding based on more extensively studied regions, like the hippocampus. Additionally, we revealed the heterogeneity of the astrocyte-neuron ratio across brain regions and conducted an assessment of the photostability and labeling efficiency of fluorescent dyes used for labeling adjacent astrocytes. Our study provides new insights for studying the morphological heterogeneity of astrocytes across the central nervous system.


Extracellular Vesicle Transfer from Endothelial Cells Drives VE-Cadherin Expression in Breast Cancer Cells, Thereby Causing Heterotypic Cell Contacts.

  • Maryam Rezaei‎ et al.
  • Cancers‎
  • 2020‎

Cadherins mediate cohesive contacts between isotypic cells by homophilic interaction and prevent contact between heterotypic cells. Breast cancer cells neighboring endothelial cells (ECs) atypically express vascular endothelial (VE)-cadherin. To understand this EC-induced VE-cadherin expression in breast cancer cells, MCF7 and MDA-MB-231 cells expressing different endogenous cadherins were co-cultured with ECs and analyzed for VE-cadherin at the transcriptional level and by confocal microscopy, flow cytometry, and immunoblotting. After losing their endogenous cadherins and neo-expression of VE-cadherin, these cells integrated into an EC monolayer without compromising the barrier function instantly. However, they induced the death of nearby ECs. EC-derived extracellular vesicles (EVs) contained soluble and membrane-anchored forms of VE-cadherin. Only the latter was re-utilized by the cancer cells. In a reporter gene assay, EC-adjacent cancer cells also showed a juxtacrine but no paracrine activation of the endogenous VE-cadherin gene. This cadherin switch enabled intimate contact between cancer and endothelial cells in a chicken chorioallantoic membrane tumor model showing vasculogenic mimicry (VM). This EV-mediated, EC-induced cadherin switch in breast cancer cells and the neo-expression of VE-cadherin mechanistically explain the mutual communication in the tumor microenvironment. Hence, it may be a target to tackle VM, which is often found in breast cancers of poor prognosis.


Aloe-derived vesicles enable macrophage reprogramming to regulate the inflammatory immune environment.

  • Hao Zhou‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2023‎

Introduction: Bacterial pneumonia poses a significant global public health challenge, where unaddressed pathogens and inflammation can exacerbate acute lung injury and prompt cytokine storms, increasing mortality rates. Alveolar macrophages are pivotal in preserving lung equilibrium. Excessive inflammation can trigger necrosis in these cells, disrupting the delicate interplay between inflammation and tissue repair. Methods: We obtained extracellular vesicle from aloe and tested the biosafety by cell viability and hemolysis assays. Confocal microscopy and flow cytometry were used to detect the uptake and internalization of extracellular vesicle by macrophages and the ability of extracellular vesicle to affect the phenotypic reprogramming of macrophages in vitro. Finally, we conducted a clinical feasibility study employing clinical bronchoalveolar lavage fluid as a representative model to assess the effective repolarization of macrophages influenced by extracellular vesicle. Results: In our study, we discovered the potential of extracellular vesicle nanovesicles derived from aloe in reprograming macrophage phenotypes. Pro-inflammatory macrophages undergo a transition toward an anti-inflammatory immune phenotype through phagocytosing and internalizing these aloe vera-derived extracellular vesicle nanovesicles. This transition results in the release of anti-inflammatory IL-10, effectively curbing inflammation and fostering lung tissue repair. Discussion: These findings firmly establish the immunomodulatory impact of aloe-derived extracellular vesicle nanovesicles on macrophages, proposing their potential as a therapeutic strategy to modulate macrophage immunity in bacterial pneumonia.


Tailoring stimuli-responsive delivery system driven by metal-ligand coordination bonding.

  • Hongshan Liang‎ et al.
  • International journal of nanomedicine‎
  • 2017‎

In this study, a novel coordination bonding system based on metal-tannic acid (TA) architecture on zein/carboxymethyl chitosan (CMCS) nanoparticles (NPs) was investigated for the pH-responsive drug delivery. CMCS has been reported to coat on zein NPs as delivery vehicles for drugs or nutrients in previous studies. The cleavage of either the "metal-TA" or "NH2-metal" coordination bonds resulted in significant release of guest molecules with high stimulus sensitivity, especially in mild acidic conditions. The prepared metal-TA-coated zein/CMCS NPs (zein/CMCS-TA/metal NPs) could maintain particle size in cell culture medium at 37°C, demonstrating good stability compared with zein/CMCS NPs. In vitro release behavior of doxorubicin hydrochloride (DOX)-loaded metal-TA film-coated zein/CMCS NPs (DOX-zein/CMCS-TA/metal NPs) showed fine pH responsiveness tailored by the ratio of zein to CMCS as well as the metal species and feeding concentrations. The blank zein/CMCS-TA/metal NPs (NPs-TA/metal) were of low cytotoxicity, while a high cytotoxic activity of DOX-zein/CMCS-TA/metal NPs (DOX-NPs-TA/metal) against HepG2 cells was demonstrated by in vitro cell assay. Confocal laser scanning microscopy (CLSM) and flow cytometry were combined to study the uptake efficiency of DOX-NPs or DOX-NPs-TA/metal. This system showed significant potential as a highly versatile and potent platform for drug delivery.


Striatal μ-opioid receptor activation triggers direct-pathway GABAergic plasticity and induces negative affect.

  • Wei Wang‎ et al.
  • Cell reports‎
  • 2023‎

Withdrawal from chronic opioid use often causes hypodopaminergic states and negative affect, which may drive relapse. Direct-pathway medium spiny neurons (dMSNs) in the striatal patch compartment contain μ-opioid receptors (MORs). It remains unclear how chronic opioid exposure and withdrawal impact these MOR-expressing dMSNs and their outputs. Here, we report that MOR activation acutely suppressed GABAergic striatopallidal transmission in habenula-projecting globus pallidus neurons. Notably, withdrawal from repeated morphine or fentanyl administration potentiated this GABAergic transmission. Furthermore, intravenous fentanyl self-administration enhanced GABAergic striatonigral transmission and reduced midbrain dopaminergic activity. Fentanyl-activated striatal neurons mediated contextual memory retrieval required for conditioned place preference tests. Importantly, chemogenetic inhibition of striatal MOR+ neurons rescued fentanyl withdrawal-induced physical symptoms and anxiety-like behaviors. These data suggest that chronic opioid use triggers GABAergic striatopallidal and striatonigral plasticity to induce a hypodopaminergic state, which may promote negative emotions and relapse.


Endothelial Wnts control mammary epithelial patterning via fibroblast signaling.

  • Jingqiang Wang‎ et al.
  • Cell reports‎
  • 2021‎

Endothelial and fibroblast niches are crucial for epithelial organs. How these heterotypic cells interact is of great interest. In this study, we reveal an axis of signaling in which fibroblasts relay Wnt signals from the endothelial niche to organize epithelial patterning. We generate an Axin2-membrane GFP (mGFP) reporter mouse and observe robust Wnt/β-catenin signaling activities in fibroblasts surrounding the mammary epithelium. To enable cell-type-specific gene manipulation in vitro, we establish an organoid system via coculture of endothelial cells (ECs), fibroblasts, and mammary epithelial cells. Deletion of β-catenin in fibroblasts impedes epithelium branching, and ECs are responsible for the activation of Wnt/β-catenin signaling in fibroblasts. In vivo, EC deletion of Wntless inhibits Wnt/β-catenin signaling activity in fibroblasts, rendering a reduction in epithelial branches. These findings highlight the significance of the endothelial niche in tissue patterning, shedding light on the interactive mechanisms in which distinct niche components orchestrate epithelial organogenesis and tissue homeostasis.


Specific fibroblast subpopulations and neuronal structures provide local sources of Vegfc-processing components during zebrafish lymphangiogenesis.

  • Guangxia Wang‎ et al.
  • Nature communications‎
  • 2020‎

Proteolytical processing of the growth factor VEGFC through the concerted activity of CCBE1 and ADAMTS3 is required for lymphatic development to occur. How these factors act together in time and space, and which cell types produce these factors is not understood. Here we assess the function of Adamts3 and the related protease Adamts14 during zebrafish lymphangiogenesis and show both proteins to be able to process Vegfc. Only the simultaneous loss of both protein functions results in lymphatic defects identical to vegfc loss-of-function situations. Cell transplantation experiments demonstrate neuronal structures and/or fibroblasts to constitute cellular sources not only for both proteases but also for Ccbe1 and Vegfc. We further show that this locally restricted Vegfc maturation is needed to trigger normal lymphatic sprouting and directional migration. Our data provide a single-cell resolution model for establishing secretion and processing hubs for Vegfc during developmental lymphangiogenesis.


Pulmonary pericytes regulate lung morphogenesis.

  • Katsuhiro Kato‎ et al.
  • Nature communications‎
  • 2018‎

Blood vessels are essential for blood circulation but also control organ growth, homeostasis, and regeneration, which has been attributed to the release of paracrine signals by endothelial cells. Endothelial tubules are associated with specialised mesenchymal cells, termed pericytes, which help to maintain vessel wall integrity. Here we identify pericytes as regulators of epithelial and endothelial morphogenesis in postnatal lung. Mice lacking expression of the Hippo pathway components YAP and TAZ in pericytes show defective alveologenesis. Mutant pericytes are present in normal numbers but display strongly reduced expression of hepatocyte growth factor leading to impaired activation of the c-Met receptor, which is expressed by alveolar epithelial cells. YAP and TAZ are also required for expression of angiopoietin-1 by pulmonary pericytes, which also controls hepatocyte growth factor expression and thereby alveologenesis in an autocrine fashion. These findings establish that pericytes have important, organ-specific signalling properties and coordinate the behavior of epithelial and vascular cells during lung morphogenesis.


The Vertebrate Protein Dead End Maintains Primordial Germ Cell Fate by Inhibiting Somatic Differentiation.

  • Theresa Gross-Thebing‎ et al.
  • Developmental cell‎
  • 2017‎

Maintaining cell fate relies on robust mechanisms that prevent the differentiation of specified cells into other cell types. This is especially critical during embryogenesis, when extensive cell proliferation, patterning, and migration events take place. Here we show that vertebrate primordial germ cells (PGCs) are protected from reprogramming into other cell types by the RNA-binding protein Dead end (Dnd). PGCs knocked down for Dnd lose their characteristic morphology and adopt various somatic cell fates. Concomitantly, they gain a gene expression profile reflecting differentiation into cells of different germ layers, in a process that we could direct by expression of specific cell-fate determinants. Importantly, we visualized these events within live zebrafish embryos, which provide temporal information regarding cell reprogramming. Our results shed light on the mechanisms controlling germ cell fate maintenance and are relevant for the formation of teratoma, a tumor class composed of cells from more than one germ layer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: