Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 61 papers

Identification of novel cerebellar developmental transcriptional regulators with motif activity analysis.

  • Thomas J Ha‎ et al.
  • BMC genomics‎
  • 2019‎

The work of the FANTOM5 Consortium has brought forth a new level of understanding of the regulation of gene transcription and the cellular processes involved in creating diversity of cell types. In this study, we extended the analysis of the FANTOM5 Cap Analysis of Gene Expression (CAGE) transcriptome data to focus on understanding the genetic regulators involved in mouse cerebellar development.


Thalamic miR-338-3p mediates auditory thalamocortical disruption and its late onset in models of 22q11.2 microdeletion.

  • Sungkun Chun‎ et al.
  • Nature medicine‎
  • 2017‎

Although 22q11.2 deletion syndrome (22q11DS) is associated with early-life behavioral abnormalities, affected individuals are also at high risk for the development of schizophrenia symptoms, including psychosis, later in life. Auditory thalamocortical (TC) projections recently emerged as a neural circuit that is specifically disrupted in mouse models of 22q11DS (hereafter referred to as 22q11DS mice), in which haploinsufficiency of the microRNA (miRNA)-processing-factor-encoding gene Dgcr8 results in the elevation of the dopamine receptor Drd2 in the auditory thalamus, an abnormal sensitivity of thalamocortical projections to antipsychotics, and an abnormal acoustic-startle response. Here we show that these auditory TC phenotypes have a delayed onset in 22q11DS mice and are associated with an age-dependent reduction of miR-338-3p, a miRNA that targets Drd2 and is enriched in the thalamus of both humans and mice. Replenishing depleted miR-338-3p in mature 22q11DS mice rescued the TC abnormalities, and deletion of Mir338 (which encodes miR-338-3p) or reduction of miR-338-3p expression mimicked the TC and behavioral deficits and eliminated the age dependence of these deficits. Therefore, miR-338-3p depletion is necessary and sufficient to disrupt auditory TC signaling in 22q11DS mice, and it may mediate the pathogenic mechanism of 22q11DS-related psychosis and control its late onset.


A Novel and Multivalent Role of Pax6 in Cerebellar Development.

  • Joanna Yeung‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2016‎

Pax6 is a prominent gene in brain development. The deletion of Pax6 results in devastated development of eye, olfactory bulb, and cortex. However, it has been reported that the Pax6-null Sey cerebellum only has minor defects involving granule cells despite Pax6 being expressed throughout cerebellar development. The present work has uncovered a requirement of Pax6 in the development of all rhombic lip (RL) lineages. A significant downregulation of Tbr1 and Tbr2 expression is found in the Sey cerebellum, these are cell-specific markers of cerebellar nuclear (CN) neurons and unipolar brush cells (UBCs), respectively. The examination of Tbr1 and Lmx1a immunolabeling and Nissl staining confirmed the loss of CN neurons from the Sey cerebellum. CN neuron progenitors are produced in the mutant but there is an enhanced death of these neurons as shown by increased presence of caspase-3-positive cells. These data indicate that Pax6 regulates the survival of CN neuron progenitors. Furthermore, the analysis of experimental mouse chimeras suggests a cell-extrinsic role of Pax6 in CN neuron survival. For UBCs, using Tbr2 immunolabeling, these cells are significantly reduced in the Sey cerebellum. The loss of UBCs in the mutant is due partly to cell death in the RL and also to the reduced production of progenitors from the RL. These results demonstrate a critical role for Pax6 in regulating the generation and survival of UBCs. This and previous work from our laboratory demonstrate a seminal role of Pax6 in the development of all cerebellar glutamatergic neurons.


Evaluating the Safety of Retroviral Vectors Based on Insertional Oncogene Activation and Blocked Differentiation in Cultured Thymocytes.

  • Sheng Zhou‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2016‎

Insertional oncogenesis due to retroviral (RV) vector integration has caused recurrent leukemia in multiple gene therapy trials, predominantly due to vector integration effects at the LMO2 locus. While currently available preclinical safety models have been used for evaluating vector safety, none have predicted or reproduced the recurrent LMO2 integrations seen in previous X-linked severe combined immunodeficiency (X-SCID) and Wiskott-Aldrich clinical gene therapy trials. We now describe a new assay for assessing vector safety that recapitulates naturally occurring insertions into Lmo2 and other T-cell proto-oncogenes leading to a preleukemic developmental arrest in primary murine thymocytes cultured in vitro. This assay was used to compare the relative oncogenic potential of a variety of gamma-RV and lentiviral vectors and to assess the risk conferred by various transcriptional elements contained in these genomes. Gamma-RV vectors that contained full viral long-terminal repeats were most prone to causing double negative 2 (DN2) arrest and led to repeated cases of Lmo2 pathway activation, while lentiviral vectors containing these same elements were significantly less prone to activate proto-oncogenes or cause DN2 arrest. This work provides a new preclinical assay that is especially relevant for assessing safety in SCID disorders and provides a new tool for designing safer RV vectors.


Phenotypic and genetic analysis of the cerebellar mutant tmgc26, a new ENU-induced ROR-alpha allele.

  • Douglas J Swanson‎ et al.
  • The European journal of neuroscience‎
  • 2010‎

ROR-alpha is an orphan nuclear receptor, inactivation of which cell-autonomously blocks differentiation of cerebellar Purkinje cells with a secondary loss of granule neurons. As part of our ENU mutagenesis screen we isolated the recessive tmgc26 mouse mutant, characterized by early-onset progressive ataxia, cerebellar degeneration and juvenile lethality. Detailed analysis of the tmgc26-/- cerebella revealed Purkinje cell and granule cell abnormalities, and defects in molecular layer interneurons and radial glia. Chimera studies suggested a cell-autonomous effect of the tmgc26 mutation in Purkinje cells and molecular layer interneurons, and a non-cell-autonomous effect in granule cells. The mutation was mapped to a 13-Mb interval on chromosome 9, a region that contains the ROR-alpha gene. Sequencing of genomic DNA revealed a T-to-A transition in exon 5 of the ROR-alpha gene, resulting in a nonsense mutation C257X and severe truncation of the ROR-alpha protein. Together, our data identify new roles for ROR-alpha in molecular layer interneurons and radial glia development and suggest tmgc26 as a novel ROR-alpha allele that may be used to further delineate the molecular mechanisms of ROR-alpha action.


HIV-1 drug resistance in the iPrEx preexposure prophylaxis trial.

  • Teri Liegler‎ et al.
  • The Journal of infectious diseases‎
  • 2014‎

The iPrEx study demonstrated that combination oral emtricitabine and tenofovir disoproxil fumarate (FTC/TDF) as preexposure prophylaxis (PrEP) protects against HIV acquisition in men who have sex with men and transgender women. Selection for drug resistance could offset PrEP benefits.


Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation.

  • Liqin Zhu‎ et al.
  • Nature‎
  • 2009‎

Cancer stem cells are remarkably similar to normal stem cells: both self-renew, are multipotent and express common surface markers, for example, prominin 1 (PROM1, also called CD133). What remains unclear is whether cancer stem cells are the direct progeny of mutated stem cells or more mature cells that reacquire stem cell properties during tumour formation. Answering this question will require knowledge of whether normal stem cells are susceptible to cancer-causing mutations; however, this has proved difficult to test because the identity of most adult tissue stem cells is not known. Here, using an inducible Cre, nuclear LacZ reporter allele knocked into the Prom1 locus (Prom1(C-L)), we show that Prom1 is expressed in a variety of developing and adult tissues. Lineage-tracing studies of adult Prom1(+/C-L) mice containing the Rosa26-YFP reporter allele showed that Prom1(+) cells are located at the base of crypts in the small intestine, co-express Lgr5 (ref. 2), generate the entire intestinal epithelium, and are therefore the small intestinal stem cell. Prom1 was reported recently to mark cancer stem cells of human intestinal tumours that arise frequently as a consequence of aberrant wingless (Wnt) signalling. Activation of endogenous Wnt signalling in Prom1(+/C-L) mice containing a Cre-dependent mutant allele of beta-catenin (Ctnnb1(lox(ex3))) resulted in a gross disruption of crypt architecture and a disproportionate expansion of Prom1(+) cells at the crypt base. Lineage tracing demonstrated that the progeny of these cells replaced the mucosa of the entire small intestine with neoplastic tissue that was characterized by focal high-grade intraepithelial neoplasia and crypt adenoma formation. Although all neoplastic cells arose from Prom1(+) cells in these mice, only 7% of tumour cells retained Prom1 expression. Our data indicate that Prom1 marks stem cells in the adult small intestine that are susceptible to transformation into tumours retaining a fraction of mutant Prom1(+) tumour cells.


Phylogenomic Analysis Reconstructed the Order Matoniales from Paleopolyploidy Veil.

  • Jiang-Ping Shu‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2022‎

Phylogenetic conflicts limit our understanding of the evolution of terrestrial life under multiple whole genome duplication events, and the phylogeny of early terrestrial plants remains full of controversy. Although much incongruence has been solved with so-called robust topology based on single or lower copy genes, the evolutionary mechanisms behind phylogenetic conflicts such as polyploidization remain poorly understood. Here, through decreasing the effects of polyploidization and increasing the samples of species, which represent all four orders and eight families that comprise early leptosporangiate ferns, we have reconstructed a robust phylogenetic tree and network with 1125 1-to-1 orthologs based on both coalescent and concatenation methods. Our data consistently suggest that Matoniales, as a monophyletic lineage including Matoniaceae and Dipteridaceae, should be redefined as an ordinal rank. Furthermore, we have identified and located at least 11 whole-genome duplication events within the evolutionary history of four leptosporangiates lineages, and associated polyploidization with higher speciation rates and mass extinction events. We hypothesize that paleopolyploidization may have enabled leptosporangiate ferns to survive during mass extinction events at the end Permian period and then flourish throughout the Mesozoic era, which is supported by extensive fossil records. Our results highlight how ancient polyploidy can result in rapid species radiation, thus causing phylogenetic conflicts yet allowing plants to survive and thrive during mass extinction events.


The Transcription Factor Pou3f1 Sheds Light on the Development and Molecular Diversity of Glutamatergic Cerebellar Nuclear Neurons in the Mouse.

  • Joshua Po Han Wu‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2022‎

The cerebellar nuclear (CN) neurons are a molecularly heterogeneous population whose specification into the different cerebellar nuclei is defined by the expression of varying sets of transcription factors. Here, we present a novel molecular marker, Pou3f1, that delineates specific sets of glutamatergic CN neurons. The glutamatergic identity of Pou3f1+ cells was confirmed by: (1) the co-expression of vGluT2, a cell marker of glutamatergic neurons; (2) the lack of co-expression between Pou3f1 and GAD67, a marker of GABAergic neurons; (3) the co-expression of Atoh1, the master regulator required for the production of all cerebellar glutamatergic lineages; and (4) the absence of Pou3f1-expressing cells in the Atoh1-null cerebellum. Furthermore, the lack of Pax6 and Tbr1 expression in Pou3f1+ cells reveals that Pou3f1-expressing CN neurons specifically settle in the interposed and dentate nuclei. In addition, the Pou3f1-labeled glutamatergic CN neurons can be further classified by the expression of Brn2 and Irx3. The results of the present study align with previous findings highlighting that the survival of the interposed and dentate CN neurons is largely independent of Pax6. More importantly, the present study extends the field's collective knowledge of the molecular diversity of cerebellar nuclei.


Proteasome stress in skeletal muscle mounts a long-range protective response that delays retinal and brain aging.

  • Mamta Rai‎ et al.
  • Cell metabolism‎
  • 2021‎

Neurodegeneration in the central nervous system (CNS) is a defining feature of organismal aging that is influenced by peripheral tissues. Clinical observations indicate that skeletal muscle influences CNS aging, but the underlying muscle-to-brain signaling remains unexplored. In Drosophila, we find that moderate perturbation of the proteasome in skeletal muscle induces compensatory preservation of CNS proteostasis during aging. Such long-range stress signaling depends on muscle-secreted Amyrel amylase. Mimicking stress-induced Amyrel upregulation in muscle reduces age-related accumulation of poly-ubiquitinated proteins in the brain and retina via chaperones. Preservation of proteostasis stems from the disaccharide maltose, which is produced via Amyrel amylase activity. Correspondingly, RNAi for SLC45 maltose transporters reduces expression of Amyrel-induced chaperones and worsens brain proteostasis during aging. Moreover, maltose preserves proteostasis and neuronal activity in human brain organoids challenged by thermal stress. Thus, proteasome stress in skeletal muscle hinders retinal and brain aging by mounting an adaptive response via amylase/maltose.


Progressive development of melanoma-induced cachexia differentially impacts organ systems in mice.

  • Flavia A Graca‎ et al.
  • Cell reports‎
  • 2023‎

Cachexia is a systemic wasting syndrome that increases cancer-associated mortality. How cachexia progressively and differentially impacts distinct tissues is largely unknown. Here, we find that the heart and skeletal muscle undergo wasting at early stages and are the tissues transcriptionally most impacted by cachexia. We also identify general and organ-specific transcriptional changes that indicate functional derangement by cachexia even in tissues that do not undergo wasting, such as the brain. Secreted factors constitute a top category of cancer-regulated genes in host tissues, and these changes include upregulation of the angiotensin-converting enzyme (ACE). ACE inhibition with the drug lisinopril improves muscle force and partially impedes cachexia-induced transcriptional changes, although wasting is not prevented, suggesting that cancer-induced host-secreted factors can regulate tissue function during cachexia. Altogether, by defining prevalent and temporal and tissue-specific responses to cachexia, this resource highlights biomarkers and possible targets for general and tissue-tailored anti-cachexia therapies.


An adaptive stress response that confers cellular resilience to decreased ubiquitination.

  • Liam C Hunt‎ et al.
  • Nature communications‎
  • 2023‎

Ubiquitination is a post-translational modification initiated by the E1 enzyme UBA1, which transfers ubiquitin to ~35 E2 ubiquitin-conjugating enzymes. While UBA1 loss is cell lethal, it remains unknown how partial reduction in UBA1 activity is endured. Here, we utilize deep-coverage mass spectrometry to define the E1-E2 interactome and to determine the proteins that are modulated by knockdown of UBA1 and of each E2 in human cells. These analyses define the UBA1/E2-sensitive proteome and the E2 specificity in protein modulation. Interestingly, profound adaptations in peroxisomes and other organelles are triggered by decreased ubiquitination. While the cargo receptor PEX5 depends on its mono-ubiquitination for binding to peroxisomal proteins and importing them into peroxisomes, we find that UBA1/E2 knockdown induces the compensatory upregulation of other PEX proteins necessary for PEX5 docking to the peroxisomal membrane. Altogether, this study defines a homeostatic mechanism that sustains peroxisomal protein import in cells with decreased ubiquitination capacity.


Anti-apoptotic MCL-1 promotes long-chain fatty acid oxidation through interaction with ACSL1.

  • Tristen Wright‎ et al.
  • Molecular cell‎
  • 2024‎

MCL-1 is essential for promoting the survival of many normal cell lineages and confers survival and chemoresistance in cancer. Beyond apoptosis regulation, MCL-1 has been linked to modulating mitochondrial metabolism, but the mechanism(s) by which it does so are unclear. Here, we show in tissues and cells that MCL-1 supports essential steps in long-chain (but not short-chain) fatty acid β-oxidation (FAO) through its binding to specific long-chain acyl-coenzyme A (CoA) synthetases of the ACSL family. ACSL1 binds to the BH3-binding hydrophobic groove of MCL-1 through a non-conventional BH3-domain. Perturbation of this interaction, via genetic loss of Mcl1, mutagenesis, or use of selective BH3-mimetic MCL-1 inhibitors, represses long-chain FAO in cells and in mouse livers and hearts. Our findings reveal how anti-apoptotic MCL-1 facilitates mitochondrial metabolism and indicate that disruption of this function may be associated with unanticipated cardiac toxicities of MCL-1 inhibitors in clinical trials.


Structure and evolution of double minutes in diagnosis and relapse brain tumors.

  • Ke Xu‎ et al.
  • Acta neuropathologica‎
  • 2019‎

Double minute chromosomes are extrachromosomal circular DNA fragments frequently found in brain tumors. To understand their evolution, we characterized the double minutes in paired diagnosis and relapse tumors from a pediatric high-grade glioma and four adult glioblastoma patients. We determined the full structures of the major double minutes using a novel approach combining multiple types of supporting genomic evidence. Among the double minutes identified in the pediatric patient, only one carrying EGFR was maintained at high abundance in both samples, whereas two others were present in only trace amounts at diagnosis but abundant at relapse, and the rest were found either in the relapse sample only or in the diagnosis sample only. For the EGFR-carrying double minutes, we found a secondary somatic deletion in all copies at relapse, after erlotinib treatment. However, the somatic mutation was present at very low frequency at diagnosis, suggesting potential resistance to the EGFR inhibitor. This mutation caused an in-frame RNA transcript to skip exon 16, a novel transcript isoform absent in EST database, as well as about 700 RNA-seq of normal brains that we reviewed. We observed similar patterns involving longitudinal copy number shift of double minutes in another four pairs (diagnosis/relapse) of adult glioblastoma. Overall, in three of five paired tumor samples, we found that although the same oncogenes were amplified at diagnosis and relapse, they were amplified on different double minutes. Our results suggest that double minutes readily evolve, increasing tumor heterogeneity rapidly. Understanding patterns of double minute evolution can shed light on future therapeutic solutions to brain tumors carrying such variants.


Exome sequencing reveals VCP mutations as a cause of familial ALS.

  • Janel O Johnson‎ et al.
  • Neuron‎
  • 2010‎

Using exome sequencing, we identified a p.R191Q amino acid change in the valosin-containing protein (VCP) gene in an Italian family with autosomal dominantly inherited amyotrophic lateral sclerosis (ALS). Mutations in VCP have previously been identified in families with Inclusion Body Myopathy, Paget disease, and Frontotemporal Dementia (IBMPFD). Screening of VCP in a cohort of 210 familial ALS cases and 78 autopsy-proven ALS cases identified four additional mutations including a p.R155H mutation in a pathologically proven case of ALS. VCP protein is essential for maturation of ubiquitin-containing autophagosomes, and mutant VCP toxicity is partially mediated through its effect on TDP-43 protein, a major constituent of ubiquitin inclusions that neuropathologically characterize ALS. Our data broaden the phenotype of IBMPFD to include motor neuron degeneration, suggest that VCP mutations may account for ∼1%-2% of familial ALS, and provide evidence directly implicating defects in the ubiquitination/protein degradation pathway in motor neuron degeneration.


Subtypes of medulloblastoma have distinct developmental origins.

  • Paul Gibson‎ et al.
  • Nature‎
  • 2010‎

Medulloblastoma encompasses a collection of clinically and molecularly diverse tumour subtypes that together comprise the most common malignant childhood brain tumour. These tumours are thought to arise within the cerebellum, with approximately 25% originating from granule neuron precursor cells (GNPCs) after aberrant activation of the Sonic Hedgehog pathway (hereafter, SHH subtype). The pathological processes that drive heterogeneity among the other medulloblastoma subtypes are not known, hindering the development of much needed new therapies. Here we provide evidence that a discrete subtype of medulloblastoma that contains activating mutations in the WNT pathway effector CTNNB1 (hereafter, WNT subtype) arises outside the cerebellum from cells of the dorsal brainstem. We found that genes marking human WNT-subtype medulloblastomas are more frequently expressed in the lower rhombic lip (LRL) and embryonic dorsal brainstem than in the upper rhombic lip (URL) and developing cerebellum. Magnetic resonance imaging (MRI) and intra-operative reports showed that human WNT-subtype tumours infiltrate the dorsal brainstem, whereas SHH-subtype tumours are located within the cerebellar hemispheres. Activating mutations in Ctnnb1 had little impact on progenitor cell populations in the cerebellum, but caused the abnormal accumulation of cells on the embryonic dorsal brainstem which included aberrantly proliferating Zic1(+) precursor cells. These lesions persisted in all mutant adult mice; moreover, in 15% of cases in which Tp53 was concurrently deleted, they progressed to form medulloblastomas that recapitulated the anatomy and gene expression profiles of human WNT-subtype medulloblastoma. We provide the first evidence, to our knowledge, that subtypes of medulloblastoma have distinct cellular origins. Our data provide an explanation for the marked molecular and clinical differences between SHH- and WNT-subtype medulloblastomas and have profound implications for future research and treatment of this important childhood cancer.


Cross-species genomic and epigenomic landscape of retinoblastoma.

  • Claudia A Benavente‎ et al.
  • Oncotarget‎
  • 2013‎

Genetically engineered mouse models (GEMMs) of human cancer are important for advancing our understanding of tumor initiation and progression as well as for testing novel therapeutics. Retinoblastoma is a childhood cancer of the developing retina that initiates with biallelic inactivation of the RB1 gene. GEMMs faithfully recapitulate the histopathology, molecular, cellular, morphometric, neuroanatomical and neurochemical features of human retinoblastoma. In this study, we analyzed the genomic and epigenomic landscape of murine retinoblastoma and compared them to human retinoblastomas to gain insight into shared mechanisms of tumor progression across species. Similar to human retinoblastoma, mouse tumors have low rates of single nucleotide variations. However, mouse retinoblastomas have higher rates of aneuploidy and regional and focal copy number changes that vary depending on the genetic lesions that initiate tumorigenesis in the developing murine retina. Furthermore, the epigenetic landscape in mouse retinoblastoma was significantly different from human tumors and some pathways that are candidates for molecular targeted therapy for human retinoblastoma such as SYK or MCL1 are not deregulated in GEMMs. Taken together, these data suggest there are important differences between mouse and human retinoblastomas with respect to the mechanism of tumor progression and those differences can have significant implications for translational research to test the efficacy of novel therapies for this devastating childhood cancer.


Pemetrexed and gemcitabine as combination therapy for the treatment of Group3 medulloblastoma.

  • Marie Morfouace‎ et al.
  • Cancer cell‎
  • 2014‎

We devised a high-throughput, cell-based assay to identify compounds to treat Group3 medulloblastoma (G3 MB). Mouse G3 MBs neurospheres were screened against a library of approximately 7,000 compounds including US Food and Drug Administration-approved drugs. We found that pemetrexed and gemcitabine preferentially inhibited G3 MB proliferation in vitro compared to control neurospheres and substantially inhibited G3 MB proliferation in vivo. When combined, these two drugs significantly increased survival of mice bearing cortical implants of mouse and human G3 MBs that overexpress MYC compared to each agent alone, while having little effect on mouse MBs of the sonic hedgehog subgroup. Our findings strongly suggest that combination therapy with pemetrexed and gemcitabine is a promising treatment for G3 MBs.


The orphan nuclear receptor NR4A2 is part of a p53-microRNA-34 network.

  • Jordan A Beard‎ et al.
  • Scientific reports‎
  • 2016‎

Nuclear receptor subfamily 4 group A member 2 (NR4A2) is an orphan nuclear receptor that is over-expressed in cancer and promotes cell proliferation, migration, transformation, and chemoresistance. Increased expression and function of NR4A2 have been attributed to various signaling pathways, but little is known about microRNA (miRNA) regulation of NR4A2 in cancer. To investigate the posttranscriptional regulation of NR4A2, we used a 3' untranslated region (UTR) reporter screen and identified miR-34 as a putative regulator of NR4A2. By using computer predictions, we identified and confirmed an miRNA recognition element in the 3' UTR of NR4A2 that was responsible for miR-34-mediated suppression. We next demonstrated that overexpression of exogenous miR-34 or activation of the p53 pathway, which regulates endogenous miR-34 expression, decreased NR4A2 expression. Consistent with previous reports, overexpression of NR4A2 blocked the induction of p53 target genes, including mir-34a. This was a phenotypic effect, as NR4A2 overexpression could rescue cells from p53-induced inhibition of proliferation. In summary, our results are the first characterization of a cancer-related miRNA capable of regulating NR4A2 and suggest a network and possible feedback mechanism involving p53, miR-34, and NR4A2.


High-titer foamy virus vector transduction and integration sites of human CD34(+) cell-derived SCID-repopulating cells.

  • Md Nasimuzzaman‎ et al.
  • Molecular therapy. Methods & clinical development‎
  • 2014‎

Foamy virus (FV) vectors are promising tools for gene therapy, but low titer is a major challenge for large-scale clinical trials. Here, we increased FV vector titer 50-fold by constructing novel vector plasmids and using polyethylenimine-mediated transfection. FV and lentiviral (LV) vectors were used separately to transduce human CD34(+) cells at multiplicities of infection of 25, and those cells were transplanted into immunodeficient mice. FV vector transduction frequencies of repopulating human cells were 37.1 ± 1.9% in unstimulated cells and 36.9 ± 2.2% in prestimulated cells, and engraftment frequencies were 40.9 ± 4.9% in unstimulated cells and 47.1 ± 3.3% in prestimulated cells. Engraftment frequencies of FV vector-transduced cells were significantly higher than those of LV vector-transduced cells. Linear amplification-mediated PCR with Illumina paired-end runs showed that all human chromosomes contained FV provirus. FV had an integration preference near transcriptional start sites and CpG islands of RefSeq genes but not within genes. Repopulating lymphoid and myeloid cells contained common integration sites, suggesting that FV vector could transduce multilineage hematopoietic stem/progenitor populations. Our new FV vector backbone may be a suitable candidate for developing therapeutic FV vectors for use in clinical trials.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: