Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 48 papers

Electron Cryo-microscopy Structure of Ebola Virus Nucleoprotein Reveals a Mechanism for Nucleocapsid-like Assembly.

  • Zhaoming Su‎ et al.
  • Cell‎
  • 2018‎

Ebola virus nucleoprotein (eNP) assembles into higher-ordered structures that form the viral nucleocapsid (NC) and serve as the scaffold for viral RNA synthesis. However, molecular insights into the NC assembly process are lacking. Using a hybrid approach, we characterized the NC-like assembly of eNP, identified novel regulatory elements, and described how these elements impact function. We generated a three-dimensional structure of the eNP NC-like assembly at 5.8 Å using electron cryo-microscopy and identified a new regulatory role for eNP helices α22-α23. Biochemical, biophysical, and mutational analyses revealed that inter-eNP contacts within α22-α23 are critical for viral NC assembly and regulate viral RNA synthesis. These observations suggest that the N terminus and α22-α23 of eNP function as context-dependent regulatory modules (CDRMs). Our current study provides a framework for a structural mechanism for NC-like assembly and a new therapeutic target.


Intensive care unit sinks are persistently colonized with multidrug resistant bacteria and mobilizable, resistance-conferring plasmids.

  • Luke Diorio-Toth‎ et al.
  • mSystems‎
  • 2023‎

Contamination of hospital sinks with microbial pathogens presents a serious potential threat to patients, but our understanding of sink colonization dynamics is largely based on infection outbreaks. Here, we investigate the colonization patterns of multidrug-resistant organisms (MDROs) in intensive care unit sinks and water from two hospitals in the USA and Pakistan collected over 27 months of prospective sampling. Using culture-based methods, we recovered 822 bacterial isolates representing 104 unique species and genomospecies. Genomic analyses revealed long-term colonization by Pseudomonas spp. and Serratia marcescens strains across multiple rooms. Nanopore sequencing uncovered examples of long-term persistence of resistance-conferring plasmids in unrelated hosts. These data indicate that antibiotic resistance (AR) in Pseudomonas spp. is maintained both by strain colonization and horizontal gene transfer (HGT), while HGT maintains AR within Acinetobacter spp. and Enterobacterales, independent of colonization. These results emphasize the importance of proactive, genomic-focused surveillance of built environments to mitigate MDRO spread. IMPORTANCE Hospital sinks are frequently linked to outbreaks of antibiotic-resistant bacteria. Here, we used whole-genome sequencing to track the long-term colonization patterns in intensive care unit (ICU) sinks and water from two hospitals in the USA and Pakistan collected over 27 months of prospective sampling. We analyzed 822 bacterial genomes, representing over 100 different species. We identified long-term contamination by opportunistic pathogens, as well as transient appearance of other common pathogens. We found that bacteria recovered from the ICU had more antibiotic resistance genes (ARGs) in their genomes compared to matched community spaces. We also found that many of these ARGs are harbored on mobilizable plasmids, which were found shared in the genomes of unrelated bacteria. Overall, this study provides an in-depth view of contamination patterns for common nosocomial pathogens and identifies specific targets for surveillance.


An Intrinsically Disordered Peptide from Ebola Virus VP35 Controls Viral RNA Synthesis by Modulating Nucleoprotein-RNA Interactions.

  • Daisy W Leung‎ et al.
  • Cell reports‎
  • 2015‎

During viral RNA synthesis, Ebola virus (EBOV) nucleoprotein (NP) alternates between an RNA-template-bound form and a template-free form to provide the viral polymerase access to the RNA template. In addition, newly synthesized NP must be prevented from indiscriminately binding to noncognate RNAs. Here, we investigate the molecular bases for these critical processes. We identify an intrinsically disordered peptide derived from EBOV VP35 (NPBP, residues 20-48) that binds NP with high affinity and specificity, inhibits NP oligomerization, and releases RNA from NP-RNA complexes in vitro. The structure of the NPBP/ΔNPNTD complex, solved to 3.7 Å resolution, reveals how NPBP peptide occludes a large surface area that is important for NP-NP and NP-RNA interactions and for viral RNA synthesis. Together, our results identify a highly conserved viral interface that is important for EBOV replication and can be targeted for therapeutic development.


Human IFIT3 Modulates IFIT1 RNA Binding Specificity and Protein Stability.

  • Britney Johnson‎ et al.
  • Immunity‎
  • 2018‎

Although interferon-induced proteins with tetratricopeptide repeats (IFIT proteins) inhibit infection of many viruses by recognizing their RNA, the regulatory mechanisms involved remain unclear. Here we report a crystal structure of cap 0 (m7GpppN) RNA bound to human IFIT1 in complex with the C-terminal domain of human IFIT3. Structural, biochemical, and genetic studies suggest that IFIT3 binding to IFIT1 has dual regulatory functions: (1) extending the half-life of IFIT1 and thereby increasing its steady-state amounts in cells; and (2) allosterically regulating the IFIT1 RNA-binding channel, thereby enhancing the specificity of recognition for cap 0 but not cap 1 (m7GpppNm) or 5'-ppp RNA. Mouse Ifit3 lacks this key C-terminal domain and does not bind mouse Ifit1. The IFIT3 interaction with IFIT1 is important for restricting infection of viruses lacking 2'-O methylation in their RNA cap structures. Our experiments establish differences in the regulation of IFIT1 orthologs and define targets for modulation of human IFIT protein activity.


In silico derived small molecules bind the filovirus VP35 protein and inhibit its polymerase cofactor activity.

  • Craig S Brown‎ et al.
  • Journal of molecular biology‎
  • 2014‎

The Ebola virus (EBOV) genome only encodes a single viral polypeptide with enzymatic activity, the viral large (L) RNA-dependent RNA polymerase protein. However, currently, there is limited information about the L protein, which has hampered the development of antivirals. Therefore, antifiloviral therapeutic efforts must include additional targets such as protein-protein interfaces. Viral protein 35 (VP35) is multifunctional and plays important roles in viral pathogenesis, including viral mRNA synthesis and replication of the negative-sense RNA viral genome. Previous studies revealed that mutation of key basic residues within the VP35 interferon inhibitory domain (IID) results in significant EBOV attenuation, both in vitro and in vivo. In the current study, we use an experimental pipeline that includes structure-based in silico screening and biochemical and structural characterization, along with medicinal chemistry, to identify and characterize small molecules that target a binding pocket within VP35. NMR mapping experiments and high-resolution x-ray crystal structures show that select small molecules bind to a region of VP35 IID that is important for replication complex formation through interactions with the viral nucleoprotein (NP). We also tested select compounds for their ability to inhibit VP35 IID-NP interactions in vitro as well as VP35 function in a minigenome assay and EBOV replication. These results confirm the ability of compounds identified in this study to inhibit VP35-NP interactions in vitro and to impair viral replication in cell-based assays. These studies provide an initial framework to guide development of antifiloviral compounds against filoviral VP35 proteins.


Topoisomerase II Inhibitors Induce DNA Damage-Dependent Interferon Responses Circumventing Ebola Virus Immune Evasion.

  • Priya Luthra‎ et al.
  • mBio‎
  • 2017‎

Ebola virus (EBOV) protein VP35 inhibits production of interferon alpha/beta (IFN) by blocking RIG-I-like receptor signaling pathways, thereby promoting virus replication and pathogenesis. A high-throughput screening assay, developed to identify compounds that either inhibit or bypass VP35 IFN-antagonist function, identified five DNA intercalators as reproducible hits from a library of bioactive compounds. Four, including doxorubicin and daunorubicin, are anthracycline antibiotics that inhibit topoisomerase II and are used clinically as chemotherapeutic drugs. These compounds were demonstrated to induce IFN responses in an ATM kinase-dependent manner and to also trigger the DNA-sensing cGAS-STING pathway of IFN induction. These compounds also suppress EBOV replication in vitro and induce IFN in the presence of IFN-antagonist proteins from multiple negative-sense RNA viruses. These findings provide new insights into signaling pathways activated by important chemotherapy drugs and identify a novel therapeutic approach for IFN induction that may be exploited to inhibit RNA virus replication.IMPORTANCE Ebola virus and other emerging RNA viruses are significant but unpredictable public health threats. Therapeutic approaches with broad-spectrum activity could provide an attractive response to such infections. We describe a novel assay that can identify small molecules that overcome Ebola virus-encoded innate immune evasion mechanisms. This assay identified as hits cancer chemotherapeutic drugs, including doxorubicin. Follow-up studies provide new insight into how doxorubicin induces interferon (IFN) responses, revealing activation of both the DNA damage response kinase ATM and the DNA sensor cGAS and its partner signaling protein STING. The studies further demonstrate that the ATM and cGAS-STING pathways of IFN induction are a point of vulnerability not only for Ebola virus but for other RNA viruses as well, because viral innate immune antagonists consistently fail to block these signals. These studies thereby define a novel avenue for therapeutic intervention against emerging RNA viruses.


Cryo-EM analysis of Ebola virus nucleocapsid-like assembly.

  • Yan Wang‎ et al.
  • STAR protocols‎
  • 2022‎

This protocol describes the reconstitution of the filamentous Ebola virus nucleocapsid-like assembly in vitro. This is followed by solving the cryo-EM structure using helical reconstruction, and flexible fitting of the existing model into the 5.8 Å cryo-EM map. The protocol can be applied to other filamentous viral protein assemblies, particularly those with high flexibility and moderate resolution maps, which present technical challenges to model building. For complete details on the use and execution of this profile, please refer to Su et al. (2018).


Antigenic landscapes on Staphylococcus aureus pore-forming toxins reveal insights into specificity and cross-neutralization.

  • Shweta Kailasan‎ et al.
  • mAbs‎
  • 2022‎

Staphylococcus aureus carries an exceptional repertoire of virulence factors that aid in immune evasion. Previous single-target approaches for S. aureus-specific vaccines and monoclonal antibodies (mAbs) have failed in clinical trials due to the multitude of virulence factors released during infection. Emergence of antibiotic-resistant strains demands a multi-target approach involving neutralization of different, non-overlapping pathogenic factors. Of the several pore-forming toxins that contribute to S. aureus pathogenesis, efforts have largely focused on mAbs that neutralize α-hemolysin (Hla) and target the receptor-binding site. Here, we isolated two anti-Hla and three anti-Panton-Valentine Leukocidin (LukSF-PV) mAbs, and used a combination of hydrogen deuterium exchange mass spectrometry (HDX-MS) and alanine scanning mutagenesis to delineate and validate the toxins' epitope landscape. Our studies identified two novel, neutralizing epitopes targeted by 2B6 and CAN6 on Hla that provided protection from hemolytic activity in vitro and showed synergy in rodent pneumonia model against lethal challenge. Of the anti-LukF mAbs, SA02 and SA131 showed specific neutralization activity to LukSF-PV while SA185 showed cross-neutralization activity to LukSF-PV, γ-hemolysin HlgAB, and leukotoxin ED. We further compared these antigen-specific mAbs to two broadly neutralizing mAbs, H5 (targets Hla, LukSF-PV, HlgAB, HlgCB, and LukED) and SA185 (targeting LukSF-PV, HlgAB, and LukED), and identified molecular level markers for broad-spectrum reactivity among the pore-forming toxins by HDX-MS. To further underscore the need to target the cross-reactive epitopes on leukocidins for the development of broad-spectrum therapies, we annotated Hla sequences isolated from patients in multiple countries for genomic variations within the perspective of our defined epitopes.


SARS-CoV-2 Omicron boosting induces de novo B cell response in humans.

  • Wafaa B Alsoussi‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2022‎

The primary two-dose SARS-CoV-2 mRNA vaccine series are strongly immunogenic in humans, but the emergence of highly infectious variants necessitated additional doses of these vaccines and the development of new variant-derived ones 1-4 . SARS-CoV-2 booster immunizations in humans primarily recruit pre-existing memory B cells (MBCs) 5-9 . It remains unclear, however, whether the additional doses induce germinal centre (GC) reactions where reengaged B cells can further mature and whether variant-derived vaccines can elicit responses to novel epitopes specific to such variants. Here, we show that boosting with the original SARS- CoV-2 spike vaccine (mRNA-1273) or a B.1.351/B.1.617.2 (Beta/Delta) bivalent vaccine (mRNA-1273.213) induces robust spike-specific GC B cell responses in humans. The GC response persisted for at least eight weeks, leading to significantly more mutated antigen-specific MBC and bone marrow plasma cell compartments. Interrogation of MBC-derived spike-binding monoclonal antibodies (mAbs) isolated from individuals boosted with either mRNA-1273, mRNA-1273.213, or a monovalent Omicron BA.1-based vaccine (mRNA-1273.529) revealed a striking imprinting effect by the primary vaccination series, with all mAbs (n=769) recognizing the original SARS-CoV-2 spike protein. Nonetheless, using a more targeted approach, we isolated mAbs that recognized the spike protein of the SARS-CoV-2 Omicron (BA.1) but not the original SARS-CoV-2 spike from the mRNA-1273.529 boosted individuals. The latter mAbs were less mutated and recognized novel epitopes within the spike protein, suggesting a naïve B cell origin. Thus, SARS-CoV-2 boosting in humans induce robust GC B cell responses, and immunization with an antigenically distant spike can overcome the antigenic imprinting by the primary vaccination series.


CAPG Is Required for Ebola Virus Infection by Controlling Virus Egress from Infected Cells.

  • Hiroyuki Mori‎ et al.
  • Viruses‎
  • 2022‎

The replication of Ebola virus (EBOV) is dependent upon actin functionality, especially at cell entry through macropinocytosis and at release of virus from cells. Previously, major actin-regulatory factors involved in actin nucleation, such as Rac1 and Arp2/3, were shown important in both steps. However, downstream of nucleation, many other cell factors are needed to control actin dynamics. How these regulate EBOV infection remains largely unclear. Here, we identified the actin-regulating protein, CAPG, as important for EBOV replication. Notably, knockdown of CAPG specifically inhibited viral infectivity and yield of infectious particles. Cell-based mechanistic analysis revealed a requirement of CAPG for virus production from infected cells. Proximity ligation and split-green fluorescent protein reconstitution assays revealed strong association of CAPG with VP40 that was mediated through the S1 domain of CAPG. Overall, CAPG is a novel host factor regulating EBOV infection through connecting actin filament stabilization to viral egress from cells.


Oropouche orthobunyavirus infection is mediated by the cellular host factor Lrp1.

  • Madeline M Schwarz‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

Oropouche orthobunyavirus (OROV; Peribunyaviridae) is a mosquito-transmitted virus that causes widespread human febrile illness in South America, with occasional progression to neurologic effects. Host factors mediating the cellular entry of OROV are undefined. Here, we show that OROV uses the host protein low-density lipoprotein-related protein 1 (Lrp1) for efficient cellular infection. Cells from evolutionarily distinct species lacking Lrp1 were less permissive to OROV infection than cells with Lrp1. Treatment of cells with either the high-affinity Lrp1 ligand receptor-associated protein (RAP) or recombinant ectodomain truncations of Lrp1 significantly reduced OROV infection. In addition, chimeric vesicular stomatitis virus (VSV) expressing OROV glycoproteins (VSV-OROV) bound to the Lrp1 ectodomain in vitro. Furthermore, we demonstrate the biological relevance of the OROV-Lrp1 interaction in a proof-of-concept mouse study in which treatment of mice with RAP at the time of infection reduced tissue viral load and promoted survival from an otherwise lethal infection. These results with OROV, along with the recent finding of Lrp1 as an entry factor for Rift Valley fever virus, highlight the broader significance of Lrp1 in cellular infection by diverse bunyaviruses. Shared strategies for entry, such as the critical function of Lrp1 defined here, provide a foundation for the development of pan-bunyaviral therapeutics.


Lrp1 is essential for lethal Rift Valley fever hepatic disease in mice.

  • Madeline M Schwarz‎ et al.
  • Science advances‎
  • 2023‎

Rift Valley fever virus (RVFV) is an emerging arbovirus found in Africa. While RVFV is pantropic and infects many cells and tissues, viral replication and necrosis within the liver play a critical role in mediating severe disease. The low-density lipoprotein receptor-related protein 1 (Lrp1) is a recently identified host factor for cellular entry and infection by RVFV. The biological significance of Lrp1, including its role in hepatic disease in vivo, however, remains to be determined. Because Lrp1 has a high expression level in hepatocytes, we developed a mouse model in which Lrp1 is specifically deleted in hepatocytes to test how the absence of liver Lrp1 expression affects RVF pathogenesis. Mice lacking Lrp1 expression in hepatocytes showed minimal RVFV replication in the liver, longer time to death, and altered clinical signs toward neurological disease. In contrast, RVFV infection levels in other tissues showed no difference between the two genotypes. Therefore, Lrp1 is essential for RVF hepatic disease in mice.


Domain-specific biochemical and serological characterization of SARS-CoV-2 nucleocapsid protein.

  • Chao Wu‎ et al.
  • STAR protocols‎
  • 2021‎

Nucleocapsid proteins are essential for SARS-CoV-2 life cycle. Here, we describe protocols to gather domain-specific insights about essential properties of nucleocapsids. These assays include dynamic light scattering to characterize oligomerization, fluorescence polarization to quantify RNA binding, hydrogen-deuterium exchange mass spectrometry to map RNA binding regions, negative-stain electron microscopy to visualize oligomeric species, interferon reporter assay to evaluate interferon signaling modulation, and a serology assay to reveal insights for improved sensitivity and specificity. These assays are broadly applicable to RNA-encapsidated nucleocapsids. For complete details on the use and execution of this protocol, please refer to Wu et al. (2021).


Effect of mutations in the SARS-CoV-2 spike protein on protein stability, cleavage, and cell-cell fusion function.

  • Chelsea T Barrett‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2021‎

The SARS-CoV-2 spike protein (S) is the sole viral protein responsible for both viral binding to a host cell and the membrane fusion event needed for cell entry. In addition to facilitating fusion needed for viral entry, S can also drive cell-cell fusion, a pathogenic effect observed in the lungs of SARS-CoV-2 infected patients. While several studies have investigated S requirements involved in viral particle entry, examination of S stability and factors involved in S cell-cell fusion remain limited. We demonstrate that S must be processed at the S1/S2 border in order to mediate cell-cell fusion, and that mutations at potential cleavage sites within the S2 subunit alter S processing at the S1/S2 border, thus preventing cell-cell fusion. We also identify residues within the internal fusion peptide and the cytoplasmic tail that modulate S cell-cell fusion. Additionally, we examine S stability and protein cleavage kinetics in a variety of mammalian cell lines, including a bat cell line related to the likely reservoir species for SARS-CoV-2, and provide evidence that proteolytic processing alters the stability of the S trimer. This work therefore offers insight into S stability, proteolytic processing, and factors that mediate S cell-cell fusion, all of which help give a more comprehensive understanding of this highly sought-after therapeutic target.


Biochemical and HDX Mass Spectral Characterization of the SARS-CoV-2 Nsp1 Protein.

  • Nawneet Mishra‎ et al.
  • Biochemistry‎
  • 2023‎

A major challenge in defining the pathophysiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is to better understand virally encoded multifunctional proteins and their interactions with host factors. Among the many proteins encoded by the positive-sense, single-stranded RNA genome, nonstructural protein 1 (Nsp1) stands out due to its impact on several stages of the viral replication cycle. Nsp1 is the major virulence factor that inhibits mRNA translation. Nsp1 also promotes host mRNA cleavage to modulate host and viral protein expression and to suppress host immune functions. To better define how this multifunctional protein can facilitate distinct functions, we characterize SARS-CoV-2 Nsp1 by using a combination of biophysical techniques, including light scattering, circular dichroism, hydrogen/deuterium exchange mass spectrometry (HDX-MS), and temperature-dependent HDX-MS. Our results reveal that the SARS-CoV-2 Nsp1 N- and C-terminus are unstructured in solution, and in the absence of other proteins, the C-terminus has an increased propensity to adopt a helical conformation. In addition, our data indicate that a short helix exists near the C-terminus and adjoins the region that binds the ribosome. Together, these findings provide insights into the dynamic nature of Nsp1 that impacts its functions during infection. Furthermore, our results will inform efforts to understand SARS-CoV-2 infection and antiviral development.


Protein Interaction Mapping Identifies RBBP6 as a Negative Regulator of Ebola Virus Replication.

  • Jyoti Batra‎ et al.
  • Cell‎
  • 2018‎

Ebola virus (EBOV) infection often results in fatal illness in humans, yet little is known about how EBOV usurps host pathways during infection. To address this, we used affinity tag-purification mass spectrometry (AP-MS) to generate an EBOV-host protein-protein interaction (PPI) map. We uncovered 194 high-confidence EBOV-human PPIs, including one between the viral transcription regulator VP30 and the host ubiquitin ligase RBBP6. Domain mapping identified a 23 amino acid region within RBBP6 that binds to VP30. A crystal structure of the VP30-RBBP6 peptide complex revealed that RBBP6 mimics the viral nucleoprotein (NP) binding to the same interface of VP30. Knockdown of endogenous RBBP6 stimulated viral transcription and increased EBOV replication, whereas overexpression of either RBBP6 or the peptide strongly inhibited both. These results demonstrate the therapeutic potential of biologics that target this interface and identify additional PPIs that may be leveraged for novel therapeutic strategies.


Potent Neutralization of Staphylococcal Enterotoxin B In Vivo by Antibodies that Block Binding to the T-Cell Receptor.

  • Gang Chen‎ et al.
  • Journal of molecular biology‎
  • 2019‎

To develop an antibody (Ab) therapeutic against staphylococcal enterotoxin B (SEB), a potential incapacitating bioterrorism agent and a major cause of food poisoning, we developed a "class T" anti-SEB neutralizing Ab (GC132) targeting an epitope on SEB distinct from that of previously developed "class M" Abs. A systematic engineering approach was applied to affinity-mature Ab GC132 to yield an optimized therapeutic candidate (GC132a) with sub-nanomolar binding affinity. Mapping of the binding interface by hydrogen-deuterium exchange coupled to mass spectrometry revealed that the class T epitope on SEB overlapped with the T-cell receptor binding site, whereas other evidence suggested that the class M epitope overlapped with the binding site for the major histocompatibility complex. In the IgG format, GC132a showed ∼50-fold more potent toxin-neutralizing efficacy than the best class M Ab in vitro, and fully protected mice from lethal challenge in a toxic shock post-exposure model. We also engineered bispecific Abs (bsAbs) that bound tetravalently by utilizing two class M binding sites and two class T binding sites. The bsAbs displayed enhanced toxin neutralization efficacy compared with the respective monospecific Ab subunits as well as a mixture of the two, indicating that enhanced efficacy was due to heterotypic tetravalent binding to two non-overlapping epitopes on SEB. Together, these results suggest that class T anti-SEB Ab GC132a is an excellent candidate for clinical development and for bsAb engineering.


Differential Regulation of Interferon Responses by Ebola and Marburg Virus VP35 Proteins.

  • Megan R Edwards‎ et al.
  • Cell reports‎
  • 2016‎

Suppression of innate immune responses during filoviral infection contributes to disease severity. Ebola (EBOV) and Marburg (MARV) viruses each encode a VP35 protein that suppresses RIG-I-like receptor signaling and interferon-α/β (IFN-α/β) production by several mechanisms, including direct binding to double stranded RNA (dsRNA). Here, we demonstrate that in cell culture, MARV infection results in a greater upregulation of IFN responses as compared to EBOV infection. This correlates with differences in the efficiencies by which EBOV and MARV VP35s antagonize RIG-I signaling. Furthermore, structural and biochemical studies suggest that differential recognition of RNA elements by the respective VP35 C-terminal IFN inhibitory domain (IID) rather than affinity for RNA by the respective VP35s is critical for this observation. Our studies reveal functional differences in EBOV versus MARV VP35 RNA binding that result in unexpected differences in the host response to deadly viral pathogens.


Delayed fracture healing and increased callus adiposity in a C57BL/6J murine model of obesity-associated type 2 diabetes mellitus.

  • Matthew L Brown‎ et al.
  • PloS one‎
  • 2014‎

Impaired healing and non-union of skeletal fractures is a major public health problem, with morbidity exacerbated in patients with diabetes mellitus (DM). DM is prevalent worldwide and affects approximately 25.8 million US adults, with >90% having obesity-related type 2 DM (T2DM). While fracture healing in type 1 DM (T1DM) has been studied using animal models, an investigation into delayed healing in an animal model of T2DM has not yet been performed.


The Cap-Snatching SFTSV Endonuclease Domain Is an Antiviral Target.

  • Wenjie Wang‎ et al.
  • Cell reports‎
  • 2020‎

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne virus with 12%-30% case mortality rates and is related to the Heartland virus (HRTV) identified in the United States. Together, SFTSV and HRTV are emerging segmented, negative-sense RNA viral (sNSV) pathogens with potential global health impact. Here, we characterize the amino-terminal cap-snatching endonuclease domain of SFTSV polymerase (L) and solve a 2.4-Å X-ray crystal structure. While the overall structure is similar to those of other cap-snatching sNSV endonucleases, differences near the C terminus of the SFTSV endonuclease suggest divergence in regulation. Influenza virus endonuclease inhibitors, including the US Food and Drug Administration (FDA) approved Baloxavir (BXA), inhibit the endonuclease activity in in vitro enzymatic assays and in cell-based studies. BXA displays potent activity with a half maximal inhibitory concentration (IC50) of ∼100 nM in enzyme inhibition and an EC50 value of ∼250 nM against SFTSV and HRTV in plaque assays. Together, our data support sNSV endonucleases as an antiviral target.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: