Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 61 papers

Targeting MAD2 modulates stemness and tumorigenesis in human Gastric Cancer cell lines.

  • Natalia Pajuelo-Lozano‎ et al.
  • Theranostics‎
  • 2020‎

Rationale: Gastric cancer (GC) is a solid tumor that contains subpopulations of cancer stem cells (CSCs), which are considered drivers of tumor initiation and metastasis; responsible for therapeutic resistance; and promoters of tumor relapse. The balance between symmetric and asymmetric division is crucial for stem cell maintenance. The objective of this study is to evaluate the role of MAD2, a key protein for proper mitotic checkpoint activity, in the tumorigenesis of GC. Methods: Gastric cancer stem cells (GCSCs) were obtained from MKN45, SNU638 and ST2957 cell lines. Pluripotency and stemness markers were evaluated by RT-qPCR and autofluorescence and membrane markers by flow cytometry. Relevant signal transduction pathways were studied by WB. We analysed cell cycle progression, migration and invasion after modulation of MAD2 activity or protein expression levels in these in vitro models. In vivo assays were performed in a nude mouse subcutaneous xenograft model. Results: We found that NANOG, CXCR4 and autofluorescence are common and consistent markers for the GCSCs analysed, with other markers showing more variability. The three main signalling pathways (Wnt/β-catenin; Hedgehog and Notch) were activated in GCSCs. Downregulation of MAD2 in MKN45CSCs decreased the expression of markers CXCR4, CD133, CD90, LGR5 and VIM, without affecting cell cycle profile or therapy resistance. Moreover, migration, invasion and tumor growth were clearly reduced, and accordingly, we found that metalloprotease expression decreased. These results were accompanied by a reduction in the levels of transcription factors related with epithelial-to-mesenchymal transition. Conclusions: We can conclude that MAD2 is important for GCSCs stemness and its downregulation in MKN45CSCs plays a central role in GC tumorigenesis, likely through CXCR4-SNAI2-MMP1. Thus, its potential use in the clinical setting should be studied as its functions appear to extend beyond mitosis.


Synergistic targeting and resistance to PARP inhibition in DNA damage repair-deficient pancreatic cancer.

  • Johann Gout‎ et al.
  • Gut‎
  • 2021‎

ATM serine/threonine kinase (ATM) is the most frequently mutated DNA damage response gene, involved in homologous recombination (HR), in pancreatic ductal adenocarcinoma (PDAC).


Targeting BPTF Sensitizes Pancreatic Ductal Adenocarcinoma to Chemotherapy by Repressing ABC-Transporters and Impairing Multidrug Resistance (MDR).

  • Raúl Muñoz Velasco‎ et al.
  • Cancers‎
  • 2022‎

Pancreatic ductal adenocarcinoma (PDA) is characterized by an extremely poor prognosis due to its late diagnosis and strong chemoresistance to the current treatments. Therefore, finding new therapeutic targets is an urgent need nowadays. In this study, we report the role of the chromatin remodeler BPTF (Bromodomain PHD Finger Transcription Factor) as a therapeutic target in PDA. BPTF-silencing dramatically reduced cell proliferation and migration in vitro and in vivo in human and mouse PDA cell lines. Moreover, BPTF-silencing reduces the IC50 of gemcitabine in vitro and enhanced its therapeutic effect in vivo. Mechanistically, BPTF is required for c-MYC recruitment to the promoter of ABC-transporters and its downregulation facilitates gemcitabine accumulation in tumour cells, increases DNA damage, and a generates a strong synergistic effect in vivo. We show that BPTF is a therapeutic target in pancreatic ductal adenocarcinoma due to its strong effect on proliferation and in response to gemcitabine.


Cyclooxygenase 2 Effector Genes as Potential Inflammation-Related Biomarkers for Colorectal Cancer Circulating Tumor Cells Detection by Liquid Biopsy.

  • Konstantinos Stamatakis‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Cyclooxygenase 2 (COX2) has been implicated in cancer development and metastasis. We have identified several COX2-regulated inflammation-related genes in human colorectal cancer cells and shown that some of them play important roles in tumor progression. In this work, we have studied the COX2-regulated genes in the mouse colorectal cancer cell line CT26, to find that many are also regulated by COX2 over-expression. On the other hand, we generated a CT26 cell line expressing Gfp and Luciferase, to study tumor growth and metastasis in immunocompetent Balb/c mice. We then collected solid tissue, and blood samples, from healthy and tumor-bearing mice. Using the Parsortix® cell separation system and taking advantage of the fact that the tumor cells expressed Gfp, we were able to identify circulating tumor cells (CTCs) in some of the mice. We compared the mRNA expression levels of Ptgs2 and effector genes in the samples obtained from tumor-bearing or healthy mice, namely, tumor or healthy colon, Ficoll purified buffy coat, and Parsortix-isolated cells to find different patterns between healthy, tumor-bearing mice with or without CTCs. Although for genes like Il15 we did not observe any difference between healthy and tumor-bearing mice in Ficoll or Parsortix samples; others, such as Egr1, Zc3h12a, Klf4, or Nfat5, allowed distinguishing for cancer or CTC presence. Gene expression analysis in Ficoll or Parsortix processed samples, after liquid biopsy, may offer valuable diagnostic and prognostic information and thus should be further studied.


Telomerase and Pluripotency Factors Jointly Regulate Stemness in Pancreatic Cancer Stem Cells.

  • Karolin Walter‎ et al.
  • Cancers‎
  • 2021‎

To assess the role of telomerase activity and telomere length in pancreatic CSCs we used different CSC enrichment methods (CD133, ALDH, sphere formation) in primary patient-derived pancreatic cancer cells. We show that CSCs have higher telomerase activity and longer telomeres than bulk tumor cells. Inhibition of telomerase activity, using genetic knockdown or pharmacological inhibitor (BIBR1532), resulted in CSC marker depletion, abrogation of sphere formation in vitro and reduced tumorigenicity in vivo. Furthermore, we identify a positive feedback loop between stemness factors (NANOG, OCT3/4, SOX2, KLF4) and telomerase, which is essential for the self-renewal of CSCs. Disruption of the balance between telomerase activity and stemness factors eliminates CSCs via induction of DNA damage and apoptosis in primary patient-derived pancreatic cancer samples, opening future perspectives to avoid CSC-driven tumor relapse. In the present study, we demonstrate that telomerase regulation is critical for the "stemness" maintenance in pancreatic CSCs and examine the effects of telomerase inhibition as a potential treatment option of pancreatic cancer. This may significantly promote our understanding of PDAC tumor biology and may result in improved treatment for pancreatic cancer patients.


Extensive preclinical validation of combined RMC-4550 and LY3214996 supports clinical investigation for KRAS mutant pancreatic cancer.

  • Katrin J Frank‎ et al.
  • Cell reports. Medicine‎
  • 2022‎

Over 90% of pancreatic cancers present mutations in KRAS, one of the most common oncogenic drivers overall. Currently, most KRAS mutant isoforms cannot be targeted directly. Moreover, targeting single RAS downstream effectors induces adaptive resistance mechanisms. We report here on the combined inhibition of SHP2, upstream of KRAS, using the allosteric inhibitor RMC-4550 and of ERK, downstream of KRAS, using LY3214996. This combination shows synergistic anti-cancer activity in vitro, superior disruption of the MAPK pathway, and increased apoptosis induction compared with single-agent treatments. In vivo, we demonstrate good tolerability and efficacy of the combination, with significant tumor regression in multiple pancreatic ductal adenocarcinoma (PDAC) mouse models. Finally, we show evidence that 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) can be used to assess early drug responses in animal models. Based on these results, we will investigate this drug combination in the SHP2 and ERK inhibition in pancreatic cancer (SHERPA; ClinicalTrials.gov: NCT04916236) clinical trial, enrolling patients with KRAS-mutant PDAC.


The UBC-40 Urothelial Bladder Cancer cell line index: a genomic resource for functional studies.

  • Julie Earl‎ et al.
  • BMC genomics‎
  • 2015‎

Urothelial bladder cancer is a highly heterogeneous disease. Cancer cell lines are useful tools for its study. This is a comprehensive genomic characterization of 40 urothelial bladder carcinoma (UBC) cell lines including information on origin, mutation status of genes implicated in bladder cancer (FGFR3, PIK3CA, TP53, and RAS), copy number alterations assessed using high density SNP arrays, uniparental disomy (UPD) events, and gene expression.


The miR-17-92 cluster counteracts quiescence and chemoresistance in a distinct subpopulation of pancreatic cancer stem cells.

  • Michele Cioffi‎ et al.
  • Gut‎
  • 2015‎

Cancer stem cells (CSCs) represent the root of many solid cancers including pancreatic ductal adenocarcinoma, are highly chemoresistant and represent the cellular source for disease relapse. However the mechanisms involved in these processes still need to be fully elucidated. Understanding the mechanisms implicated in chemoresistance and metastasis of pancreatic cancer is critical to improving patient outcomes.


Circulating tumor cells (Ctc) and kras mutant circulating free Dna (cfdna) detection in peripheral blood as biomarkers in patients diagnosed with exocrine pancreatic cancer.

  • Julie Earl‎ et al.
  • BMC cancer‎
  • 2015‎

Pancreatic cancer remains one of the most difficult cancers to treat with the poorest prognosis. The key to improving survival rates in this disease is early detection and monitoring of disseminated and residual disease. However, this is hindered due to lack reliable diagnostic and predictive markers which mean that the majority of patients succumb to their condition within a few months.


GATA6 regulates EMT and tumour dissemination, and is a marker of response to adjuvant chemotherapy in pancreatic cancer.

  • Paola Martinelli‎ et al.
  • Gut‎
  • 2017‎

The role of GATA factors in cancer has gained increasing attention recently, but the function of GATA6 in pancreatic ductal adenocarcinoma (PDAC) is controversial. GATA6 is amplified in a subset of tumours and was proposed to be oncogenic, but high GATA6 levels are found in well-differentiated tumours and are associated with better patient outcome. By contrast, a tumour-suppressive function of GATA6 was demonstrated using genetic mouse models. We aimed at clarifying GATA6 function in PDAC.


A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.

  • Nathaniel Rothman‎ et al.
  • Nature genetics‎
  • 2010‎

We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻¹²) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻¹¹) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻¹¹) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻¹¹), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis.


Erratum to: The UBC-40 Urothelial Bladder Cancer Cell Line Index: a genomic resource for functional studies.

  • Julie Earl‎ et al.
  • BMC genomics‎
  • 2015‎

No abstract available


Hepatitis C virus infection in phenotypically distinct Huh7 cell lines.

  • Bruno Sainz‎ et al.
  • PloS one‎
  • 2009‎

In 2005, the first robust hepatitis C virus (HCV) infectious cell culture system was developed based on the HCV genotype 2a JFH-1 molecular clone and the human-derived hepatoma cell line Huh7. Although much effort has been made to dissect and expand the repertoire of JFH-1-derived clones, less attention has been given to the host cell despite the intriguing facts that thus far only Huh7 cells have been found to be highly permissive for HCV infection and furthermore only a limited number of Huh7 cell lines/stocks appear to be fully permissive. As such, we compiled a panel of Huh7 lines from disparate sources and evaluated their permissiveness for HCV infection. We found that although Huh7 lines from different laboratories do vary in morphology and cell growth, the majority (8 out of 9) were highly permissive for infection, as demonstrated by robust HCV RNA and de novo infectious virion production following infection. While HCV RNA levels achieved in the 8 permissive cell lines were relatively equivalent, three Huh7 lines demonstrated higher infectious virion production suggesting these cell lines more efficiently support post-replication event(s) in the viral life cycle. Consistent with previous studies, the single Huh7 line found to be relatively resistant to infection demonstrated a block in HCV entry. These studies not only suggest that the majority of Huh7 cell lines in different laboratories are in fact highly permissive for HCV infection, but also identify phenotypically distinct Huh7 lines, which may facilitate studies investigating the cellular determinants of HCV infection.


Complete Regression of Advanced Pancreatic Ductal Adenocarcinomas upon Combined Inhibition of EGFR and C-RAF.

  • María Teresa Blasco‎ et al.
  • Cancer cell‎
  • 2019‎

Five-year survival for pancreatic ductal adenocarcinoma (PDAC) patients remains below 7% due to the lack of effective treatments. Here, we report that combined ablation of EGFR and c-RAF expression results in complete regression of a significant percentage of PDAC tumors driven by Kras/Trp53 mutations in genetically engineered mice. Moreover, systemic elimination of these targets induces toxicities that are well tolerated. Response to this targeted therapy correlates with transcriptional profiles that resemble those observed in human PDACs. Finally, inhibition of EGFR and c-RAF expression effectively blocked tumor progression in nine independent patient-derived xenografts carrying KRAS and TP53 mutations. These results open the door to the development of targeted therapies for PDAC patients.


Biomarkers Associated with Regorafenib First-Line Treatment Benefits in Metastatic Colorectal Cancer Patients: REFRAME Molecular Study.

  • Elisa Conde‎ et al.
  • Cancers‎
  • 2021‎

First-line treatment with regorafenib in frail metastatic colorectal cancer (mCRC) patients has shown some benefit. To accurately identify such patients before treatment, we studied blood biomarkers and primary tumor molecules. We unveiled serum microRNAs (miRNAs), single-nucleotide polymorphisms (SNPs) in angiogenic-related genes, and Notch 1 expression as biomarkers associated with response or toxicity. MicroRNA array profiling and genotyping of selected SNPs were performed in the blood of fragile mCRC patients treated with regorafenib. Notch 1 and CRC-associated miRNA expression was also analyzed in tumors. High levels of miR-185-5p in serum, rs7993418 in the vascular endothelial growth factor receptor 1 (VEGFR1) gene, and Notch 1 expression in biopsies were associated with a favorable response to treatment. Serum levels of miR-126-3p and miR-152-3p and tumor expression of miR-92a-1-5p were associated with treatment toxicity, particularly interesting in patients exhibiting comorbidities, and high levels of miR-362-3p were associated with asthenia. Additionally, several miRNAs were associated with the presence of metastasis, local recurrence, and peritoneal metastasis. Besides, miRNAs determined in primary tumors were associated with tumor-node-metastasis (TNM) staging. The rs2305948 and rs699947 SNPs in VEGFR2 and VEGFA, respectively, were markers of poor prognosis correlating with locoregional relapse, a higher N stage, and metastatic shedding. In conclusion, VEGF and VEGFR SNPs, miRNAs, and Notch 1 levels are potential useful biomarkers for the management of advanced CRC under regorafenib treatment.


An Aptamer against MNK1 for Non-Small Cell Lung Cancer Treatment.

  • Rebeca Carrión-Marchante‎ et al.
  • Pharmaceutics‎
  • 2023‎

Lung cancer is the leading cause of cancer-related death worldwide. Its late diagnosis and consequently poor survival make necessary the search for new therapeutic targets. The mitogen-activated protein kinase (MAPK)-interacting kinase 1 (MNK1) is overexpressed in lung cancer and correlates with poor overall survival in non-small cell lung cancer (NSCLC) patients. The previously identified and optimized aptamer from our laboratory against MNK1, apMNKQ2, showed promising results as an antitumor drug in breast cancer in vitro and in vivo. Thus, the present study shows the antitumor potential of apMNKQ2 in another type of cancer where MNK1 plays a significant role, such as NSCLC. The effect of apMNKQ2 in lung cancer was studied with viability, toxicity, clonogenic, migration, invasion, and in vivo efficacy assays. Our results show that apMNKQ2 arrests the cell cycle and reduces viability, colony formation, migration, invasion, and epithelial-mesenchymal transition (EMT) processes in NSCLC cells. In addition, apMNKQ2 reduces tumor growth in an A549-cell line NSCLC xenograft model. In summary, targeting MNK1 with a specific aptamer may provide an innovative strategy for lung cancer treatment.


Detection of Early-Stage Pancreatic Ductal Adenocarcinoma From Blood Samples: Results of a Multiplex Biomarker Signature Validation Study.

  • Randall E Brand‎ et al.
  • Clinical and translational gastroenterology‎
  • 2022‎

The IMMray PanCan-d test combines an 8-plex biomarker signature with CA19-9 in a proprietary algorithm to detect pancreatic ductal adenocarcinoma (PDAC) in serum samples. This study aimed to validate the clinical performance of the IMMray PanCan-d test and to better understand test performance in Lewis-null (le/le) individuals who cannot express CA19-9.


Targeting cancer stem cell OXPHOS with tailored ruthenium complexes as a new anti-cancer strategy.

  • Sonia Alcalá‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2024‎

Previous studies by our group have shown that oxidative phosphorylation (OXPHOS) is the main pathway by which pancreatic cancer stem cells (CSCs) meet their energetic requirements; therefore, OXPHOS represents an Achille's heel of these highly tumorigenic cells. Unfortunately, therapies that target OXPHOS in CSCs are lacking.


Reduced expression of the murine HLA-G homolog Qa-2 is associated with malignancy, epithelial-mesenchymal transition and stemness in breast cancer cells.

  • Istéfani L da Silva‎ et al.
  • Scientific reports‎
  • 2017‎

Qa-2 is believed to mediate a protective immune response against cancer; however, little is known about the role of Qa-2 in tumorigenesis. Here, we used 4T1 breast cancer cells to study the involvement of Qa-2 in tumor progression in a syngeneic host. Qa-2 expression was reduced during in vivo tumor growth and in cell lines derived from 4T1-induced tumors. Tumor-derived cells elicited an epithelial-mesenchymal transition associated with upregulation of Zeb1 and Twist1/2 and enhanced tumor initiating and invasive capacities. Furthermore, these cells showed increased stem characteristics, as demonstrated by upregulation of Hes1, Sox2 and Oct3/4, and enrichment of CD44high/CD24median/low cells. Remarkably, Qa-2 cell-surface expression was excluded from the CD44high/CD24median/low subpopulation. Tumor-derived cells showed increased Src activity, and treatment of these cells with the Src kinase inhibitor PP2 enhanced Qa-2 but reduced Sox2 and CD44high/CD24median/low expression levels, suggesting that Src signaling, while positively associated with stemness, negatively regulates Qa-2 expression in breast cancer. Finally, overexpression of the Qa-2 family member Q7 on the cell surface slowed down in vivo tumor growth and reduced the metastatic potential of 4T1 cells. These results suggest an anti-malignant role for Qa-2 in breast cancer development, which appears to be absent from cancer stem cells.


Pathogenic variants in glutamyl-tRNAGln amidotransferase subunits cause a lethal mitochondrial cardiomyopathy disorder.

  • Marisa W Friederich‎ et al.
  • Nature communications‎
  • 2018‎

Mitochondrial protein synthesis requires charging mt-tRNAs with their cognate amino acids by mitochondrial aminoacyl-tRNA synthetases, with the exception of glutaminyl mt-tRNA (mt-tRNAGln). mt-tRNAGln is indirectly charged by a transamidation reaction involving the GatCAB aminoacyl-tRNA amidotransferase complex. Defects involving the mitochondrial protein synthesis machinery cause a broad spectrum of disorders, with often fatal outcome. Here, we describe nine patients from five families with genetic defects in a GatCAB complex subunit, including QRSL1, GATB, and GATC, each showing a lethal metabolic cardiomyopathy syndrome. Functional studies reveal combined respiratory chain enzyme deficiencies and mitochondrial dysfunction. Aminoacylation of mt-tRNAGln and mitochondrial protein translation are deficient in patients' fibroblasts cultured in the absence of glutamine but restore in high glutamine. Lentiviral rescue experiments and modeling in S. cerevisiae homologs confirm pathogenicity. Our study completes a decade of investigations on mitochondrial aminoacylation disorders, starting with DARS2 and ending with the GatCAB complex.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: