Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 64 papers

Glucose hypometabolism in the Auditory Pathway in Age Related Hearing Loss in the ADNI cohort.

  • Fatin N Zainul Abidin‎ et al.
  • NeuroImage. Clinical‎
  • 2021‎

Hearing loss (HL) is one of the most common age-related diseases. Here, we investigate the central auditory correlates of HL in people with normal cognition and mild cognitive impairment (MCI) and test their association with genetic markers with the aim of revealing pathogenic mechanisms.


Oh brother, where art tau? Amyloid, neurodegeneration, and cognitive decline without elevated tau.

  • Lauren E McCollum‎ et al.
  • NeuroImage. Clinical‎
  • 2021‎

Mild cognitive impairment (MCI) can be an early manifestation of Alzheimer's disease (AD) pathology, other pathologic entities [e.g., cerebrovascular disease, Lewy body disease, LATE (limbic-predominant age-related TDP-43 encephalopathy)], or mixed pathologies, with concomitant AD- and non-AD pathology being particularly common, albeit difficult to identify, in living MCI patients. The National Institute on Aging and Alzheimer's Association (NIA-AA) A/T/(N) [β-Amyloid/Tau/(Neurodegeneration)] AD research framework, which classifies research participants according to three binary biomarkers [β-amyloid (A+/A-), tau (T+/T-), and neurodegeneration (N+/N-)], provides an indirect means of identifying such cases. Individuals with A+T-(N+) MCI are thought to have both AD pathologic change, given the presence of β-amyloid, and non-AD pathophysiology, given neurodegeneration without tau, because in typical AD it is tau accumulation that is most tightly linked to neuronal injury and cognitive decline. Thus, in A+T-(N+) MCI (hereafter referred to as "mismatch MCI" for the tau-neurodegeneration mismatch), non-AD pathology is hypothesized to drive neurodegeneration and symptoms, because β-amyloid, in the absence of tau, likely reflects a preclinical stage of AD. We compared a group of individuals with mismatch MCI to groups with A+T+(N+) MCI (or "prodromal AD") and A-T-(N+) MCI (or "neurodegeneration-only MCI") on cross-sectional and longitudinal cognition and neuroimaging characteristics. β-amyloid and tau status were determined by CSF assays, while neurodegeneration status was based on hippocampal volume on MRI. Overall, mismatch MCI was less "AD-like" than prodromal AD and generally, with some exceptions, more closely resembled the neurodegeneration-only group. At baseline, mismatch MCI had less episodic memory loss compared to prodromal AD. Longitudinally, mismatch MCI declined more slowly than prodromal AD across all included cognitive domains, while mismatch MCI and neurodegeneration-only MCI declined at comparable rates. Prodromal AD had smaller baseline posterior hippocampal volume than mismatch MCI, and whole brain analyses demonstrated cortical thinning that was widespread in prodromal AD but largely restricted to the medial temporal lobes (MTLs) for the mismatch and neurodegeneration-only MCI groups. Longitudinally, mismatch MCI had slower rates of volume loss than prodromal AD throughout the MTLs. Differences in cross-sectional and longitudinal cognitive and neuroimaging measures between mismatch MCI and prodromal AD may reflect disparate underlying pathologic processes, with the mismatch group potentially being driven by non-AD pathologies on a background of largely preclinical AD. These findings suggest that β-amyloid status alone in MCI may not reveal the underlying driver of symptoms with important implications for enrollment in clinical trials and prognosis.


Prognosis of conversion of mild cognitive impairment to Alzheimer's dementia by voxel-wise Cox regression based on FDG PET data.

  • Arnd Sörensen‎ et al.
  • NeuroImage. Clinical‎
  • 2019‎

The value of 18F-fluorodeoxyglucose (FDG) PET for the prognosis of conversion from mild cognitive impairment (MCI) to Alzheimer's dementia (AD) is controversial. In the present work, the identification of cerebral metabolic patterns with significant prognostic value for conversion of MCI patients to AD is investigated with voxel-based Cox regression, which in contrast to common categorical comparisons also utilizes time information.


An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer's disease.

  • Daniel Schmitter‎ et al.
  • NeuroImage. Clinical‎
  • 2015‎

Voxel-based morphometry from conventional T1-weighted images has proved effective to quantify Alzheimer's disease (AD) related brain atrophy and to enable fairly accurate automated classification of AD patients, mild cognitive impaired patients (MCI) and elderly controls. Little is known, however, about the classification power of volume-based morphometry, where features of interest consist of a few brain structure volumes (e.g. hippocampi, lobes, ventricles) as opposed to hundreds of thousands of voxel-wise gray matter concentrations. In this work, we experimentally evaluate two distinct volume-based morphometry algorithms (FreeSurfer and an in-house algorithm called MorphoBox) for automatic disease classification on a standardized data set from the Alzheimer's Disease Neuroimaging Initiative. Results indicate that both algorithms achieve classification accuracy comparable to the conventional whole-brain voxel-based morphometry pipeline using SPM for AD vs elderly controls and MCI vs controls, and higher accuracy for classification of AD vs MCI and early vs late AD converters, thereby demonstrating the potential of volume-based morphometry to assist diagnosis of mild cognitive impairment and Alzheimer's disease.


Statistical normalization techniques for magnetic resonance imaging.

  • Russell T Shinohara‎ et al.
  • NeuroImage. Clinical‎
  • 2014‎

While computed tomography and other imaging techniques are measured in absolute units with physical meaning, magnetic resonance images are expressed in arbitrary units that are difficult to interpret and differ between study visits and subjects. Much work in the image processing literature on intensity normalization has focused on histogram matching and other histogram mapping techniques, with little emphasis on normalizing images to have biologically interpretable units. Furthermore, there are no formalized principles or goals for the crucial comparability of image intensities within and across subjects. To address this, we propose a set of criteria necessary for the normalization of images. We further propose simple and robust biologically motivated normalization techniques for multisequence brain imaging that have the same interpretation across acquisitions and satisfy the proposed criteria. We compare the performance of different normalization methods in thousands of images of patients with Alzheimer's disease, hundreds of patients with multiple sclerosis, and hundreds of healthy subjects obtained in several different studies at dozens of imaging centers.


Graph theoretic analysis of structural connectivity across the spectrum of Alzheimer's disease: The importance of graph creation methods.

  • David J Phillips‎ et al.
  • NeuroImage. Clinical‎
  • 2015‎

Graph theory is increasingly being used to study brain connectivity across the spectrum of Alzheimer's disease (AD), but prior findings have been inconsistent, likely reflecting methodological differences. We systematically investigated how methods of graph creation (i.e., type of correlation matrix and edge weighting) affect structural network properties and group differences. We estimated the structural connectivity of brain networks based on correlation maps of cortical thickness obtained from MRI. Four groups were compared: 126 cognitively normal older adults, 103 individuals with Mild Cognitive Impairment (MCI) who retained MCI status for at least 3 years (stable MCI), 108 individuals with MCI who progressed to AD-dementia within 3 years (progressive MCI), and 105 individuals with AD-dementia. Small-world measures of connectivity (characteristic path length and clustering coefficient) differed across groups, consistent with prior studies. Groups were best discriminated by the Randić index, which measures the degree to which highly connected nodes connect to other highly connected nodes. The Randić index differentiated the stable and progressive MCI groups, suggesting that it might be useful for tracking and predicting the progression of AD. Notably, however, the magnitude and direction of group differences in all three measures were dependent on the method of graph creation, indicating that it is crucial to take into account how graphs are constructed when interpreting differences across diagnostic groups and studies. The algebraic connectivity measures showed few group differences, independent of the method of graph construction, suggesting that global connectivity as it relates to node degree is not altered in early AD.


Classification of amyloid status using machine learning with histograms of oriented 3D gradients.

  • Liam Cattell‎ et al.
  • NeuroImage. Clinical‎
  • 2016‎

Brain amyloid burden may be quantitatively assessed from positron emission tomography imaging using standardised uptake value ratios. Using these ratios as an adjunct to visual image assessment has been shown to improve inter-reader reliability, however, the amyloid positivity threshold is dependent on the tracer and specific image regions used to calculate the uptake ratio. To address this problem, we propose a machine learning approach to amyloid status classification, which is independent of tracer and does not require a specific set of regions of interest. Our method extracts feature vectors from amyloid images, which are based on histograms of oriented three-dimensional gradients. We optimised our method on 133 18F-florbetapir brain volumes, and applied it to a separate test set of 131 volumes. Using the same parameter settings, we then applied our method to 209 11C-PiB images and 128 18F-florbetaben images. We compared our method to classification results achieved using two other methods: standardised uptake value ratios and a machine learning method based on voxel intensities. Our method resulted in the largest mean distances between the subjects and the classification boundary, suggesting that it is less likely to make low-confidence classification decisions. Moreover, our method obtained the highest classification accuracy for all three tracers, and consistently achieved above 96% accuracy.


Selection bias in the reported performances of AD classification pipelines.

  • Alex F Mendelson‎ et al.
  • NeuroImage. Clinical‎
  • 2017‎

The last decade has seen a great proliferation of supervised learning pipelines for individual diagnosis and prognosis in Alzheimer's disease. As more pipelines are developed and evaluated in the search for greater performance, only those results that are relatively impressive will be selected for publication. We present an empirical study to evaluate the potential for optimistic bias in classification performance results as a result of this selection. This is achieved using a novel, resampling-based experiment design that effectively simulates the optimisation of pipeline specifications by individuals or collectives of researchers using cross validation with limited data. Our findings indicate that bias can plausibly account for an appreciable fraction (often greater than half) of the apparent performance improvement associated with the pipeline optimisation, particularly in small samples. We discuss the consistency of our findings with patterns observed in the literature and consider strategies for bias reduction and mitigation.


Rey's Auditory Verbal Learning Test scores can be predicted from whole brain MRI in Alzheimer's disease.

  • Elaheh Moradi‎ et al.
  • NeuroImage. Clinical‎
  • 2017‎

Rey's Auditory Verbal Learning Test (RAVLT) is a powerful neuropsychological tool for testing episodic memory, which is widely used for the cognitive assessment in dementia and pre-dementia conditions. Several studies have shown that an impairment in RAVLT scores reflect well the underlying pathology caused by Alzheimer's disease (AD), thus making RAVLT an effective early marker to detect AD in persons with memory complaints. We investigated the association between RAVLT scores (RAVLT Immediate and RAVLT Percent Forgetting) and the structural brain atrophy caused by AD. The aim was to comprehensively study to what extent the RAVLT scores are predictable based on structural magnetic resonance imaging (MRI) data using machine learning approaches as well as to find the most important brain regions for the estimation of RAVLT scores. For this, we built a predictive model to estimate RAVLT scores from gray matter density via elastic net penalized linear regression model. The proposed approach provided highly significant cross-validated correlation between the estimated and observed RAVLT Immediate (R = 0.50) and RAVLT Percent Forgetting (R = 0.43) in a dataset consisting of 806 AD, mild cognitive impairment (MCI) or healthy subjects. In addition, the selected machine learning method provided more accurate estimates of RAVLT scores than the relevance vector regression used earlier for the estimation of RAVLT based on MRI data. The top predictors were medial temporal lobe structures and amygdala for the estimation of RAVLT Immediate and angular gyrus, hippocampus and amygdala for the estimation of RAVLT Percent Forgetting. Further, the conversion of MCI subjects to AD in 3-years could be predicted based on either observed or estimated RAVLT scores with an accuracy comparable to MRI-based biomarkers.


Systematic comparison of different techniques to measure hippocampal subfield volumes in ADNI2.

  • Susanne G Mueller‎ et al.
  • NeuroImage. Clinical‎
  • 2018‎

Subfield-specific measurements provide superior information in the early stages of neurodegenerative diseases compared to global hippocampal measurements. The overall goal was to systematically compare the performance of five representative manual and automated T1 and T2 based subfield labeling techniques in a sub-set of the ADNI2 population.


Defining SNAP by cross-sectional and longitudinal definitions of neurodegeneration.

  • L E M Wisse‎ et al.
  • NeuroImage. Clinical‎
  • 2018‎

Suspected non-Alzheimer's pathophysiology (SNAP) is a biomarker driven designation that represents a heterogeneous group in terms of etiology and prognosis. SNAP has only been identified by cross-sectional neurodegeneration measures, whereas longitudinal measures might better reflect "active" neurodegeneration and might be more tightly linked to prognosis. We compare neurodegeneration defined by cross-sectional 'hippocampal volume' only (SNAP/L-) versus both cross-sectional and longitudinal 'hippocampal atrophy rate' (SNAP/L+) and investigate how these definitions impact prevalence and the clinical and biomarker profile of SNAP in Mild Cognitive Impairment (MCI).


Prediction of clinical and biomarker conformed Alzheimer's disease and mild cognitive impairment from multi-feature brain structural MRI using age-correction from a large independent lifespan sample.

  • Binyin Li‎ et al.
  • NeuroImage. Clinical‎
  • 2020‎

Structural neuroimaging has been applied to the identification of individuals with Alzheimer's disease (AD) and mild cognitive impairment (MCI). However, these methods are greatly impacted by age limiting their utility for detection of preclinical pathology. We built linear models for age based on multiple combined structural features using a large independent lifespan sample of 272 healthy adults across a wide age range from the Human Connectome Project Aging study. These models were then used to create a new support vector machine (SVM) training model in 136 AD and 268 control participants based on residues of fit from the expected age-effects relationship. Subsequent validation assessed the accuracy of the SVM model in new datasets. Finally, we applied the classifier to 276 individuals with MCI to evaluate prediction for early impairment and longitudinal cognitive change. The optimal 10-fold cross-validation accuracy was 93.07%, compared to 91.83% without age detrending. In the validation dataset, the classifier for AD obtained an accuracy of 84.85% (56/66), sensitivity of 85.36% (35/41) and specificity of 84% (21/25). Classification accuracy was improved when using the lifespan sample as opposed to the classification sample. Importantly, we observed cross-sectional greater AD specific biomarkers, as well as faster cognitive decline in MCI who were classified as more 'AD-like' (MCI-AD), and these effects were pronounced in individuals who were late MCI. The top five contributive features were volumes of left hippocampus, right hippocampus, left amygdala, the thickness of left and right middle temporal & parahippocampus gyrus. Linear detrending for age in SVM for combined structural features resulted in good performance for recognition of AD and AD-specific biomarkers, as well as prediction of MCI progression. Such procedures may be used in future work to enhance prediction in samples with atypical age distributions.


Exploring brain glucose metabolic patterns in cognitively normal adults at risk of Alzheimer's disease: A cross-validation study with Chinese and ADNI cohorts.

  • Tao-Ran Li‎ et al.
  • NeuroImage. Clinical‎
  • 2022‎

Disease-related metabolic brain patterns have been verified for a variety of neurodegenerative diseases including Alzheimer's disease (AD). This study aimed to explore and validate the pattern derived from cognitively normal controls (NCs) in the Alzheimer's continuum.


Non-linear registration improves statistical power to detect hippocampal atrophy in aging and dementia.

  • F Bartel‎ et al.
  • NeuroImage. Clinical‎
  • 2019‎

To compare the performance of different methods for determining hippocampal atrophy rates using longitudinal MRI scans in aging and Alzheimer's disease (AD).


Diagnosis and prognosis of Alzheimer's disease using brain morphometry and white matter connectomes.

  • Yun Wang‎ et al.
  • NeuroImage. Clinical‎
  • 2019‎

Accurate, reliable prediction of risk for Alzheimer's disease (AD) is essential for early, disease-modifying therapeutics. Multimodal MRI, such as structural and diffusion MRI, is likely to contain complementary information of neurodegenerative processes in AD. Here we tested the utility of the multimodal MRI (T1-weighted structure and diffusion MRI), combined with high-throughput brain phenotyping-morphometry and structural connectomics-and machine learning, as a diagnostic tool for AD. We used, firstly, a clinical cohort at a dementia clinic (National Health Insurance Service-Ilsan Hospital [NHIS-IH]; N = 211; 110 AD, 64 mild cognitive impairment [MCI], and 37 cognitively normal with subjective memory complaints [SMC]) to test the diagnostic models; and, secondly, Alzheimer's Disease Neuroimaging Initiative (ADNI)-2 to test the generalizability. Our machine learning models trained on the morphometric and connectome estimates (number of features = 34,646) showed optimal classification accuracy (AD/SMC: 97% accuracy, MCI/SMC: 83% accuracy; AD/MCI: 97% accuracy) in NHIS-IH cohort, outperforming a benchmark model (FLAIR-based white matter hyperintensity volumes). In ADNI-2 data, the combined connectome and morphometry model showed similar or superior accuracies (AD/HC: 96%; MCI/HC: 70%; AD/MCI: 75% accuracy) compared with the CSF biomarker model (t-tau, p-tau, and Amyloid β, and ratios). In predicting MCI to AD progression in a smaller cohort of ADNI-2 (n = 60), the morphometry model showed similar performance with 69% accuracy compared with CSF biomarker model with 70% accuracy. Our comparisons of the classifiers trained on structural MRI, diffusion MRI, FLAIR, and CSF biomarkers showed the promising utility of the white matter structural connectomes in classifying AD and MCI in addition to the widely used structural MRI-based morphometry, when combined with machine learning.


Cognitively supernormal older adults maintain a unique structural connectome that is resistant to Alzheimer's pathology.

  • Quanjing Chen‎ et al.
  • NeuroImage. Clinical‎
  • 2020‎

Studying older adults with excellent cognitive capacities (Supernormals) provides a unique opportunity for identifying factors related to cognitive success - a critical topic across lifespan. There is a limited understanding of Supernormals' neural substrates, especially whether any of them attends shaping and supporting superior cognitive function or confer resistance to age-related neurodegeneration such as Alzheimer's disease (AD). Here, applying a state-of-the-art diffusion imaging processing pipeline and finite mixture modelling, we longitudinally examine the structural connectome of Supernormals. We find a unique structural connectome, containing the connections between frontal, cingulate, parietal, temporal, and subcortical regions in the same hemisphere that remains stable over time in Supernormals, relatively to typical agers. The connectome significantly classifies positive vs. negative AD pathology at 72% accuracy in a new sample mixing Supernormals, typical agers, and AD risk [amnestic mild cognitive impairment (aMCI)] subjects. Among this connectome, the mean diffusivity of the connection between right isthmus cingulate cortex and right precuneus most robustly contributes to predicting AD pathology across samples. The mean diffusivity of this connection links negatively to global cognition in those Supernormals with positive AD pathology. But this relationship does not exist in typical agers or aMCI. Our data suggest the presence of a structural connectome supporting cognitive success. Cingulate to precuneus white matter integrity may be useful as a structural marker for monitoring neurodegeneration and may provide critical information for understanding how some older adults maintain or excel cognitively in light of significant AD pathology.


Modeling grey matter atrophy as a function of time, aging or cognitive decline show different anatomical patterns in Alzheimer's disease.

  • Ellen Dicks‎ et al.
  • NeuroImage. Clinical‎
  • 2019‎

Grey matter (GM) atrophy in Alzheimer's disease (AD) is most commonly modeled as a function of time. However, this approach does not take into account inter-individual differences in initial disease severity or changes due to aging. Here, we modeled GM atrophy within individuals across the AD clinical spectrum as a function of time, aging and MMSE, as a proxy for disease severity, and investigated how these models influence estimates of GM atrophy.


ARTS: A novel In-vivo classifier of arteriolosclerosis for the older adult brain.

  • Nazanin Makkinejad‎ et al.
  • NeuroImage. Clinical‎
  • 2021‎

Brain arteriolosclerosis, one of the main pathologies of cerebral small vessel disease, is common in older adults and has been linked to lower cognitive and motor function and higher odds of dementia. In spite of its frequency and associated morbidity, arteriolosclerosis can only be diagnosed at autopsy. Therefore, the purpose of this work was to develop an in-vivo classifier of arteriolosclerosis based on brain MRI. First, an ex-vivo classifier of arteriolosclerosis was developed based on features related to white matter hyperintensities, diffusion anisotropy and demographics by applying machine learning to ex-vivo MRI and pathology data from 119 participants of the Rush Memory and Aging Project (MAP) and Religious Orders Study (ROS), two longitudinal cohort studies of aging that recruit non-demented older adults. The ex-vivo classifier showed good performance in predicting the presence of arteriolosclerosis, with an average area under the receiver operating characteristic curve AUC = 0.78. The ex-vivo classifier was then translated to in-vivo based on available in-vivo and ex-vivo MRI data on the same participants. The in-vivo classifier was named ARTS (short for ARTerioloSclerosis), is fully automated, and provides a score linked to the likelihood a person suffers from arteriolosclerosis. The performance of ARTS in predicting the presence of arteriolosclerosis in-vivo was tested in a separate, 91% dementia-free group of 79 MAP/ROS participants and exhibited an AUC = 0.79 in persons with antemortem intervals shorter than 2.4 years. This level of performance in mostly non-demented older adults is notable considering that arteriolosclerosis can only be diagnosed at autopsy. The scan-rescan reproducibility of the ARTS score was excellent, with an intraclass correlation of 0.99, suggesting that application of ARTS in longitudinal studies may show high sensitivity in detecting small changes. Finally, higher ARTS scores in non-demented older adults were associated with greater decline in cognition two years after baseline MRI, especially in perceptual speed which has been linked to arteriolosclerosis and small vessel disease. This finding was shown in a separate group of 369 non-demented MAP/ROS participants and was validated in 72 non-demented Black participants of the Minority Aging Research Study (MARS) and also in 244 non-demented participants of the Alzheimer's Disease Neuroimaging Initiative 2 and 3. The results of this work suggest that ARTS may have broad implications in the advancement of diagnosis, prevention and treatment of arteriolosclerosis. ARTS is publicly available at https://www.nitrc.org/projects/arts/.


Brain atrophy rates in first degree relatives at risk for Alzheimer's.

  • Erika J Lampert‎ et al.
  • NeuroImage. Clinical‎
  • 2014‎

A positive family history (FH) raises the risk for late-onset Alzheimer's disease though, other than the known risk conferred by apolipoprotein ε4 (ApoE4), much of the genetic variance remains unexplained. We examined the effect of family history on longitudinal regional brain atrophy rates in 184 subjects (42% FH+, mean age 79.9) with mild cognitive impairment (MCI) enrolled in a national biomarker study. An automated image analysis method was applied to T1-weighted MR images to measure atrophy rates for 20 cortical and subcortical regions. Mixed-effects linear regression models incorporating repeated-measures to control for within-subject variation over multiple time points tested the effect of FH over a follow-up of up to 48 months. Most of the 20 regions showed significant atrophy over time. Adjusting for age and gender, subjects with a positive FH had greater atrophy of the amygdala (p < 0.01), entorhinal cortex (p < 0.01), hippocampus (p < 0.053) and cortical gray matter (p < 0.009). However, when E4 genotype was added as a covariate, none of the FH effects remained significant. Analyses by ApoE genotype showed that the effect of FH on amygdala atrophy rates was numerically greater in ε3 homozygotes than in E4 carriers, but this difference was not significant. FH+ subjects had numerically greater 4-year cognitive decline and conversion rates than FH- subjects but the difference was not statistically significant after adjusting for ApoE and other variables. We conclude that a positive family history of AD may influence cortical and temporal lobe atrophy in subjects with mild cognitive impairment, but it does not have a significant additional effect beyond the known effect of the E4 genotype.


Gray matter changes in asymptomatic C9orf72 and GRN mutation carriers.

  • Karteek Popuri‎ et al.
  • NeuroImage. Clinical‎
  • 2018‎

Frontotemporal dementia (FTD) is a neurodegenerative disease with a strong genetic basis. Understanding the structural brain changes during pre-symptomatic stages may allow for earlier diagnosis of patients suffering from FTD; therefore, we investigated asymptomatic members of FTD families with mutations in C9orf72 and granulin (GRN) genes. Clinically asymptomatic subjects from families with C9orf72 mutation (15 mutation carriers, C9orf72+; and 23 non-carriers, C9orf72-) and GRN mutations (9 mutation carriers, GRN+; and 15 non-carriers, GRN-) underwent structural neuroimaging (MRI). Cortical thickness and subcortical gray matter volumes were calculated using FreeSurfer. Group differences were evaluated, correcting for age, sex and years to mean age of disease onset within the subject's family. Mean age of C9orf72+ and C9orf72- were 42.6 ± 11.3 and 49.7 ± 15.5 years, respectively; while GRN+ and GRN- groups were 50.1 ± 8.7 and 53.2 ± 11.2 years respectively. The C9orf72+ group exhibited cortical thinning in the temporal, parietal and frontal regions, as well as reduced volumes of bilateral thalamus and left caudate compared to the entire group of mutation non-carriers (NC: C9orf72- and GRN- combined). In contrast, the GRN+ group did not show any significant differences compared to NC. C9orf72 mutation carriers demonstrate a pattern of reduced gray matter on MRI prior to symptom onset compared to GRN mutation carriers. These findings suggest that the preclinical course of FTD differs depending on the genetic basis and that the choice of neuroimaging biomarkers for FTD may need to take into account the specific genes involved in causing the disease.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: