Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 61 papers

Targeting an autocrine IL-6-SPINK1 signaling axis to suppress metastatic spread in ovarian clear cell carcinoma.

  • Christine Mehner‎ et al.
  • Oncogene‎
  • 2020‎

A major clinical challenge of ovarian cancer is the development of malignant ascites accompanied by widespread peritoneal metastasis. In ovarian clear cell carcinoma (OCCC), a challenging subtype of ovarian cancer, this problem is compounded by near-universal primary chemoresistance; patients with advanced stage OCCC thus lack effective therapies and face extremely poor survival rates. Here we show that tumor-cell-expressed serine protease inhibitor Kazal type 1 (SPINK1) is a key driver of OCCC progression and metastasis. Using cell culture models of human OCCC, we find that shRNA silencing of SPINK1 sensitizes tumor cells to anoikis and inhibits proliferation. Knockdown of SPINK1 in OCCC cells also profoundly suppresses peritoneal metastasis in mouse implantation models of human OCCC. We next identify a novel autocrine signaling axis in OCCC cells whereby tumor-cell-produced interleukin-6 (IL-6) regulates SPINK1 expression to stimulate a common protumorigenic gene expression pattern leading to anoikis resistance and proliferation of OCCC cells. We further demonstrate that this signaling pathway can be successfully interrupted with the IL-6Rα inhibitor tocilizumab, sensitizing cells to anoikis in vitro and reducing metastasis in vivo. These results suggest that clinical trials of IL-6 pathway inhibitors in OCCC may be warranted, and that SPINK1 might offer a candidate predictive biomarker in this population.


ST3GAL1 is a target of the SOX2-GLI1 transcriptional complex and promotes melanoma metastasis through AXL.

  • Silvia Pietrobono‎ et al.
  • Nature communications‎
  • 2020‎

Understanding the molecular events controlling melanoma progression is of paramount importance for the development of alternative treatment options for this devastating disease. Here we report a mechanism regulated by the oncogenic SOX2-GLI1 transcriptional complex driving melanoma invasion through the induction of the sialyltransferase ST3GAL1. Using in vitro and in vivo studies, we demonstrate that ST3GAL1 drives melanoma metastasis. Silencing of this enzyme suppresses melanoma invasion and significantly reduces the ability of aggressive melanoma cells to enter the blood stream, colonize distal organs, seed and survive in the metastatic environment. Analysis of glycosylated proteins reveals that the receptor tyrosine kinase AXL is a major effector of ST3GAL1 pro-invasive function. ST3GAL1 induces AXL dimerization and activation that, in turn, promotes melanoma invasion. Our data support a key role of the ST3GAL1-AXL axis as driver of melanoma metastasis, and highlight the therapeutic potential of targeting this axis to treat metastatic melanoma.


DOCK7 protects against replication stress by promoting RPA stability on chromatin.

  • Ming Gao‎ et al.
  • Nucleic acids research‎
  • 2021‎

RPA is a critical factor for DNA replication and replication stress response. Surprisingly, we found that chromatin RPA stability is tightly regulated. We report that the GDP/GTP exchange factor DOCK7 acts as a critical replication stress regulator to promote RPA stability on chromatin. DOCK7 is phosphorylated by ATR and then recruited by MDC1 to the chromatin and replication fork during replication stress. DOCK7-mediated Rac1/Cdc42 activation leads to the activation of PAK1, which subsequently phosphorylates RPA1 at S135 and T180 to stabilize chromatin-loaded RPA1 and ensure proper replication stress response. Moreover, DOCK7 is overexpressed in ovarian cancer and depleting DOCK7 sensitizes cancer cells to camptothecin. Taken together, our results highlight a novel role for DOCK7 in regulation of the replication stress response and highlight potential therapeutic targets to overcome chemoresistance in cancer.


Hyperphosphorylated PTEN exerts oncogenic properties.

  • Janine H van Ree‎ et al.
  • Nature communications‎
  • 2023‎

PTEN is a multifaceted tumor suppressor that is highly sensitive to alterations in expression or function. The PTEN C-tail domain, which is rich in phosphorylation sites, has been implicated in PTEN stability, localization, catalytic activity, and protein interactions, but its role in tumorigenesis remains unclear. To address this, we utilized several mouse strains with nonlethal C-tail mutations. Mice homozygous for a deletion that includes S370, S380, T382 and T383 contain low PTEN levels and hyperactive AKT but are not tumor prone. Analysis of mice containing nonphosphorylatable or phosphomimetic versions of S380, a residue hyperphosphorylated in human gastric cancers, reveal that PTEN stability and ability to inhibit PI3K-AKT depends on dynamic phosphorylation-dephosphorylation of this residue. While phosphomimetic S380 drives neoplastic growth in prostate by promoting nuclear accumulation of β-catenin, nonphosphorylatable S380 is not tumorigenic. These data suggest that C-tail hyperphosphorylation creates oncogenic PTEN and is a potential target for anti-cancer therapy.


Sorting nexin 31 binds multiple β integrin cytoplasmic domains and regulates β1 integrin surface levels and stability.

  • Hui-Yuan Tseng‎ et al.
  • Journal of molecular biology‎
  • 2014‎

Trafficking of α5β1 integrin to lysosomes and its subsequent degradation is influenced by ligand occupancy and the binding of SNX17 via its protein 4.1, ezrin, radixin, moesin (FERM) domain to the membrane-distal NPxY motif in the cytoplasmic domain of β1 integrin in early endosomes. Two other sorting nexin (SNX) family members, namely SNX27 and SNX31, share with SNX17 next to their obligate phox domain a FERM domain, which may enable them to bind β integrin tails. Here we report that, in addition to SNX17, SNX31 but not SNX27 binds several β integrin tails in early endosomes in a PI3 (phosphatidylinositide 3)-kinase-dependent manner. Similarly like SNX17, binding of SNX31 with β1 integrin tails in early endosomes occurs between the FERM domain and the membrane-distal NPxY motif in the β1 integrin cytoplasmic domain. Furthermore, expression of SNX31 rescues β1 integrin surface levels and stability in SNX17-depleted cells. In contrast to SNX17, expression of SNX31 is restricted and found highly expressed in bladder and melanoma tissue. Altogether, these results demonstrate that SNX31 is an endosomal regulator of β integrins with a restricted expression pattern.


Early aging-associated phenotypes in Bub3/Rae1 haploinsufficient mice.

  • Darren J Baker‎ et al.
  • The Journal of cell biology‎
  • 2006‎

Aging is a highly complex biological process that is believed to involve multiple mechanisms. Mice that have small amounts of the mitotic checkpoint protein BubR1 age much faster than normal mice, but whether other mitotic checkpoint genes function to prevent the early onset of aging is unknown. In this study, we show that several aging-associated phenotypes appear early in mice that are double haploinsufficient for the mitotic checkpoint genes Bub3 and Rae1 but not in mice that are single haploinsufficient for these genes. Mouse embryonic fibroblasts (MEFs) from Bub3/Rae1 haploinsufficient mice undergo premature senescence and accumulate high levels of p19, p53, p21, and p16, whereas MEFs from single haploinsufficient mice do not. Furthermore, although BubR1 hypomorphic mice have less aneuploidy than Bub3/Rae1 haploinsufficient mice, they age much faster. Our findings suggest that early onset of aging-associated phenotypes in mice with mitotic checkpoint gene defects is linked to cellular senescence and activation of the p53 and p16 pathways rather than to aneuploidy.


Ran-dependent docking of importin-beta to RanBP2/Nup358 filaments is essential for protein import and cell viability.

  • Masakazu Hamada‎ et al.
  • The Journal of cell biology‎
  • 2011‎

RanBP2/Nup358, the major component of the cytoplasmic filaments of the nuclear pore complex (NPC), is essential for mouse embryogenesis and is implicated in both macromolecular transport and mitosis, but its specific molecular functions are unknown. Using RanBP2 conditional knockout mouse embryonic fibroblasts and a series of mutant constructs, we show that transport, rather than mitotic, functions of RanBP2 are required for cell viability. Cre-mediated RanBP2 inactivation caused cell death with defects in M9- and classical nuclear localization signal (cNLS)-mediated protein import, nuclear export signal-mediated protein export, and messenger ribonucleic acid export but no apparent mitotic failure. A short N-terminal RanBP2 fragment harboring the NPC-binding domain, three phenylalanine-glycine motifs, and one Ran-binding domain (RBD) corrected all transport defects and restored viability. Mutation of the RBD within this fragment caused lethality and perturbed binding to Ran guanosine triphosphate (GTP)-importin-β, accumulation of importin-β at nuclear pores, and cNLS-mediated protein import. These data suggest that a critical function of RanBP2 is to capture recycling RanGTP-importin-β complexes at cytoplasmic fibrils to allow for adequate cNLS-mediated cargo import.


Increased expression of BubR1 protects against aneuploidy and cancer and extends healthy lifespan.

  • Darren J Baker‎ et al.
  • Nature cell biology‎
  • 2013‎

The BubR1 gene encodes for a mitotic regulator that ensures accurate segregation of chromosomes through its role in the mitotic checkpoint and the establishment of proper microtubule-kinetochore attachments. Germline mutations that reduce BubR1 abundance cause aneuploidy, shorten lifespan and induce premature ageing phenotypes and cancer in both humans and mice. A reduced BubR1 expression level is also a feature of chronological ageing, but whether this age-related decline has biological consequences is unknown. Using a transgenic approach in mice, we show that sustained high-level expression of BubR1 preserves genomic integrity and reduces tumorigenesis, even in the presence of genetic alterations that strongly promote aneuplodization and cancer, such as oncogenic Ras. We find that BubR1 overabundance exerts its protective effect by correcting mitotic checkpoint impairment and microtubule-kinetochore attachment defects. Furthermore, sustained high-level expression of BubR1 extends lifespan and delays age-related deterioration and aneuploidy in several tissues. Collectively, these data uncover a generalized function for BubR1 in counteracting defects that cause whole-chromosome instability and suggest that modulating BubR1 provides a unique opportunity to extend healthy lifespan.


LY2157299 Monohydrate, a TGF-βR1 Inhibitor, Suppresses Tumor Growth and Ascites Development in Ovarian Cancer.

  • Qing Zhang‎ et al.
  • Cancers‎
  • 2018‎

Transforming growth factor beta (TGF-β) signaling has pleiotropic functions regulating cancer initiation, development, and metastasis, and also plays important roles in the interaction between stromal and cancer cells, making the pathway a potential therapeutic target. LY2157299 monohydrate (LY), an inhibitor of TGF-β receptor I (TGFBRI), was examined for its ability to inhibit ovarian cancer (OC) growth both in high-grade serous ovarian cancer (HGSOC) cell lines and xenograft models. Immunohistochemistry, qRT-PCR, and Western blot were performed to study the effect of LY treatment on expression of cancer- and fibroblast-derived genes. Results showed that exposure to TGF-β1 induced phosphorylation of SMAD2 and SMAD3 in all tested OC cell lines, but this induction was suppressed by pretreatment with LY. LY alone inhibited the proliferation, migration, and invasion of HGSOC cells in vitro. TGF-β1-induced fibroblast activation was blocked by LY. LY also delayed tumor growth and suppressed ascites formation in vivo. In addition, independent of tumor inhibition, LY reduces ascites formation in vivo. Using OVCAR8 xenograft specimens we confirmed the inhibitory effect of LY on TGF-β signaling and tumor stromal expression of collagen type XI chain 1 (COL11A1) and versican (VCAN). These observations suggest a role for anti-TGF-β signaling-directed therapy in ovarian cancer.


Ccne1 Overexpression Causes Chromosome Instability in Liver Cells and Liver Tumor Development in Mice.

  • Khaled Aziz‎ et al.
  • Gastroenterology‎
  • 2019‎

The CCNE1 locus, which encodes cyclin E1, is amplified in many types of cancer cells and is activated in hepatocellular carcinomas (HCCs) from patients infected with hepatitis B virus or adeno-associated virus type 2, due to integration of the virus nearby. We investigated cell-cycle and oncogenic effects of cyclin E1 overexpression in tissues of mice.


ZC3H18 specifically binds and activates the BRCA1 promoter to facilitate homologous recombination in ovarian cancer.

  • Arun Kanakkanthara‎ et al.
  • Nature communications‎
  • 2019‎

Reduced BRCA1 expression causes homologous recombination (HR) repair defects in high-grade serous ovarian cancers (HGSOCs). Here, we demonstrate that BRCA1 is transcriptionally activated by a previously unknown function of ZC3H18. We show that ZC3H18 is a DNA-binding protein that interacts with an E2F site in the BRCA1 promoter where it facilitates recruitment of E2F4 to an adjacent E2F site to promote BRCA1 transcription. Consistent with ZC3H18 role in activating BRCA1 expression, ZC3H18 depletion induces BRCA1 promoter methylation, reduces BRCA1 expression, disrupts HR, and sensitizes cells to DNA crosslinkers and poly(ADP-ribose) polymerase inhibitors. Moreover, in patient-derived xenografts and primary HGSOC tumors, ZC3H18 and E2F4 mRNA levels are positively correlated with BRCA1 mRNA levels, further supporting ZC3H18 role in regulating BRCA1. Given that ZC3H18 lies within 16q24.2, a region with frequent copy number loss in HGSOC, these findings suggest that ZC3H18 copy number losses could contribute to HR defects in HGSOC.


Disruption of Glycogen Utilization Markedly Improves the Efficacy of Carboplatin against Preclinical Models of Clear Cell Ovarian Carcinoma.

  • Tashbib Khan‎ et al.
  • Cancers‎
  • 2020‎

High stage and recurrent ovarian clear cell carcinoma (OCC) are associated with poor prognosis and resistance to chemotherapy. A distinguishing histological feature of OCC is abundant cytoplasmic stores of glucose, in the form of glycogen, that can be mobilized for cellular metabolism. Here, we report the effect on preclinical models of OCC of disrupting glycogen utilization using the glucose analogue 2-deoxy-D-glucose (2DG). At concentrations significantly lower than previously reported for other cancers, 2DG markedly improves the efficacy in vitro of carboplatin chemotherapy against chemo-sensitive TOV21G and chemo-resistant OVTOKO OCC cell lines, and this is accompanied by the depletion of glycogen. Of note, 2DG doses-of more than 10-fold lower than previously reported for other cancers-significantly improve the efficacy of carboplatin against cell line and patient-derived xenograft models in mice that mimic the chemo-responsiveness of OCC. These findings are encouraging, in that 2DG doses, which are substantially lower than previously reported to cause adverse events in cancer patients, can safely and significantly improve the efficacy of carboplatin against OCC. Our results thus justify clinical trials to evaluate whether low dose 2DG improves the efficacy of carboplatin in OCC patients.


DNA Damage Promotes TMPRSS2-ERG Oncoprotein Destruction and Prostate Cancer Suppression via Signaling Converged by GSK3β and WEE1.

  • Zhe Hong‎ et al.
  • Molecular cell‎
  • 2020‎

TMPRSS2-ERG gene fusion occurs in approximately 50% of cases of prostate cancer (PCa), and the fusion product is a key driver of prostate oncogenesis. However, how to leverage cellular signaling to ablate TMPRSS2-ERG oncoprotein for PCa treatment remains elusive. Here, we demonstrate that DNA damage induces proteasomal degradation of wild-type ERG and TMPRSS2-ERG oncoprotein through ERG threonine-187 and tyrosine-190 phosphorylation mediated by GSK3β and WEE1, respectively. The dual phosphorylation triggers ERG recognition and degradation by the E3 ubiquitin ligase FBW7 in a manner independent of a canonical degron. DNA damage-induced TMPRSS2-ERG degradation was abolished by cancer-associated PTEN deletion or GSK3β inactivation. Blockade of DNA damage-induced TMPRSS2-ERG oncoprotein degradation causes chemotherapy-resistant growth of fusion-positive PCa cells in culture and in mice. Our findings uncover a previously unrecognized TMPRSS2-ERG protein destruction mechanism and demonstrate that intact PTEN and GSK3β signaling are essential for effective targeting of ERG protein by genotoxic therapeutics in fusion-positive PCa.


Antitumor activity of Z-endoxifen in aromatase inhibitor-sensitive and aromatase inhibitor-resistant estrogen receptor-positive breast cancer.

  • Swaathi Jayaraman‎ et al.
  • Breast cancer research : BCR‎
  • 2020‎

The tamoxifen metabolite, Z-endoxifen, demonstrated promising antitumor activity in endocrine-resistant estrogen receptor-positive (ER+) breast cancer. We compared the antitumor activity of Z-endoxifen with tamoxifen and letrozole in the letrozole-sensitive MCF7 aromatase expressing model (MCF7AC1), as well as with tamoxifen, fulvestrant, exemestane, and exemestane plus everolimus in a letrozole-resistant MCF7 model (MCF7LR).


Association of a novel endometrial cancer biomarker panel with prognostic risk, platinum insensitivity, and targetable therapeutic options.

  • Jesus Gonzalez Bosquet‎ et al.
  • PloS one‎
  • 2021‎

During the past decade, the age-adjusted mortality rate for endometrial cancer (EC) increased 1.9% annually with TP53 mutant (TP53-mu) EC disproportionally represented in advanced disease and deaths. Therefore, we aimed to assess pivotal molecular parameters that differentiate clinical outcomes in high- and low-risk EC. Using the Cancer Genome Atlas, we analyzed EC specimens with available DNA sequences and quantitative gene-specific RNA expression data. After polymerase ɛ (POLE)-mutant specimens were excluded, differential gene-specific mutations and mRNA expressions were annotated and integrated. Consequent to TP53-mu failure to induce p21, derepression of multiple oncogenes harboring promoter p21 repressive sites was observed, including CCNA2 and FOXM1 (P < .001 compared with TP53 wild type [TP53-wt]). TP53-wt EC with high CCNA2 expression (CCNA2-H) had a targeted transcriptomic profile similar to that of TP53-mu EC, suggesting CCNA2 is a seminal determinant for both TP53-wt and TP53-mu EC. CCNA2 enhances E2F1 function, upregulating FOXM1 and CIP2A, as observed in TP53-mu and CCNA2-H TP53-wt EC (P < .001). CIP2A inhibits protein phosphatase 2A, leading to AKT inactivation of GSK3β and restricted oncoprotein degradation; PPP2R1A and FBXW7 mutations yield similar results. Upregulation of FOXM1 and failed degradation of FOXM1 is evidenced by marked upregulation of multiple homologous recombination genes (P < .001). Integrating these molecular aberrations generated a molecular biomarker panel with significant prognostic discrimination (P = 5.8×10-7); adjusting for age, histology, grade, myometrial invasion, TP53 status, and stage, only CCNA2-H/E2F1-H (P = .0003), FBXW7-mu/PPP2R1A-mu (P = .0002), and stage (P = .017) were significant. The generated prognostic molecular classification system identifies dissimilar signaling aberrations potentially amenable to targetable therapeutic options.


Repurposing Ceritinib Induces DNA Damage and Enhances PARP Inhibitor Responses in High-Grade Serous Ovarian Carcinoma.

  • Arun Kanakkanthara‎ et al.
  • Cancer research‎
  • 2022‎

PARP inhibitors (PARPi) have activity in homologous recombination (HR) repair-deficient, high-grade serous ovarian cancers (HGSOC). However, even responsive tumors develop PARPi resistance, highlighting the need to delay or prevent the appearance of PARPi resistance. Here, we showed that the ALK kinase inhibitor ceritinib synergizes with PARPis by inhibiting complex I of the mitochondrial electron transport chain, which increases production of reactive oxygen species (ROS) and subsequent induction of oxidative DNA damage that is repaired in a PARP-dependent manner. In addition, combined treatment with ceritinib and PARPi synergized in HGSOC cell lines irrespective of HR status, and a combination of ceritinib with the PARPi olaparib induced tumor regression more effectively than olaparib alone in HGSOC patient-derived xenograft (PDX) models. Notably, the ceritinib and olaparib combination was most effective in PDX models with preexisting PARPi sensitivity and was well tolerated. These findings unveil suppression of mitochondrial respiration, accumulation of ROS, and subsequent induction of DNA damage as novel effects of ceritinib. They also suggest that the ceritinib and PARPi combination warrants further investigation as a means to enhance PARPi activity in HGSOC, particularly in tumors with preexisting HR defects. SIGNIFICANCE: The kinase inhibitor ceritinib synergizes with PARPi to induce tumor regression in ovarian cancer models, suggesting that ceritinib combined with PARPi may be an effective strategy for treating ovarian cancer.


Characterization of a RAD51C-silenced high-grade serous ovarian cancer model during development of PARP inhibitor resistance.

  • Rachel M Hurley‎ et al.
  • NAR cancer‎
  • 2021‎

Acquired PARP inhibitor (PARPi) resistance in BRCA1- or BRCA2-mutant ovarian cancer often results from secondary mutations that restore expression of functional protein. RAD51C is a less commonly studied ovarian cancer susceptibility gene whose promoter is sometimes methylated, leading to homologous recombination (HR) deficiency and PARPi sensitivity. For this study, the PARPi-sensitive patient-derived ovarian cancer xenograft PH039, which lacks HR gene mutations but harbors RAD51C promoter methylation, was selected for PARPi resistance by cyclical niraparib treatment in vivo. PH039 acquired PARPi resistance by the third treatment cycle and grew through subsequent treatment with either niraparib or rucaparib. Transcriptional profiling throughout the course of resistance development showed widespread pathway level changes along with a marked increase in RAD51C mRNA, which reflected loss of RAD51C promoter methylation. Analysis of ovarian cancer samples from the ARIEL2 Part 1 clinical trial of rucaparib monotherapy likewise indicated an association between loss of RAD51C methylation prior to on-study biopsy and limited response. Interestingly, the PARPi resistant PH039 model remained platinum sensitive. Collectively, these results not only indicate that PARPi treatment pressure can reverse RAD51C methylation and restore RAD51C expression, but also provide a model for studying the clinical observation that PARPi and platinum sensitivity are sometimes dissociated.


SPOP mutation induces DNA methylation via stabilizing GLP/G9a.

  • Jianong Zhang‎ et al.
  • Nature communications‎
  • 2021‎

Mutations in SPOP E3 ligase gene are reportedly associated with genome-wide DNA hypermethylation in prostate cancer (PCa) although the underlying mechanisms remain elusive. Here, we demonstrate that SPOP binds and promotes polyubiquitination and degradation of histone methyltransferase and DNMT interactor GLP. SPOP mutation induces stabilization of GLP and its partner protein G9a and aberrant upregulation of global DNA hypermethylation in cultured PCa cells and primary PCa specimens. Genome-wide DNA methylome analysis shows that a subset of tumor suppressor genes (TSGs) including FOXO3, GATA5, and NDRG1, are hypermethylated and downregulated in SPOP-mutated PCa cells. DNA methylation inhibitor 5-azacytidine effectively reverses expression of the TSGs examined, inhibits SPOP-mutated PCa cell growth in vitro and in mice, and enhances docetaxel anti-cancer efficacy. Our findings reveal the GLP/G9a-DNMT module as a mediator of DNA hypermethylation in SPOP-mutated PCa. They suggest that SPOP mutation could be a biomarker for effective treatment of PCa with DNA methylation inhibitor alone or in combination with taxane chemotherapeutics.


Epithelial-to-Mesenchymal Transition Supports Ovarian Carcinosarcoma Tumorigenesis and Confers Sensitivity to Microtubule Targeting with Eribulin.

  • Gwo Yaw Ho‎ et al.
  • Cancer research‎
  • 2022‎

Ovarian carcinosarcoma (OCS) is an aggressive and rare tumor type with limited treatment options. OCS is hypothesized to develop via the combination theory, with a single progenitor resulting in carcinomatous and sarcomatous components, or alternatively via the conversion theory, with the sarcomatous component developing from the carcinomatous component through epithelial-to-mesenchymal transition (EMT). In this study, we analyzed DNA variants from isolated carcinoma and sarcoma components to show that OCS from 18 women is monoclonal. RNA sequencing indicated that the carcinoma components were more mesenchymal when compared with pure epithelial ovarian carcinomas, supporting the conversion theory and suggesting that EMT is important in the formation of these tumors. Preclinical OCS models were used to test the efficacy of microtubule-targeting drugs, including eribulin, which has previously been shown to reverse EMT characteristics in breast cancers and induce differentiation in sarcomas. Vinorelbine and eribulin more effectively inhibited OCS growth than standard-of-care platinum-based chemotherapy, and treatment with eribulin reduced mesenchymal characteristics and N-MYC expression in OCS patient-derived xenografts. Eribulin treatment resulted in an accumulation of intracellular cholesterol in OCS cells, which triggered a downregulation of the mevalonate pathway and prevented further cholesterol biosynthesis. Finally, eribulin increased expression of genes related to immune activation and increased the intratumoral accumulation of CD8+ T cells, supporting exploration of immunotherapy combinations in the clinic. Together, these data indicate that EMT plays a key role in OCS tumorigenesis and support the conversion theory for OCS histogenesis. Targeting EMT using eribulin could help improve OCS patient outcomes.


Histological evaluation of acute ischemic stroke thrombi may indicate the occurrence of vessel wall injury during mechanical thrombectomy.

  • Oana Madalina Mereuta‎ et al.
  • Journal of neurointerventional surgery‎
  • 2022‎

Several animal studies have demonstrated that mechanical thrombectomy (MT) for acute ischemic stroke (AIS) may cause vessel wall injury (VWI). However, the histological changes in human cerebral arteries following MT are difficult to determine.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: