Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 out of 46 results
Snippet view Table view Download
Click the to add this resource to a Collection
  • RRID:SCR_001496

    This resource has 1+ mentions.

http://www.bari2d.org/

A multicenter randomized clinical trial that aims to determine the best therapies for people with type 2 diabetes and moderately severe cardiovascular disease. 2368 participants were randomized at 49 sites in 6 countries. All subjects were given intensive medical therapy to control cholesterol and blood pressure and given counseling, if needed, to quit smoking and to lose weight. Beyond that, they compared whether prompt revascularization, either bypass surgery or angioplasty, e.g. stents, was more effective than medical therapy alone. At the same time, they also looked at which of two diabetes treatment strategies resulted in better outcomes����??insulin-providing versus insulin-sensitizing - that is, increasing the amount of insulin or making the insulin work better. Only patients with known type 2 diabetes and heart disease that could be treated appropriately with a revascularization OR medical therapy alone were eligible for the trial. Patients entered the study between January 2001 ����?? March 2005 and were followed for an average of five years. When a patient entered the study, physicians first decided whether that patient should receive stenting or bypass surgery. The patient then received their randomization assignment. All patients were treated in BARI 2D for both their diabetes and heart disease, as well as other risk factors that might effect those diseases, regardless of which group they were in. Diabetes-specific complications including retinopathy, nephropathy, neuropathy, and peripheral vascular disease were monitored regularly. Tests, blood samples, urine samples, and treatment cost data were obtained periodically through the trial and examined by experts at 7 central laboratories and other research partners. Experts on risk factors routinely oversaw treatments of all patients at 4 central management centers. A panel of independent experts reviewed data every six months to make sure that all patients were receiving safe care.

Proper citation: BARI 2D (RRID:SCR_001496) Copy   


https://www.wtccc.org.uk/

Consortium of 50 research groups across the UK to harness the power of newly-available genotyping technologies to improve our understanding of the aetiological basis of several major causes of global disease. The consortium has gathered genotype data for up to 500,000 sites of genome sequence variation (single nucleotide polymorphisms or SNPs) in samples ascertained for the disease phenotypes. Analysis of the genome-wide association data generated has lead to the identification of many SNPs and genes showing evidence of association with disease susceptibility, some of which will be followed up in future studies. In addition, the Consortium has gained important insights into the technical, analytical, methodological and biological aspects of genome-wide association analysis. The core of the study comprised an analysis of 2,000 samples from each of seven diseases (type 1 diabetes, type 2 diabetes, coronary heart disease, hypertension, bipolar disorder, rheumatoid arthritis and Crohn's disease). For each disease, the case samples have been ascertained from sites widely distributed across Great Britain, allowing us to obtain considerable efficiencies by comparing each of these case populations to a common set of 3,000 nationally-ascertained controls also from England, Scotland and Wales. These controls come from two sources: 1,500 are representative samples from the 1958 British Birth Cohort and 1,500 are blood donors recruited by the three national UK Blood Services. One of the questions that the WTCCC study has addressed relates to the relative merits of these alternative strategies for the generation of representative population cohorts. Genotyping for this main Case Control study was conducted by Affymetrix using the (commercial) Affymetrix 500K chip. As part of this study a total of 17,000 samples were typed for 500,000 SNPs. There are two additional components to the study. First, the WTCCC award is part-funding a study of host resistance to infectious diseases in African populations. The same approach has been used to type 2,000 cases of tuberculosis (TB) and 2,000 cases of malaria, as well as 2,000 shared controls. As well as addressing diseases of major global significance, and extending WTCCC coverage into the area of infectious disease, the inclusion of samples of African origin has obvious benefits with respect to methodological aspects of genome-wide association analysis. Second, the WTCCC has, for four additional diseases (autoimmune thyroid disease, breast cancer, ankylosing spondylitis, multiple sclerosis), completed an analysis of 15,000 SNPs designed to represent a large proportion of the known non-synonymous coding SNPs across the genome. This analysis has been performed at the WTSI using a custom Infinium chip (Illumina). Data release The genotypic data of the control samples (1958 British Birth Cohort and UK Blood Service) and from seven diseases analyzed in the main study are now available to qualified researchers. Summary genotype statistics for these collections are available directly from the website. Access to the individual-level genotype data and summary genotype statistics is by application to the Consortium Data Access Committee (CDAC) and approval subject to a Data Access Agreement. WTCCC2: A further round of GWA studies were funded in April 2008. These include 15 WTCCC-collaborative studies and 12 independent studies be supported totaling approximately 120,000 samples. Many of the studies represent major international collaborative networks that have together assembled large sample collections. WTCCC2 will perform genome-wide association studies in 13 disease conditions: Ankylosing spondylitis, Barrett's oesophagus and oesophageal adenocarcinoma, glaucoma, ischaemic stroke, multiple sclerosis, pre-eclampsia, Parkinson's disease, psychosis endophenotypes, psoriasis, schizophrenia, ulcerative colitis and visceral leishmaniasis. WTCCC2 will also investigate the genetics of reading and mathematics abilities in children and the pharmacogenomics of statin response. Over 60,000 samples will be analyzed using either the Affymetrix v6.0 chip or the Illumina 660K chip. The WTCCC2 will also genotype 3,000 controls each from the 1958 British Birth cohort and the UK Blood Service control group, and the 6,000 controls will be genotyped on both the Affymetrix v6.0 and Illumina 1.2M chips. WTCCC3: The Wellcome Trust has provided support for a further round of GWA studies in January 2009. These include 5 WTCCC-collaborative studies to be carried out in WTCCC3 and 5 independent studies, across a range of diseases. Many of the studies represent major international collaborative networks that have together assembled large sample collections. WTCCC3 will perform genome-wide association studies in the following 4 disease conditions: primary biliary cirrhosis, anorexia nervosa, pre-eclampsia in UK subjects, and the interactions between donor and recipient DNA related to early and late renal transplant dysfunction. The WTCCC3 will also carry out a pilot in a study of the genetics of host control of HIV-1 infection. Over 40,000 samples will be analyzed using the Illumina 660K chip. The WTCCC3 will utilize the 6,000 control genotypes generated by the WTCCC2.

Proper citation: Wellcome Trust Case Control Consortium (RRID:SCR_001973) Copy   


  • RRID:SCR_003334

    This resource has 10+ mentions.

http://www.decode.com/

A biopharmaceutical company applying its discoveries in human genetics to develop drugs and diagnostics for common diseases. They specialize in gene discovery - their population approach and resources have enabled them to isolate key genes contributing to major public health challenges from cardiovascular disease to cancer. The company's genotyping capacity is now one of the highest in the world. They have a large population-based biobank containing whole blood and DNA samples with extensive relevant phenotypic information from around 120.000 Icelanders. In the company's work in more than 50 disease projects, their statistical and informatics departments have established themselves in data processing and analysis. deCODE genetics is widely recognized as a center of excellence in genetic research.

Proper citation: deCODE genetics (RRID:SCR_003334) Copy   


https://www.niddk.nih.gov/

Center with mission to conduct and support medical research and research training and to disseminate science-based information on diabetes and other endocrine and metabolic diseases. The NIDDK supports a wide range of medical research through grants to universities and other medical research institutions across the country.

Proper citation: NIDDK - National Institute of Diabetes and Digestive and Kidney Diseases (RRID:SCR_012895) Copy   


  • RRID:SCR_010497

http://www.alkermes.com/

A biopharmaceutical company that focuses on central nervous system (CNS) diseases. The company is the result of a merger between Alkermes, Inc. and Elan Drug Technologies (EDT), the former drug formulation and manufacturing division of Elan Corporation, plc. The company is headquartered in Dublin, and has an R&D center in Waltham, Massachusetts and manufacturing facilities in Athlone, Ireland; Gainesville, Georgia; and Wilmington, Ohio. Alkermes has more than 20 commercial drug products and candidates that address serious and chronic diseases such as addiction, schizophrenia, diabetes and depression. Among these, five products are primary to the company: risperidone Long-Acting Injection (Risperdal Consta) for schizophrenia and bipolar 1 disorder, paliperidone palmitate (Invega Sustenna in the U.S., Xeplion in Europe) for schizophrenia, 4-aminopyridine (Ampyra in the U.S., Fampyra in Europe) to improve walking in patients with multiple sclerosis, naltrexone for extended-release injectable suspension (Vivitrol) for alcohol and opioid dependence, and exenatide extended-release for injectable suspension (Bydureon) for the treatment of type 2 diabetes. Bydureon is a once-weekly, long-acting form of the drug exenatide (Byetta) and was developed through a partnership between Amylin, Alkermes and Eli Lilly. It is approved in Europe and the U.S. (Wikipedia)

Proper citation: Alkermes (RRID:SCR_010497) Copy   


  • RRID:SCR_004633

    This resource has 10000+ mentions.

http://www.jax.org/index.html

An independent, nonprofit organization focused on mammalian genetics research to advance human health. Their mission is to discover the genetic basis for preventing, treating, and curing human disease, and to enable research for the global biomedical community. Jackson Laboratory breeds and manages colonies of mice as resources for other research institutions and laboratories, along with providing software and techniques. Jackson Lab also conducts genetic research and provides educational material for various educational levels.

Proper citation: Jackson Laboratory (RRID:SCR_004633) Copy   


http://www.ars.usda.gov/Services/docs.htm?docid=6065

Performs studies demonstrating the nutritional and biochemical effects of trace elements with special emphasis on chromium. Performs studies to elucidate the role of natural products in the improvement of the function of insulin with emphasis on polyphenols from tea and cinnamon. Performs studies on the role of dietary polyphenols on neuropathological changes including those associated with Alzheimers disease. The ultimate goal of the research is to prevent or alleviate early signs and symptoms of the metabolic syndrome which is important in the prevention of type 2 diabetes, cardiovascular, Alzheimers and related diseases. Our database is focused on immunologically-related genes classified under the following categories: Apoptosis CD markers Chemokines Chemokine receptors Cytokines Cytokine receptors Dendritic cell associated genes Type 1 IFN induced proteins Inflammation NFKB signaling pathway Toll receptor signaling pathway T cell activation TH1 cell development TH2 cell development Partners. Partnering with the Diet, Genomics, and Immunology Laboratory

Proper citation: DGIL Porcine Immunology and Nutrition Datebase (RRID:SCR_012743) Copy   


http://www.ncibi.org/

The Center develops conceptual models, computational infrastructure, an integrated knowledge repository, and query and analysis tools that enable scientists to effectively access and integrate the wealth of biological data. The National Center for Integrative Biomedical Informatics (NCIBI) was founded in October 2005 and is one of seven National Centers for Biomedical Computing (NCBC) in the NIH Roadmap. NCIBI is based at the University of Michigan as a part of the Center for Computational Medicine and Biology (CCMB). NCIBI is composed of biomedical researchers, computational biologists, computer scientists, developers and human-computer interaction specialists organized into seven major core functions. They work in interdisciplinary teams to collectively develop tools that are not only computationally powerful but also biologically relevant and meaningful. The four initial Driving Biological Projects (prostate cancer progression, Type 1 and type 2 diabetes and bipolar disorder) provide the nucleation point from which tool development is informed, launched, and tested. In addition to testing tools for function, a separate team is dedicated to testing usability and user interaction that is a unique feature of this Center. Once tools are developed and validated the goal of the Center is to share and disseminate data and software throughout the research community both internally and externally. This is achieved through various mechanisms such as training videos, tutorials, and demonstrations and presentations at national and international scientific conferences. NCIBI is supported by NIH Grant # U54-DA021519.

Proper citation: National Center for Integrative Biomedical Informatics (RRID:SCR_001538) Copy   


http://www2.niddk.nih.gov/Research/Resources/ObesityResources.htm

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 23, 2017. This website contains resources for obesity researchers including: Obesity Databases, Registries and Information; Obesity Multicenter Clinical Research; Obesity Basic Research Networks; Obesity Reagents; Obesity Services; Obesity Standardization Programs; Obesity Tissues, Cells, Animals; Obesity Useful Tools.

Proper citation: NIDDK- National Institute of Diabetes and Digestive and Kidney Diseases Obesity Resources (RRID:SCR_003074) Copy   


http://www.bsc.gwu.edu/dpp/index.htmlvdoc

Multicenter clinical research study aimed at discovering whether modest weight loss through dietary changes and increased physical activity or treatment with the oral diabetes drug metformin (Glucophage) could prevent or delay the onset of type 2 diabetes in study participants. At the beginning of the DPP, all 3,234 study participants were overweight and had blood glucose levels higher than normal but not high enough for a diagnosis of diabetesa condition called prediabetes. In addition, 45 percent of the participants were from minority groups-African American, Alaska Native, American Indian, Asian American, Hispanic/Latino, or Pacific Islander-at increased risk of developing diabetes. The DPP found that participants who lost a modest amount of weight through dietary changes and increased physical activity sharply reduced their chances of developing diabetes. Taking metformin also reduced risk, although less dramatically. In the DPP, participants from 27 clinical centers around the United States were randomly divided into different treatment groups. The first group, called the lifestyle intervention group, received intensive training in diet, physical activity, and behavior modification. By eating less fat and fewer calories and exercising for a total of 150 minutes a week, they aimed to lose 7 percent of their body weight and maintain that loss. The second group took 850 mg of metformin twice a day. The third group received placebo pills instead of metformin. The metformin and placebo groups also received information about diet and exercise but no intensive motivational counseling. A fourth group was treated with the drug troglitazone (Rezulin), but this part of the study was discontinued after researchers discovered that troglitazone can cause serious liver damage. The participants in this group were followed but not included as one of the intervention groups. In the years since the DPP was completed, further analyses of DPP data continue to yield important insights into the value of lifestyle changes in helping people prevent type 2 diabetes and associated conditions. For example, one analysis confirmed that DPP participants carrying two copies of a gene variant, or mutation, that significantly increased their risk of developing diabetes benefited from lifestyle changes as much as or more than those without the gene variant. Another analysis found that weight loss was the main predictor of reduced risk for developing diabetes in DPP lifestyle intervention group participants. The authors concluded that diabetes risk reduction efforts should focus on weight loss, which is helped by increased exercise.

Proper citation: Diabetes Prevention Program (RRID:SCR_001501) Copy   


  • RRID:SCR_023626

    This resource has 10+ mentions.

http://tiger.bsc.es

Resource enables integrative exploration of genetic and epigenetic basis of development of Type 2 Diabetes, together with other associated functional, molecular and clinical data, centered in biology and role of pancreatic beta cells.The gene expression regulatory variation landscape of human pancreatic islets.

Proper citation: TIGER Data Portal (RRID:SCR_023626) Copy   


https://d2h2.maayanlab.cloud/

Platform that facilitates data driven hypothesis generation for diabetes and related metabolic disorder research community. Curated transcriptomics datasets from various Type 2 Diabetes studies are made available for download, visualization, and enrichment analysis.

Proper citation: Diabetes Data and Hypothesis Hub (RRID:SCR_023629) Copy   


https://hugeamp.org

Portal enables browsing, searching, and analysis of human genetic information linked to common metabolic diseases and traits, while protecting integrity and confidentiality of underlying data. Aggregates and analyzes genetic association results, epigenomic annotations, and results of computational prediction methods to provide data, visualizations, and tools in open access portal.

Proper citation: Common Metabolic Diseases Knowledge Portal (RRID:SCR_020937) Copy   


http://www.baderc.org

Consortium of laboratory-based and clinical investigators who research etiology, pathogenesis, treatment and cure of type 1 and type 2 diabetes, and their associated microvascular and atherosclerotic complications.

Proper citation: Boston Area Diabetes Endocrinology Research Center (RRID:SCR_015072) Copy   


http://www.hopkinsmedicine.org/diabetes-research-center/

Center whose goal is to understand the causes of both type 1 and 2 diabetes and promotes translational research that is aimed at reducing the burden of these diseases in the U.S. It has a specific focus on childhood diabetes and diabetes that affects minority populations.

Proper citation: Johns Hopkins University - University of Maryland Diabetes Research Center (RRID:SCR_015086) Copy   


  • RRID:SCR_018913

    This resource has 1+ mentions.

https://www.t2dsystems.eu/t2dsystems

Project to bridge gap between in vitro human islet studies and clinical studies in human subjects. Used to integrate cellular and medical research data, collected by partners, with computational modelling to identify pathophysiological mechanisms and markers of spectrum of biological and cellular processes involved in pancreatic beta cell failure leading to impaired glucose tolerance and T2D.

Proper citation: T2DSystems (RRID:SCR_018913) Copy   


  • RRID:SCR_009015

    This resource has 100+ mentions.

https://www.accordtrial.org/public

Study testing whether strict glucose control lowers the risk of heart disease and stroke in adults with type 2 diabetes. In addition the study is exploring: 1) Whether in the context of good glycemic control the use of different lowering lipid drugs will further improve these outcomes and 2) If strict control of blood pressure will also have additional beneficial effects on reducing cardiovascular disease. The design was a randomized, multicenter, double 2 X 2 factorial trial in 10,251 patients with type 2 diabetes mellitus. It was designed to test the effects on major CVD events of intensive glycemia control, of fibrate treatment to increase HDL-cholesterol and lower triglycerides (in the context of good LDL-C and glycemia control), and of intensive blood pressure control (in the context of good glycemia control), each compared to an appropriate control. All 10,251 participants were in an overarching glycemia trial. In addition, one 2 X 2 trial addressed the lipid question in 5,518 of the participants and the other 2 X 2 trial addressed the blood pressure question in 4,733 of the participants. The glycemia trial was terminated early due to higher mortality in the intensive compared with the standard glycemia treatment strategies. The results were published in June 2008 (N Eng J Med 2008;358:2545-59). Study-delivered treatment for all ACCORD participants was stopped on June 30, 2009, and the participants were assisted as needed in transferring their care to a personal physician. The lipid and blood pressure results (as well as the microvascular outcomes and eye substudy results) were published in 2010. All participants are continuing to be followed in a non-treatment observational study.

Proper citation: ACCORD (RRID:SCR_009015) Copy   


http://harvard.eagle-i.net/i/0000012e-6d67-5282-55da-381e80000000

Core facility that provides the following services: Autoantibody determination, HLA typing and Genotyping for the best recognized susceptibility loci (INS, PTPN22, CTLA4).

The Human Sample Procurement Core will support translational research endeavors within the JDRF Center by providing the Center''s laboratories access to well-characterized blood samples from patients with diabetes at different stages of the disease. This availability will greatly facilitate the translational exploration of concepts and targets emerging from the basic research projects. Individuals with T1D (recent onset, long-standing Type-1 diabetes) and matched controls (healthy or T2D) will be recruited from the patient population at the Joslin Diabetes Center and neighboring institutions. The Core will perform and record a basic characterization of patients and their samples. This analysis will include a thorough evaluation of clinical characteristics from a diabetes and autoimmune standpoint, and an immunogenetic workup (outsourced to Joslin or other cores): autoantibody determination, HLA typing and genotyping for the best recognized susceptibility loci (INS, PTPN22, CTLA4). A relational database will be adapted to record all patient information, copies of which will be provided in a de-identified manner to the investigators.

Proper citation: HMS Human Sample Procurement Core Facility (RRID:SCR_009797) Copy   


  • RRID:SCR_018567

    This resource has 1+ mentions.

https://pancreatlas.org/

Collection of human pancreas data and images. Platform to share data from human pancreas samples. Houses reference datasets from human pancreas samples, achieved through generosity of organ donors and their families.

Proper citation: Pancreatlas (RRID:SCR_018567) Copy   


http://www.fnih.org/

A public charity whose mission is to support the NIH in its mission to improve health, by forming and facilitating public-private partnerships for biomedical research and training. Its vision is Building Partnerships for Discovery and Innovation to Improve Health. The FNIH draws together the world''s foremost researchers and resources, pressing the frontier to advance critical discoveries. They are recognized as the number-one medical research charity in the countryleveraging support, and convening high level partnerships, for the greatest impact on the most urgent medical challenges we face today. Grants are awarded as part of a public-private partnership with the National Heart, Lung, and Blood Institute (NHLBI) on behalf of The Heart Truth in support of women''s heart health education and research. Funding for the Community Action Program is provided by the FNIH through donations from individuals and corporations including The Heart Truth partners Belk Department Stores, Diet Coke, and Swarovski. Successful biomedical research relies upon the knowledge, training and dedication of those who conduct it. Bringing multiple disciplines to bear on health challenges requires innovation and collaboration on the part of scientists. Foundation for NIH partnerships operate in a variety of ways and formats to recruit, train, empower and retain their next generation of researchers. From lectures and multi-week courses, to scholarships and awards through fellowships and residential training programs, their programs respond to the needs of scientists at every level and stage in their careers.

Proper citation: Foundation for the National Institutes of Health (RRID:SCR_004493) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within FDI Lab - SciCrunch.org that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X