Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 72 papers

A genetically modified minipig model for Alzheimer's disease with SORL1 haploinsufficiency.

  • Olav M Andersen‎ et al.
  • Cell reports. Medicine‎
  • 2022‎

The established causal genes in Alzheimer's disease (AD), APP, PSEN1, and PSEN2, are functionally characterized using biomarkers, capturing an in vivo profile reflecting the disease's initial preclinical phase. Mutations in SORL1, encoding the endosome recycling receptor SORLA, are found in 2%-3% of individuals with early-onset AD, and SORL1 haploinsufficiency appears to be causal for AD. To test whether SORL1 can function as an AD causal gene, we use CRISPR-Cas9-based gene editing to develop a model of SORL1 haploinsufficiency in Göttingen minipigs, taking advantage of porcine models for biomarker investigations. SORL1 haploinsufficiency in young adult minipigs is found to phenocopy the preclinical in vivo profile of AD observed with APP, PSEN1, and PSEN2, resulting in elevated levels of β-amyloid (Aβ) and tau preceding amyloid plaque formation and neurodegeneration, as observed in humans. Our study provides functional support for the theory that SORL1 haploinsufficiency leads to endosome cytopathology with biofluid hallmarks of autosomal dominant AD.


Structural Organization of Human Full-Length PAR3 and the aPKC-PAR6 Complex.

  • Le T M Le‎ et al.
  • Molecular biotechnology‎
  • 2022‎

The tripartite partition defect (PAR) polarity complex, which includes the proteins PAR3, atypical protein kinase C (aPKC), and PAR6, is a major regulator of cellular polarity. It is highly conserved and expressed in various tissues. Its largest component, PAR3, controls protein-protein interactions of the PAR complex with a variety of interaction partners, and PAR3 self-association is critical for the formation of filament-like structures. However, little is known about the structure of the PAR complex. Here, we purified non-filamentous PAR3 and the aPKC-PAR6 complex and characterized them by single-particle electron microscopy (EM). We expressed and purified an oligomerization-deficient form of PAR3, PAR3V13D,D70K, and the active aPKC-PAR6 dimer. For PAR3, engineering at two positions is sufficient to form stable single particles with a maximum dimension of 20 nm. aPKC-PAR6 forms a complex with a maximum dimension of 13.5 nm that contains single copies of aPKC. Thus, the data present a basis for further high-resolution studies of PAR proteins and PAR complex formation.


AraC interacts with p75NTR transmembrane domain to induce cell death of mature neurons.

  • Vanessa Lopes-Rodrigues‎ et al.
  • Cell death & disease‎
  • 2023‎

Cytosine arabinoside (AraC) is one of the main therapeutic treatments for several types of cancer, including acute myeloid leukaemia. However, after a high-dose AraC chemotherapy regime, patients develop severe neurotoxicity and cell death in the central nervous system leading to cerebellar ataxia, dysarthria, nystagmus, somnolence and drowsiness. AraC induces apoptosis in dividing cells. However, the mechanism by which it leads to neurite degeneration and cell death in mature neurons remains unclear. We hypothesise that the upregulation of the death receptor p75NTR is responsible for AraC-mediated neurodegeneration and cell death in leukaemia patients undergoing AraC treatment. To determine the role of AraC-p75NTR signalling in the cell death of mature neurons, we used mature cerebellar granule neurons' primary cultures from p75NTR knockout and p75NTRCys259 mice. Evaluation of neurite degeneration, cell death and p75NTR signalling was done by immunohistochemistry and immunoblotting. To assess the interaction between AraC and p75NTR, we performed cellular thermal shift and AraTM assays as well as Homo-FRET anisotropy imaging. We show that AraC induces neurite degeneration and programmed cell death of mature cerebellar granule neurons in a p75NTR-dependent manner. Mechanistically, Proline 252 and Cysteine 256 residues facilitate AraC interaction with the transmembrane domain of p75NTR resulting in uncoupling of p75NTR from the NFκB survival pathway. This, in turn, exacerbates the activation of the cell death/JNK pathway by recruitment of TRAF6 to p75NTR. Our findings identify p75NTR as a novel molecular target to develop treatments for counteract AraC-mediated cell death of mature neurons.


Vortioxetine promotes early changes in dendritic morphology compared to fluoxetine in rat hippocampus.

  • Fenghua Chen‎ et al.
  • European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology‎
  • 2016‎

Preclinical studies reveal that the multimodal antidepressant vortioxetine enhances long-term potentiation and dendritic branching compared to a selective serotonin reuptake inhibitor (SSRI). In the present study, we investigated vortioxetine׳s effects on spines and dendritic morphology in rat hippocampus at two time points compared to the SSRI, fluoxetine. Rats were dosed for 1 and 4 weeks with vortioxetine and fluoxetine at doses relevant for antidepressant activity. Dendritic morphology of pyramidal neurons (i.e., dendritic length, dendritic branch, spine number and density, and Sholl analysis) was examined in Golgi-stained sections from hippocampal CA1. After 1 week of treatment, vortioxetine significantly increased spine number (apical and basal dendrites), spine density (only basal), dendritic length (only apical), and dendritic branch number (apical and basal), whereas fluoxetine had no effect. After 4 weeks of treatment, vortioxetine significantly increased all measures of dendritic spine morphology as did fluoxetine except for spine density of basal dendrites. The number of intersections in the apical and basal dendrites was also significantly increased for both treatments after 4 weeks compared to control. In addition, 4 weeks of vortioxetine treatment, but not fluoxetine, promoted a decrease in spine neck length. In conclusion, 1-week vortioxetine treatment induced changes in spine number and density and dendritic morphology, whereas an equivalent dose of fluoxetine had no effects. Decreased spine neck length following 4-week vortioxetine treatment suggests a transition to mature spine morphology. This implies that vortioxetine׳s effects on spine and dendritic morphology are mediated by mechanisms that go beyond serotonin reuptake inhibition.


Quantitative histological assessment of hepatic ischemia-reperfusion injuries following ischemic pre- and post-conditioning in the rat liver.

  • Anders R Knudsen‎ et al.
  • The Journal of surgical research‎
  • 2013‎

Ischemic preconditioning (IPC) has been shown to protect the liver against ischemia-reperfusion (I/R) injuries. However, ischemic post-conditioning has received little attention. The aim of the present study was to quantify and compare the hepato-protective properties of IPC and IPO, for the first time, using unbiased design-based stereological methods.


Neuronal precursor cell proliferation in the hippocampus after transient cerebral ischemia: a comparative study of two rat strains using stereological tools.

  • Jesper Kelsen‎ et al.
  • Experimental & translational stroke medicine‎
  • 2010‎

We are currently investigating microglial activation and neuronal precursor cell (NPC) proliferation after transient middle cerebral artery occlusion (tMCAo) in rats. This study aimed: (1) to investigate differences in hippocampal NPC proliferation in outbred male spontaneously hypertensive rats (SHRs) and Sprague-Dawley rats (SDs) one week after tMCAo; (2) to present the practical use of the optical fractionator and 2D nucleator in stereological brain tissue analyses; and (3) to report our experiences with an intraluminal tMCAo model where the occluding filament is advanced 22 mm beyond the carotid bifurcation and the common carotid artery is clamped during tMCAo.


Interleukin-1beta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice.

  • Bettina H Clausen‎ et al.
  • Journal of neuroinflammation‎
  • 2008‎

Interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) are expressed by microglia and infiltrating macrophages following ischemic stroke. Whereas IL-1beta is primarily neurotoxic in ischemic stroke, TNF-alpha may have neurotoxic and/or neuroprotective effects. We investigated whether IL-1beta and TNF-alpha are synthesized by overlapping or segregated populations of cells after ischemic stroke in mice.


Molecular characterization and temporal expression profiling of presenilins in the developing porcine brain.

  • Lone B Madsen‎ et al.
  • BMC neuroscience‎
  • 2007‎

The transmembrane presenilin (PSEN) proteins, PSEN1 and PSEN2, have been proposed to be the catalytic components of the gamma-secretase protein complex, which is an intramembranous multimeric protease involved in development, cell regulatory processes, and neurodegeneration in Alzheimer's disease. Here we describe the sequencing, chromosomal mapping, and polymorphism analysis of PSEN1 and PSEN2 in the domestic pig (Sus scrofa domesticus).


S-Ketamine Rapidly Reverses Synaptic and Vascular Deficits of Hippocampus in Genetic Animal Model of Depression.

  • Maryam Ardalan‎ et al.
  • The international journal of neuropsychopharmacology‎
  • 2017‎

The neurovascular plasticity of hippocampus is an important theory underlying major depression. Ketamine as a novel glutamatergic antidepressant drug can induce a rapid antidepressant effect within hours. In a mechanistic proof of this concept, we examined whether ketamine leads to an increase in synaptogenesis and vascularization within 24 hours after a single injection in a genetic rat model of depression.


ADAMTS9 Regulates Skeletal Muscle Insulin Sensitivity Through Extracellular Matrix Alterations.

  • Anne-Sofie Graae‎ et al.
  • Diabetes‎
  • 2019‎

The ADAMTS9 rs4607103 C allele is one of the few gene variants proposed to increase the risk of type 2 diabetes through an impairment of insulin sensitivity. We show that the variant is associated with increased expression of the secreted ADAMTS9 and decreased insulin sensitivity and signaling in human skeletal muscle. In line with this, mice lacking Adamts9 selectively in skeletal muscle have improved insulin sensitivity. The molecular link between ADAMTS9 and insulin signaling was characterized further in a model where ADAMTS9 was overexpressed in skeletal muscle. This selective overexpression resulted in decreased insulin signaling presumably mediated through alterations of the integrin β1 signaling pathway and disruption of the intracellular cytoskeletal organization. Furthermore, this led to impaired mitochondrial function in mouse muscle-an observation found to be of translational character because humans carrying the ADAMTS9 risk allele have decreased expression of mitochondrial markers. Finally, we found that the link between ADAMTS9 overexpression and impaired insulin signaling could be due to accumulation of harmful lipid intermediates. Our findings contribute to the understanding of the molecular mechanisms underlying insulin resistance and type 2 diabetes and point to inhibition of ADAMTS9 as a potential novel mode of treating insulin resistance.


Hippocampal volume and cell number in depression, schizophrenia, and suicide subjects.

  • Fenghua Chen‎ et al.
  • Brain research‎
  • 2020‎

Many studies suggest that the hippocampus is involved in the pathophysiology of psychiatric disorders, especially major depressive disorder (MDD) and schizophrenia. Especially, in vivo imaging studies indicate that the volume of hippocampus may be reduced in both disorders. Moreover, suicide may have a unique neurobiology. The aim of the present study is to investigate if depression, schizophrenia or suicide is associated with reduced postmortem volume of the hippocampal formation and/or changes in the numbers of neurons and/or glial cells in the different subregions of the hippocampus. We studied postmortem brain samples from 10 subjects with schizophrenia, 8 subjects with major depression, 11 suicide subjects with a history of depressive disorder, and 10 control subjects with no history of psychiatric or neurological diseases. The total volume and numbers of neurons and glial cells were estimated for the main hippocampal subregions using design-unbiased stereological techniques. We found the total volume and total numbers of neurons and glial cells similarly reduced by approximately 20% to 35% in depression and schizophrenia subjects relative to control subjects across all hippocampal regions. In suicide subjects, we only found increased neuron number in CA2/3 subregion. The volume and number of cells are reduced in depression and schizophrenia subjects relative to control subjects across all hippocampal regions. Our findings imply that the hippocampus may be a common site of pathophysiology in depression and schizophrenia. Community living suicide subjects seem to differ in hippocampal neurobiology compared to hospitalized subjects dying with MDD without suicide.


Brain immune cells undergo cGAS/STING-dependent apoptosis during herpes simplex virus type 1 infection to limit type I IFN production.

  • Line S Reinert‎ et al.
  • The Journal of clinical investigation‎
  • 2021‎

Protection of the brain from viral infections involves the type I IFN (IFN-I) system, defects in which render humans susceptible to herpes simplex encephalitis (HSE). However, excessive cerebral IFN-I levels lead to pathologies, suggesting the need for tight regulation of responses. Based on data from mouse models, human HSE cases, and primary cell culture systems, we showed that microglia and other immune cells undergo apoptosis in the HSV-1-infected brain through a mechanism dependent on the cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway, but independent of IFN-I. HSV-1 infection of microglia induced cGAS-dependent apoptosis at high viral doses, whereas lower viral doses led to IFN-I responses. Importantly, inhibition of caspase activity prevented microglial cell death and augmented IFN-I responses. Accordingly, HSV-1-infected organotypic brain slices or mice treated with a caspase inhibitor exhibited lower viral load and an improved infection outcome. Collectively, we identify an activation-induced apoptosis program in brain immune cells that downmodulates local immune responses.


α-Synuclein pathology in Parkinson disease activates homeostatic NRF2 anti-oxidant response.

  • Alberto Delaidelli‎ et al.
  • Acta neuropathologica communications‎
  • 2021‎

Circumstantial evidence points to a pathological role of alpha-synuclein (aSyn; gene symbol SNCA), conferred by aSyn misfolding and aggregation, in Parkinson disease (PD) and related synucleinopathies. Several findings in experimental models implicate perturbations in the tissue homeostatic mechanisms triggered by pathological aSyn accumulation, including impaired redox homeostasis, as significant contributors in the pathogenesis of PD. The nuclear factor erythroid 2-related factor (NRF2/Nrf2) is recognized as 'the master regulator of cellular anti-oxidant response', both under physiological as well as in pathological conditions. Using immunohistochemical analyses, we show a robust nuclear NRF2 accumulation in post-mortem PD midbrain, detected by NRF2 phosphorylation on the serine residue 40 (nuclear active p-NRF2, S40). Curated gene expression analyses of four independent publicly available microarray datasets revealed considerable alterations in NRF2-responsive genes in the disease affected regions in PD, including substantia nigra, dorsal motor nucleus of vagus, locus coeruleus and globus pallidus. To further examine the putative role of pathological aSyn accumulation on nuclear NRF2 response, we employed a transgenic mouse model of synucleionopathy (M83 line, expressing the mutant human A53T aSyn), which manifests widespread aSyn pathology (phosphorylated aSyn; S129) in the nervous system following intramuscular inoculation of exogenous fibrillar aSyn. We observed strong immunodetection of nuclear NRF2 in neuronal populations harboring p-aSyn (S129), and found an aberrant anti-oxidant and inflammatory gene response in the affected neuraxis. Taken together, our data support the notion that pathological aSyn accumulation impairs the redox homeostasis in nervous system, and boosting neuronal anti-oxidant response is potentially a promising approach to mitigate neurodegeneration in PD and related diseases.


BDNF gene delivery mediated by neuron-targeted nanoparticles is neuroprotective in peripheral nerve injury.

  • Cátia D F Lopes‎ et al.
  • Biomaterials‎
  • 2017‎

Neuron-targeted gene delivery is a promising strategy to treat peripheral neuropathies. Here we propose the use of polymeric nanoparticles based on thiolated trimethyl chitosan (TMCSH) to mediate targeted gene delivery to peripheral neurons upon a peripheral and minimally invasive intramuscular administration. Nanoparticles were grafted with the non-toxic carboxylic fragment of the tetanus neurotoxin (HC) to allow neuron targeting and were explored to deliver a plasmid DNA encoding for the brain-derived neurotrophic factor (BDNF) in a peripheral nerve injury model. The TMCSH-HC/BDNF nanoparticle treatment promoted the release and significant expression of BDNF in neural tissues, which resulted in an enhanced functional recovery after injury as compared to control treatments (vehicle and non-targeted nanoparticles), associated with an improvement in key pro-regenerative events, namely, the increased expression of neurofilament and growth-associated protein GAP-43 in the injured nerves. Moreover, the targeted nanoparticle treatment was correlated with a significantly higher density of myelinated axons in the distal stump of injured nerves, as well as with preservation of unmyelinated axon density as compared with controls and a protective role in injury-denervated muscles, preventing them from denervation. These results highlight the potential of TMCSH-HC nanoparticles as non-viral gene carriers to deliver therapeutic genes into the peripheral neurons and thus, pave the way for their use as an effective therapeutic intervention for peripheral neuropathies.


Mitochondria Are Critical for BDNF-Mediated Synaptic and Vascular Plasticity of Hippocampus following Repeated Electroconvulsive Seizures.

  • Fenghua Chen‎ et al.
  • The international journal of neuropsychopharmacology‎
  • 2018‎

Electroconvulsive therapy is a fast-acting and efficient treatment of depression used in the clinic. The underlying mechanism of its therapeutic effect is still unclear. However, recovery of synaptic connections and synaptic remodeling is thought to play a critical role for the clinical efficacy obtained from a rapid antidepressant response. Here, we investigated the relationship between synaptic changes and concomitant nonneuronal changes in microvasculature and mitochondria and its relationship to brain-derived neurotrophic factor level changes after repeated electroconvulsive seizures, an animal model of electroconvulsive therapy.


Brain volumetric alterations accompanied with loss of striatal medium-sized spiny neurons and cortical parvalbumin expressing interneurons in Brd1+/- mice.

  • Per Qvist‎ et al.
  • Scientific reports‎
  • 2018‎

Schizophrenia is a common and severe mental disorder arising from complex gene-environment interactions affecting brain development and functioning. While a consensus on the neuroanatomical correlates of schizophrenia is emerging, much of its fundamental pathobiology remains unknown. In this study, we explore brain morphometry in mice with genetic susceptibility and phenotypic relevance to schizophrenia (Brd1+/- mice) using postmortem 3D MR imaging coupled with histology, immunostaining and regional mRNA marker analysis. In agreement with recent large-scale schizophrenia neuroimaging studies, Brd1+/- mice displayed subcortical abnormalities, including volumetric reductions of amygdala and striatum. Interestingly, we demonstrate that structural alteration in striatum correlates with a general loss of striatal neurons, differentially impacting subpopulations of medium-sized spiny neurons and thus potentially striatal output. Akin to parvalbumin interneuron dysfunction in patients, a decline in parvalbumin expression was noted in the developing cortex of Brd1+/- mice, mainly driven by neuronal loss within or near cortical layer V, which is rich in corticostriatal projection neurons. Collectively, our study highlights the translational value of the Brd1+/- mouse as a pre-clinical tool for schizophrenia research and provides novel insight into its developmental, structural, and cellular pathology.


Glial cells in familial amyloidotic polyneuropathy.

  • Nádia P Gonçalves‎ et al.
  • Acta neuropathologica communications‎
  • 2014‎

Transthyretin V30M mutation is the most common variant leading to Familial Amyloidotic Polyneuropathy. In this genetic disorder, Transthyretin accumulates preferentially in the extracellular matrix of peripheral and autonomic nervous systems leading to cell death and dysfunction. Thus, knowledge regarding important biological systems for Transthyretin clearance might unravel novel insights into Familial Amyloidotic Polyneuropathy pathophysiology. Herein, our aim was to evaluate the ability of glial cells from peripheral and autonomic nervous systems in Transthyretin uptake and degradation. We assessed the role of glial cells in Familial Amyloidotic Polyneuropathy pathogenesis with real-time polymerase chain reaction, immunohistochemistry, interference RNA and confocal microscopy.


Cortical Morphogenesis during Embryonic Development Is Regulated by miR-34c and miR-204.

  • Morten T Venø‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2017‎

The porcine brain closely resembles the human brain in aspects such as development and morphology. Temporal miRNA profiling in the developing embryonic porcine cortex revealed a distinct set of miRNAs, including miR-34c and miR-204, which exhibited a highly specific expression profile across the time of cortical folding. These miRNAs were found to target Doublecortin (DCX), known to be involved in neuron migration during cortical folding of gyrencephalic brains. In vivo modulation of miRNA expression in mouse embryos confirmed that miR-34c and miR-204 can control neuronal migration and cortical morphogenesis, presumably by posttranscriptional regulation of DCX.


Rapid antidepressant effect of ketamine correlates with astroglial plasticity in the hippocampus.

  • Maryam Ardalan‎ et al.
  • British journal of pharmacology‎
  • 2017‎

Astroglia contribute to the pathophysiology of major depression and antidepressant drugs act by modulating synaptic plasticity; therefore, the present study investigated whether the fast antidepressant action of ketamine is reflected in a rapid alteration of the astrocytes' morphology in a genetic animal model of depression.


Curcumin: A multi-target disease-modifying agent for late-stage transthyretin amyloidosis.

  • Nelson Ferreira‎ et al.
  • Scientific reports‎
  • 2016‎

Transthyretin amyloidoses encompass a variety of acquired and hereditary diseases triggered by systemic extracellular accumulation of toxic transthyretin aggregates and fibrils, particularly in the peripheral nervous system. Since transthyretin amyloidoses are typically complex progressive disorders, therapeutic approaches aiming multiple molecular targets simultaneously, might improve therapy efficacy and treatment outcome. In this study, we evaluate the protective effect of physiologically achievable doses of curcumin on the cytotoxicity induced by transthyretin oligomers in vitro by showing reduction of caspase-3 activity and the levels of endoplasmic reticulum-resident chaperone binding immunoglobulin protein. When given to an aged Familial Amyloidotic Polyneuropathy mouse model, curcumin not only reduced transthyretin aggregates deposition and toxicity in both gastrointestinal tract and dorsal root ganglia but also remodeled congophilic amyloid material in tissues. In addition, curcumin enhanced internalization, intracellular transport and degradation of transthyretin oligomers by primary macrophages from aged Familial Amyloidotic Polyneuropathy transgenic mice, suggesting an impaired activation of naïve phagocytic cells exposed to transthyretin toxic intermediate species. Overall, our results clearly support curcumin or optimized derivatives as promising multi-target disease-modifying agent for late-stage transthyretin amyloidosis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: